MEMS rotation sensor with integrated electronics

Information

  • Patent Grant
  • 9846175
  • Patent Number
    9,846,175
  • Date Filed
    Tuesday, January 27, 2015
    9 years ago
  • Date Issued
    Tuesday, December 19, 2017
    6 years ago
Abstract
A rotational sensor for measuring rotational acceleration is disclosed. The rotational sensor comprises a sense substrate; at least two proof masses, and a set of two transducers. Each of the at least two proof masses is anchored to the sense substrate via at least one flexure and electrically isolated from each other; and the at least two proof masses are capable of rotating in-plane about a Z-axis relative to the sense substrate, wherein the Z-axis is normal to the substrate. Each of the transducers can sense rotation of each proof mass with respect to the sense substrate in response to a rotation of the rotational sensor.
Description
FIELD OF THE INVENTION

The present invention relates generally to accelerometers and more specifically to multi axis accelerometers that sense angular (rotational) accelerations.


BACKGROUND OF THE INVENTION

Angular or rotational accelerometers are used to measure rotational acceleration about a specific axis. Rotational accelerometers have many applications such as vehicle rollover event prevention, rotational vibration suppression for hard disk drives, airbag deployment and so on. With the advances in MEMS technology various rotational accelerometers that can be fabricated using silicon micromachining techniques have been proposed in U.S. Pat. No. 5,251,484, “Rotational accelerometer,” Oct. 12, 1993; U.S. Pat. No. 6,718,826, “Balanced angular accelerometer,” Apr. 13, 2004; U.S. Pat. No. 5,872,313, Temperature-compensated surface micromachined angular rate sensor,” Feb. 16, 1999; U.S. Pat. No. 6,257,062, “Angular accelerometer,” Jul. 10, 2001. In these applications surface micromachining used to fabricate the moving proof masses. Surface micromachining imposes limits on the structures. For example, the proof mass thickness is limited to the thickness of the deposited films. Surface micromachining also suffers for the stiction problem as a result of sacrificial etching and wet release processes. Therefore proof masses fabricated using this method requires additional supports around the perimeter of the proof mass to reduce stiction and to increase the stability. This results in relatively more complicated devices and stringent requirements for the fabrication of additional springs that would not disturb the operation of the rotational accelerometer. On the other hand bulk micromachining overcomes most of the problems associated with the surface micromachining. U.S. Pat. No. 7,077,007, “Deep reactive ion etching process and microelectromechanical devices formed thereby,” Jul. 18, 1006 describes DRIE etching for bulk micromachined angular accelerometers.


The sensing methods used in MEMS accelerometer vary. Capacitive sensors provide high performance as well as low cost. Because of these features it became the method of choice for most of the consumer market applications. But to be able to obtain high sensitivity and low noise floor the parasitic capacitances need to be reduced or eliminated. This can be achieved by integrating MEMS and electronics. The accelerometers described in the above-identified patents are not integrated with the detection electronics. In a typical system, the detection electronics needs to be connected to the MEMS substrate through wire bonding. Accordingly, this system suffers from increased parasitics and is susceptible to noise and coupling of unwanted signals.


Therefore, there is a need for rotational accelerometers that are fabricated using bulk micromachining methods and integrated with electronics. There is also need for multi-axis accelerometers that are insensitive to linear accelerations. The present invention addresses such needs.


SUMMARY OF THE INVENTION

A rotational sensor for measuring rotational acceleration is disclosed. The rotational sensor comprises a sense substrate; at least two proof masses, and a set of two transducers. Each of the at least two proof masses is anchored to the sense substrate via at least one flexure and electrically isolated from each other; and the at least two proof masses are capable of rotating in-plane about a Z-axis relative to the sense substrate, wherein the Z-axis is normal to the substrate. Each of the transducers can sense rotation of each proof mass with respect to the sense substrate in response to a rotation of the rotational sensor.


Two structures or more can be used per axis to enable full bridge measurements to further reduce the susceptibility to power supply changes, cross axis coupling and the complexity of the sense electronics.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A shows top view of a portion of a MEMS assembly according to an embodiment.



FIG. 1B shows the cross section AA′ of the angular accelerometer in FIG. 1A.



FIG. 1C shows an angular accelerometer comprising two proof masses.



FIG. 1D shows the detection electronics for the accelerometer shown in FIG. 1C.



FIG. 2A illustrates an angular accelerometer composed of two proof masses.



FIG. 2B shows an alternative arrangement of proof masses shown in FIG. 2A.



FIG. 3A illustrates multi-axis accelerometer (X and Z rotational accelerometer, Z linear accelerometer).



FIG. 3B illustrates the cross section of the accelerometer shown in FIG. 3A and the proof mass deflection as a function of input rotational X and linear Z acceleration.



FIG. 3C illustrates one proof mass that is sensitive to rotational X and Z accelerations but insensitive to linear accelerations.



FIG. 4A illustrates four axis accelerometer (X, Y and Z rotational, Z linear accelerometer).



FIG. 4B illustrates an alternative arrangement of proof masses shown in FIG. 4A.



FIG. 4C shows the detection electronics for the Z-axis angular accelerometers shown in FIGS. 4A and 4B.



FIG. 5 illustrates one variation of flexures.





DETAILED DESCRIPTION

The present invention relates generally to motion sensing devices and more specifically to angular accelerometers utilized in integrated circuits. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiments and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described herein.


A method and system in accordance with the present invention relates to the accelerometers that are fabricated using silicon micromachining methods that have been described in U.S. Pat. No. 7,104,129, entitled “Vertically Integrated MEMS Structure with Electronics in a Hermetically Sealed Cavity,”, issued Sep. 12, 2006, and assigned to the assignee of the present application; and U.S. Pat. No. 7,247,246, entitled “Vertical Integration of a MEMS Structure with Electronics in a Hermetically Sealed Cavity,” issued Jul. 24, 2007, and assigned to the assignee of the present application, both of which are incorporated by reference in their entirety herein. The assembly approach (Nasiri fabrication process) described in the said patents provides a cost effective means to simultaneously protect the movable sensing element and to integrate the low noise electronics. The electronic circuitry is fabricated on a dedicated electronics silicon substrate. The MEMS assembly then bonded on the electronic or sense substrate using a metal bonding technique using a low temperature process that does not damage or compromise the electronic circuitry. A plurality of transducers is assembled in this manner at the wafer level where hundreds to thousands are produced simultaneously. A small size form factor is achieved by the vertical integration of the sensing element with its sensing circuit. Other patents that are relevant for accelerometer fabrication are: U.S. Pat. No. 6,939,473 “Method of making an X-Y axis dual-mass tuning fork gyroscope with vertically integrated electronics and wafer-scale hermetic packaging”; U.S. Pat. No. 7,258,011 “Multiple axis accelerometer”; and U.S. Pat. No. 7,250,353 “Method and system of releasing a MEMS structure” assigned to the assignee of the present application.



FIGS. 1A and 1B show a rotational accelerometer 100 and the cross section AA of the accelerator 100, respectively. As is seen, a proof mass 102 is attached to the cover plate 104 at a single anchor 106 through flexural springs 108. The anchor 106 is at the center of the proof mass 102. The proof mass 102 is movable. It is constraint to rotate along Z axis which is perpendicular to the proof mass 102. The springs 108 can be made in any shape to adjust the spring constant. The anchor 106 is attached to the cover plate 104 utilizing a bonding process such as fusion bonding. The anchor 106 is also connected to the sense substrate 118 through an electrical connection 112.


The electrical connection 112 can be made under the anchor 106 as described in published U.S. Published Application No. 2006/0208326, entitled “Method of fabrication of al/ge bonding in a wafer packaging environment and a product produced therefrom” which is also assigned to the assignee of the present application. The method described in that published patent application allows making mechanical and electrical connections on the same anchor. The single anchoring of the proof mass 102 reduces the stresses that may be induced by the package warpage. The sense electrodes 114a and 114b are coupled to sensor substrate 118 and do not move with respect to proof mass. When the proof mass 102 is subjected to an angular acceleration about the axis (Z-axis) perpendicular to the plane, the forces acting on the proof mass 102 rotates it about the anchor 106. The rotation of the proof mass 102 is sensed capacitively. The moving electrodes 116 extending from the proof mass 102 form capacitors with the sense electrodes 114.


The sense electrodes 114a-114b are bonded to the cover plate 104 and electrically connected to the sense substrate 118. There are two sense electrodes 114a-114b per each moving electrode 116 on the proof mass 102 forming two capacitors. The value of one of these capacitors increases, whereas the value of other one decreases as the proof mass 102 rotates. The capacitors are labeled CCW 120 and CCCW 122 as shown in FIG. 1A.


CCW 120 increases if the proof mass 102 rotates in clock wise direction and CCCW 122 increases if the proof mass 102 rotates in the counter-clockwise direction about the axis perpendicular to the sense substrate. CCW 120 and CCCW 122 allow for the differential detection of the proof mass 102 rotation and hence provide an indication of the angular acceleration.


Referring to FIG. 1A, the accelerometer 100 has features to provide reliable operation. For example, it has motion stoppers 124a-124b about Z rotation to restrict the motion for excessive acceleration. In the directions that are out of plane, its stiffness is high enough to provide mechanical stability. The accelerometer 100 has also self test electrodes 126 to actuate the proof mass 102 for test purposes.


As before mentioned, FIG. 1B shows the cross section of the angular accelerometer shown in FIG. 1A. Other MEMS devices such as accelerometers and gyros have been disclosed previously by the assignee of the present application (U.S. Pat. No. 7,258,011, “Multiple axis accelerometer”; U.S. Pat. No. 6,939,473, “Method of making an X-Y axis dual-mass tuning fork gyroscope with vertically integrated electronics and wafer-scale hermetic packaging”; U.S. Pat. No. 6,892,575, “X-Y axis dual-mass tuning fork gyroscope with vertically integrated electronics and wafer-scale hermetic packaging”). A similar fabrication platform described in these patents may also be used for the angular accelerometers shown in FIG. 1B.


The fabrication process starts with the manufacturing of the cover plate 104. First alignment marks are patterned on top of the cap or cover wafer. These marks will be later used to align the cover wafer to the sense substrate. Then the cover plate 104 is oxidized preferably using thermal oxidation to form an oxide layer. The preferable thickness of the oxide is between 0.5 and 1 micron. The oxide is patterned using lithographic methods to define the cavities in the cover plate 104.


The cavity depth can be further increased by etching the exposed silicon surfaces in the cover plate 104. But, if the structures in the actuator layer are not supposed to move more than the oxide thickness in vertical direction or there are no difficulties associated with having a cover in the close proximity of the moving parts, the silicon etch step may be skipped.


Then, the cover plate 104 is cleaned and bonded to another low total thickness variation wafer. The second wafer will form an actuator layer after thinning it down to preferably 40 microns. The actuator layer includes the proof mass 102 the sense electrodes 114a and 114b and the flexure springs 108 any other structures such as self test electrodes and over travel stoppers. The next step in the process is the formation of the stand offs. An etch, such as an KOH etch, is suitable for this step. The height of the stand offs determine the vertical separation between actuator layer and the sense substrate 118. If there are electrodes on the sense substrate 118, this gap also determines the sensing capacitor gaps. Then, a germanium (Ge) layer is deposited and patterned. In the next step, elements of the rotational accelerometer are defined lithographically and etched using DRIE in the actuator layer. In the final step, the actuator layer is bonded a sense substrate using eutectic bonding.


Accordingly, as is seen in FIG. 1B, the active areas of the sense substrate 118 include regions that will make electrical contact with an actuator layer where the angular accelerometer 100 is defined, as well as circuitry 125 for sensing output signals from the angular accelerometer 100. Such circuitry 125 is preferably conventional CMOS circuitry. The top layer 127 of metal deposited in the conventional CMOS process is suitable for use as a bond metal. This upper layer 127 of metal defines bond pads for the connections to the sense electrodes 114a and 114b and the proof masses 102. One can also put electrodes on the top layer 127 to measure out of plane motion of the accelerometer in the case X and Y angular accelerometer.


The connections to the proof masses 102 and sense electrodes 114a and 114b can be routed in the lower CMOS metals 129, 131 and 133 where metals can cross over each other in different layers. This allows for complicated routing schemes to be utilized for connecting the MEMS device to the active electronics. Another advantage of having the sense substrate 118 in the close proximity of the angular accelerometer is that the connections between the MEMS device and sense electronics can be made very short. This reduces the parasitic coupling to ground, cross coupling between the wires and EMI coupling.


The above-described fabrication process produces hermetically sealed sensors for example utilizing sealing rings 135. The sense substrate 118 is preferably attached to the actuator layer via a metal-to-metal bond, which can be made hermetic. Likewise, the actuator layer is preferably attached to cover plate 104 by a fusion bond, which can also be made hermetic. As a result, the entire assembly of sense substrate 118, actuator layer and cover plate 104 can provide a hermetic barrier between angular accelerometer elements and an ambient environment. The pressure in the cavity can be adjusted during the eutectic bonding process. This allows the quality factor of the angular accelerometer to be controlled for better noise performance and dynamic response.


The above-described fabrication process also allows combining various inertial measurement devices on the same substrate. The angular accelerometers described in this patent can be easily integrated with linear accelerometers as well as low cost gyroscopes.


One can use two of the structures shown in FIG. 1A to provide four changing capacitances as shown in FIG. 1C. Note that, in this case the proof masses are electrically isolated. This allows for the detection of a capacitance change utilizing a full bridge configuration in so doing common mode signals are eliminated and allows using simpler electronics can be utilized. The capacitance change of the accelerometers described above can be detected by various circuits.


An example of circuitry for detecting the capacitance change due to rotational acceleration is shown in FIG. 1D where a full bridge configuration is utilized. As is seen, AC voltages 201a, 201b, which are 180 degree out of phase with respect to each other are applied to the proof masses 202a and 202b. The output voltage is detected off the sense electrodes utilizing an operational amplifier 204. When there is no acceleration, the bridge is in balanced and the output voltage is zero. Angular acceleration of the proof masses 202a and 202b disturbs the balance and gives rise to an AC voltage at the operational amplifier 204 output which amplitude is proportional to the acceleration. The operational amplifier 204 output later can be demodulated to obtain a signal directly proportional to the acceleration.


In this embodiment, a full bridge circuit is described but one of ordinary skill in the art readily recognizes other means of capacitive detection such as pseudo bridge, half bridge can also be employed. Alternatively, one can also drive the sense electrodes and monitor the proof mass motion and by observing the output voltages of the op-amp.


In an alternative configuration to obtain full bridge configuration, instead of using the full circular proof mass of FIG. 1A, one can use only half of the proof mass 302-304. This reduces the area usage as shown in FIG. 2A at the expense of sensitivity. Each proof mass 302-304 is connected to a single anchor point by three or more flexures. In this case CCW1 306 and CCW2 308 increase with the clock wise rotation of the proof mass 302 and 304 whereas CCCW1 310 and CCCW2 312 decrease. The change in the capacitance can be detected in a full bridge configuration as shown in FIG. 1D. FIG. 2B shows an alternative placement for the proof masses of FIG. 2A.


In another configuration as shown in FIG. 3A, the flexures can be configured such that the proof masses 402′ and 404′ become sensitive to rotation about another axis (X) in addition to the first rotational axis which is Z in this case. The Z-rotation detection method is same as the scheme described in FIG. 2. However, attaching the proof masses 402 and 404 with flexures along the edge of the half circle makes them sensitive to the rotations about the axis parallel to that edge. For Z axis rotation, the flexures simply flex allowing the rotation of the proof mass 402 and 404. For X axis rotation, the flexures make a torsional motion. The out of plane motion of the proof masses 402 and 404 can be measured by parallel plate capacitors between the proof masses 402 and 404 and the sense substrate.


In FIG. 3A, the capacitance between the proof mass 402 and the substrate is CPM1 414 and the other capacitor is CPM2 416 which is between the proof mass 404 and sense substrate. The rotational acceleration about X moves one of the proof masses away from the substrate and the other one closer to the substrate. This increases the capacitance CPM2 416′ and reduces the CPM1 414′ according to FIG. 3B. These two capacitors can be used for differential detection of the rotation. Again, by replicating the structure shown in FIG. 3A, one can obtain four capacitances for X axis rotation to implement full bridge detection. However, for Z rotation, one structure as shown in FIG. 3A is enough to implement full bridge configuration, but two structure configuration also improves Z sensitivity. In addition to rotational accelerations, these accelerometers can be used to measure linear acceleration along Z direction as shown in FIG. 3B. In this case, the sum of the CPM1 414′ and CPM2 416′ needs to be detected, rather than the difference of them which is the case for measuring rotational acceleration about the X axis.


Alternatively, one can use the structure shown in FIG. 3C for X and Z rotation where X direction is in plane and parallel to the flexure 612 and Z direction is perpendicular to the lateral plane. In this structure, the two proof masses (402, 404) of FIG. 3A are combined to form a single proof mass 610. The proof mass 610 is constraint to rotate about the anchor 618 and about the flexure 612. Electrodes 602 and 604 are sensitive to rotations about Z. The electrodes 606 and 608 which are between the sense substrate and the proof mass 610 are sensitive to rotations about X. However, for this structure linear acceleration along Z direction will not result in any capacitance change on CPMP and CPMN therefore this accelerometer is insensitive to linear acceleration along Z. Full bridge configuration will require two of these structures.



FIG. 4A shows a three axis rotational accelerometer. There are four proof masses 702, 704, 706 and 708. The Z rotation is detected through CCW1 710, CCCW1 712, CCW2 722, CCCW2 724, CCW3 726, CCCW3 728, CCW4 730, and CCCW4 732 capacitors. One can easily construct full bridge configuration for this case as shown in FIG. 4C. Basically, proof mass 702 and 706 are connected in parallel likewise proof mass 704 and 708. The rotations about X and Y are sensed through capacitors CPM2 716, CPM4 720 and, CPM1 714, CPM3 718 respectively. When there is rotation about positive X direction, CPM2 716 increases and CPM4 720 decreases. Since the rotation axis is through the centers of CPM1 714 and CPM3 718 these capacitors do not change. Similarly, for Y axis rotation only CPM1 714 and CPM3 718 change, but CPM2 716 and CPM4 720 remain the same. The accelerometer shown in FIG. 4A also sensitive to Z axis linear accelerations. This acceleration can be detected by sensing the sum of CPM1 714, CPM2 716, CPM3 718 and CPM4 720.


In an alternative configuration shown in FIG. 4C, the orientation of the proof masses are changed. Placing the X and Y axis rotation detection sensors away from the center of the device increases the sensitivity.



FIG. 5 shows an example of a proof mass 800 which includes a different type of flexure 802. One can use folded springs to tailor the spring constant. A folded spring can be connected to the proof mass at the center as shown in FIG. 5. This configuration allows obtaining small spring constants for increased sensitivity in small areas.


Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.

Claims
  • 1. A rotational sensor comprising: a sense substrate;at least two proof masses, each of the at least two proof masses being anchored to the sense substrate via at least one flexure and electrically isolated from each other, wherein the at least two proof masses are configured to rotate in-plane about a Z-axis relative to the sense substrate, and wherein the Z-axis is normal to the sense substrate; anda first set of two transducers, wherein each of the first set of two transducers is configured to sense rotation of the each of at least two proof masses with respect to the sense substrate in response to a rotation of the rotational sensor.
  • 2. The rotational sensor of claim 1, wherein the at least two proof masses rotate about the Z-axis in response to the rotation of the rotational sensor.
  • 3. The rotational sensor of claim 1, further comprising a circuit coupled to the first set of two transducers to provide an output related to the rotation of the rotational sensor.
  • 4. The rotational sensor of claim 1, wherein one of the at least two proof masses is configured to rotate out of plane in response to a second rotation of the rotational sensor.
  • 5. The rotational sensor of claim 4, further comprising a second set of two transducers, wherein each of the second set of two transducers is configured to sense rotation of the each of the at least two proof masses out of plane with respect to the sense substrate in response to the second rotation of the rotational sensor.
  • 6. The rotational sensor of claim 4, wherein at least one of the at least two proof masses is configured to rotate out of plane about an axis in a same direction in response to the second rotation of the rotational sensor.
  • 7. The rotational sensor of claim 1, wherein a center of each of the at least two proof masses is on an axis of rotation.
  • 8. The rotational sensor of claim 1, wherein the rotation of the at least two proof masses is due to linear acceleration.
  • 9. The rotational sensor of claim 8, wherein a center of each of the at least two proof masses is not aligned with an axis of rotation.
  • 10. The rotational sensor of claim 1, wherein each of the first set of two transducers forms a parallel plate capacitor.
  • 11. The rotational sensor of claim 1, wherein the rotation of the at least two proof masses is capacitively sensed.
  • 12. The rotational sensor of claim 3, wherein the circuit comprises a half bridge configuration for capacitive measurement of rotation of each of the at least two proof masses.
  • 13. The rotational sensor of claim 3, wherein the circuit comprises a full bridge configuration for capacitive measurement of in-plane rotation of the at least two proof masses.
  • 14. The rotational sensor claim 5, comprising a circuit coupled to the second set of two transducers to provide an output related to the rotation of the rotational sensor, wherein the circuit comprises a full bridge configuration for capacitance measurement of out-of plane rotation of the at least two proof masses.
  • 15. The rotational sensor of claim 1, further comprising a self-test electrode to actuate at least one of the at least two proof masses for test purposes.
  • 16. The rotational sensor of claim 1, further comprising travel stoppers in at least one of an X or a Y or Z direction.
  • 17. The rotational sensor of claim 1, wherein the sense substrate comprises a complementary metal oxide semiconductor (CMOS) integrated circuit.
  • 18. The rotational sensor of claim 1, wherein each of the at least two proof masses is anchored to the sense substrate via at least one folded flexure.
CROSS-REFERENCE TO RELATED APPLICATION

Under 35 U.S.C. 120, this application is a continuation application and claims priority to U.S. application Ser. No. 13/096,732 filed Apr. 28, 2011, which is a continuation of U.S. Pat. No. 7,934,423, issued May 3, 2011, all of which is incorporated herein by reference.

US Referenced Citations (344)
Number Name Date Kind
4303978 Shaw et al. Dec 1981 A
4510802 Peters Apr 1985 A
4601206 Watson Jul 1986 A
4736629 Cole Apr 1988 A
4783742 Peters Nov 1988 A
4841773 Stewart Jun 1989 A
5083466 Holm-Kennedy et al. Jan 1992 A
5128671 Thomas, Jr. Jul 1992 A
5251484 Mastache Oct 1993 A
5313835 Dunn May 1994 A
5349858 Yagi et al. Sep 1994 A
5359893 Dunn Nov 1994 A
5367631 Levy Nov 1994 A
5392650 O'Brien et al. Feb 1995 A
5396797 Hulsing, II Mar 1995 A
5415040 Nottmeyer May 1995 A
5415060 DeStefano, Jr. May 1995 A
5433110 Gertz et al. Jul 1995 A
5440326 Quinn Aug 1995 A
5444639 White Aug 1995 A
5511419 Dunn Apr 1996 A
5541860 Takei et al. Jul 1996 A
5574221 Park et al. Nov 1996 A
5581484 Prince Dec 1996 A
5629988 Burt et al. May 1997 A
5635638 Geen Jun 1997 A
5635639 Greiff et al. Jun 1997 A
5698784 Hotelling et al. Dec 1997 A
5703293 Zabler et al. Dec 1997 A
5703623 Hall et al. Dec 1997 A
5723790 Andersson Mar 1998 A
5734373 Rosenberg et al. Mar 1998 A
5780740 Lee et al. Jul 1998 A
5817942 Greiff Oct 1998 A
5825350 Case, Jr. et al. Oct 1998 A
5831162 Sparks et al. Nov 1998 A
5868031 Kokush et al. Feb 1999 A
5895850 Buestgens Apr 1999 A
5898421 Quinn Apr 1999 A
5955668 Hsu et al. Sep 1999 A
5959209 Takeuchi et al. Sep 1999 A
5992233 Clark Nov 1999 A
5996409 Funk et al. Dec 1999 A
6018998 Zunino et al. Feb 2000 A
6060336 Wan May 2000 A
6067858 Clark et al. May 2000 A
6082197 Mizuno et al. Jul 2000 A
6122195 Estakhri et al. Sep 2000 A
6122961 Geen et al. Sep 2000 A
6122965 Seidel et al. Sep 2000 A
6134961 Touge et al. Oct 2000 A
6158280 Nonomura et al. Dec 2000 A
6159761 Okada Dec 2000 A
6167757 Yazdi et al. Jan 2001 B1
6168965 Malinovich et al. Jan 2001 B1
6189381 Huang et al. Feb 2001 B1
6192756 Kikuchi et al. Feb 2001 B1
6230564 Matsunaga et al. May 2001 B1
6250156 Seshia et al. Jun 2001 B1
6250157 Touge Jun 2001 B1
6257059 Weinberg et al. Jul 2001 B1
6269254 Mathis Jul 2001 B1
6279043 Hayward et al. Aug 2001 B1
6292170 Chang et al. Sep 2001 B1
6343349 Braun et al. Jan 2002 B1
6370937 Hsu Apr 2002 B2
6374255 Peurach et al. Apr 2002 B1
6386033 Negoro May 2002 B1
6391673 Ha et al. May 2002 B1
6393914 Zarabadi et al. May 2002 B1
6424356 Chang et al. Jul 2002 B2
6429895 Onuki Aug 2002 B1
6430998 Kawai et al. Aug 2002 B2
6456939 McCall et al. Sep 2002 B1
6480320 Nasiri Nov 2002 B2
6481283 Cardarelli Nov 2002 B1
6481284 Geen et al. Nov 2002 B2
6481285 Shkel et al. Nov 2002 B1
6487369 Sato Nov 2002 B1
6487908 Geen et al. Dec 2002 B2
6494096 Sakai et al. Dec 2002 B2
6508122 McCall et al. Jan 2003 B1
6508125 Otani Jan 2003 B2
6512478 Chien Jan 2003 B1
6513380 Reeds, III et al. Feb 2003 B2
6520017 Schoefthaler et al. Feb 2003 B1
6533947 Nasiri et al. Mar 2003 B2
6538296 Wan Mar 2003 B1
6573883 Bartlett Jun 2003 B1
6603420 Lu Aug 2003 B1
6636521 Giulianelli Oct 2003 B1
6646289 Badehi Nov 2003 B1
6647352 Horton Nov 2003 B1
6666092 Zarabadi et al. Dec 2003 B2
6668614 Itakura Dec 2003 B2
6671648 McCall et al. Dec 2003 B2
6718823 Platt Apr 2004 B2
6720994 Grottodden et al. Apr 2004 B1
6725719 Cardarelli Apr 2004 B2
6729176 Begin May 2004 B2
6738721 Drucke et al. May 2004 B1
6758093 Tang et al. Jul 2004 B2
6794272 Turner et al. Sep 2004 B2
6796178 Jeong et al. Sep 2004 B2
6823733 Ichinose Nov 2004 B2
6834249 Orchard Dec 2004 B2
6843126 Hulsing, II Jan 2005 B2
6843127 Chiou Jan 2005 B1
6845669 Acar et al. Jan 2005 B2
6848304 Geen Feb 2005 B2
6859751 Cardarelli Feb 2005 B2
6860150 Cho Mar 2005 B2
6876093 Goto et al. Apr 2005 B2
6891239 Anderson et al. May 2005 B2
6892575 Nasiri et al. May 2005 B2
6915693 Kim et al. Jul 2005 B2
6918297 MacGugan Jul 2005 B2
6918298 Park Jul 2005 B2
6938484 Najafi et al. Sep 2005 B2
6952965 Kang et al. Oct 2005 B2
6955086 Yoshikawa et al. Oct 2005 B2
6963345 Boyd et al. Nov 2005 B2
6972480 Zilber et al. Dec 2005 B2
6981416 Chen et al. Jan 2006 B2
6985134 Suprun et al. Jan 2006 B2
7004025 Tamura Feb 2006 B2
7007550 Sakai et al. Mar 2006 B2
7026184 Xie et al. Apr 2006 B2
7028546 Hoshal Apr 2006 B2
7028547 Shiratori et al. Apr 2006 B2
7036372 Chojnacki et al. May 2006 B2
7040163 Shcheglov et al. May 2006 B2
7040922 Harney et al. May 2006 B2
7043985 Ayazi et al. May 2006 B2
7057645 Hara et al. Jun 2006 B1
7077007 Rich et al. Jul 2006 B2
7093487 Mochida Aug 2006 B2
7104129 Nasiri et al. Sep 2006 B2
7106184 Kaminaga et al. Sep 2006 B2
7121141 McNeil Oct 2006 B2
7144745 Badehi Dec 2006 B2
7154477 Hotelling et al. Dec 2006 B1
7155975 Mitani et al. Jan 2007 B2
7158118 Liberty Jan 2007 B2
7159442 Jean Jan 2007 B1
7168317 Chen et al. Jan 2007 B2
7180500 Marvit et al. Feb 2007 B2
7196404 Schirmer et al. Mar 2007 B2
7209810 Meyer et al. Apr 2007 B2
7210351 Lo et al. May 2007 B2
7219033 Kolen May 2007 B2
7222533 Mao et al. May 2007 B2
7234351 Perkins Jun 2007 B2
7236156 Liberty et al. Jun 2007 B2
7237169 Smith Jun 2007 B2
7237437 Fedora Jul 2007 B1
7239301 Liberty et al. Jul 2007 B2
7239342 Kingetsu et al. Jul 2007 B2
7240552 Acar et al. Jul 2007 B2
7243561 Ishigami et al. Jul 2007 B2
7247246 Nasiri et al. Jul 2007 B2
7250112 Nasiri et al. Jul 2007 B2
7250322 Christenson et al. Jul 2007 B2
7253079 Hanson et al. Aug 2007 B2
7257273 Li et al. Aug 2007 B2
7258008 Durante et al. Aug 2007 B2
7258011 Nasiri et al. Aug 2007 B2
7258012 Xie Aug 2007 B2
7260789 Hunleth et al. Aug 2007 B2
7262760 Liberty Aug 2007 B2
7263883 Park et al. Sep 2007 B2
7284430 Acar et al. Oct 2007 B2
7289898 Hong et al. Oct 2007 B2
7290435 Seeger et al. Nov 2007 B2
7296471 Ono et al. Nov 2007 B2
7299695 Tanaka et al. Nov 2007 B2
7307653 Dutta Dec 2007 B2
7320253 Hanazawa et al. Jan 2008 B2
7325454 Saito et al. Feb 2008 B2
7331212 Manlove et al. Feb 2008 B2
7333087 Soh et al. Feb 2008 B2
7352567 Hotelling et al. Apr 2008 B2
7365736 Marvit et al. Apr 2008 B2
7377167 Acar et al. May 2008 B2
7386806 Wroblewski Jun 2008 B2
7395181 Foxlin Jul 2008 B2
7398683 Lehtonen Jul 2008 B2
7414611 Liberty Aug 2008 B2
7421897 Geen et al. Sep 2008 B2
7421898 Acar et al. Sep 2008 B2
7424213 Imada Sep 2008 B2
7437931 Dwyer et al. Oct 2008 B2
7442570 Nasiri et al. Oct 2008 B2
7454971 Blomqvist Nov 2008 B2
7458263 Nasiri et al. Dec 2008 B2
7474296 Obermeyer et al. Jan 2009 B2
7489777 Yamazaki et al. Feb 2009 B2
7489829 Sorek et al. Feb 2009 B2
7508384 Zhang et al. Mar 2009 B2
7518493 Bryzek et al. Apr 2009 B2
7522947 Tsuda Apr 2009 B2
7526402 Tanenhaus et al. Apr 2009 B2
7533569 Sheynblat May 2009 B2
7541214 Wan Jun 2009 B2
7549335 Inoue et al. Jun 2009 B2
7552636 Datskos Jun 2009 B2
7557832 Lindenstruth et al. Jul 2009 B2
7558013 Jeansonne et al. Jul 2009 B2
7562573 Yazdi Jul 2009 B2
7593627 Wernersson Sep 2009 B2
7609320 Okamura Oct 2009 B2
7617728 Cardarelli Nov 2009 B2
7621183 Seeger et al. Nov 2009 B2
7637155 Delevoye Dec 2009 B2
7642741 Sidman Jan 2010 B2
7650787 Ino Jan 2010 B2
7656428 Trutna, Jr. Feb 2010 B2
7667686 Suh Feb 2010 B2
7672781 Churchill et al. Mar 2010 B2
7677099 Nasiri et al. Mar 2010 B2
7677100 Konaka Mar 2010 B2
7683775 Levinson Mar 2010 B2
7688306 Wehrenberg et al. Mar 2010 B2
7689378 Kolen Mar 2010 B2
7732302 Yazdi Jun 2010 B2
7735025 Lee et al. Jun 2010 B2
7737965 Alter et al. Jun 2010 B2
7765869 Sung et al. Aug 2010 B2
7769542 Calvarese et al. Aug 2010 B2
7779689 Li et al. Aug 2010 B2
7781666 Nishitani et al. Aug 2010 B2
7782298 Smith et al. Aug 2010 B2
7783392 Oikawa Aug 2010 B2
7784344 Pavelescu et al. Aug 2010 B2
7796872 Sachs et al. Sep 2010 B2
7805245 Bacon et al. Sep 2010 B2
7813892 Sugawara et al. Oct 2010 B2
7814791 Andersson et al. Oct 2010 B2
7814792 Tateyama et al. Oct 2010 B2
7843430 Jeng et al. Nov 2010 B2
7886597 Uchiyama et al. Feb 2011 B2
7907037 Yazdi Mar 2011 B2
7907838 Nasiri et al. Mar 2011 B2
7924267 Sirtori Apr 2011 B2
7932925 Inbar et al. Apr 2011 B2
7934423 Nasiri May 2011 B2
7970586 Kahn et al. Jun 2011 B1
8020441 Seeger Sep 2011 B2
8022995 Yamazaki et al. Sep 2011 B2
8035176 Jung et al. Oct 2011 B2
8047075 Nasiri Nov 2011 B2
8099124 Tilley Jan 2012 B2
8113050 Acar et al. Feb 2012 B2
8139026 Griffin Mar 2012 B2
8141424 Seeger et al. Mar 2012 B2
8160640 Rofougaran et al. Apr 2012 B2
8204684 Forstall et al. Jun 2012 B2
8230740 Katsuki et al. Jul 2012 B2
8239162 Tanenhaus Aug 2012 B2
8322213 Trusov et al. Dec 2012 B2
8427426 Corson et al. Apr 2013 B2
8960002 Nasiri Feb 2015 B2
20010045127 Chida et al. Nov 2001 A1
20020027296 Badehi Mar 2002 A1
20020189351 Reeds et al. Dec 2002 A1
20030159511 Zarabadi et al. Aug 2003 A1
20030209789 Hanson et al. Nov 2003 A1
20040016995 Kuo et al. Jan 2004 A1
20040034449 Yokono et al. Feb 2004 A1
20040066981 Li et al. Apr 2004 A1
20040125073 Potter et al. Jul 2004 A1
20040160525 Kingetsu et al. Aug 2004 A1
20040179108 Sorek et al. Sep 2004 A1
20040200279 Mitani et al. Oct 2004 A1
20040227201 Borwick, III et al. Nov 2004 A1
20040260346 Overall et al. Dec 2004 A1
20050023656 Leedy Feb 2005 A1
20050066728 Chojnacki et al. Mar 2005 A1
20050110778 Ben Ayed May 2005 A1
20050170656 Nasiri et al. Aug 2005 A1
20050212751 Marvit et al. Sep 2005 A1
20050212760 Marvit et al. Sep 2005 A1
20050239399 Karabinis Oct 2005 A1
20050262941 Park et al. Dec 2005 A1
20060017837 Sorek et al. Jan 2006 A1
20060032308 Acar et al. Feb 2006 A1
20060033823 Okamura Feb 2006 A1
20060061545 Hughes et al. Mar 2006 A1
20060074558 Williamson et al. Apr 2006 A1
20060115297 Nakamaru Jun 2006 A1
20060119710 Ben-Ezra et al. Jun 2006 A1
20060139327 Dawson et al. Jun 2006 A1
20060164382 Kulas et al. Jul 2006 A1
20060164385 Smith et al. Jul 2006 A1
20060184336 Kolen Aug 2006 A1
20060185502 Nishitani et al. Aug 2006 A1
20060187308 Lim et al. Aug 2006 A1
20060197753 Hotelling Sep 2006 A1
20060208326 Nasiri et al. Sep 2006 A1
20060219008 Tanaka et al. Oct 2006 A1
20060236761 Inoue et al. Oct 2006 A1
20060251410 Trutna, Jr. Nov 2006 A1
20060256074 Krum et al. Nov 2006 A1
20060274032 Mao et al. Dec 2006 A1
20060287084 Mao et al. Dec 2006 A1
20060287085 Mao et al. Dec 2006 A1
20070006472 Bauch Jan 2007 A1
20070029629 Yazdi Feb 2007 A1
20070035630 Lindenstruth et al. Feb 2007 A1
20070036348 Orr Feb 2007 A1
20070055468 Pylvanainen Mar 2007 A1
20070063985 Yamazaki et al. Mar 2007 A1
20070123282 Levinson May 2007 A1
20070125852 Rosenberg Jun 2007 A1
20070146325 Poston et al. Jun 2007 A1
20070167199 Kang Jul 2007 A1
20070176898 Suh Aug 2007 A1
20070219744 Kolen Sep 2007 A1
20070239399 Sheynblat et al. Oct 2007 A1
20070273463 Yazdi Nov 2007 A1
20070277112 Rossler et al. Nov 2007 A1
20070296571 Kolen Dec 2007 A1
20080001770 Ito et al. Jan 2008 A1
20080009348 Zalewski et al. Jan 2008 A1
20080088602 Hotelling Apr 2008 A1
20080098315 Chou et al. Apr 2008 A1
20080134784 Jeng et al. Jun 2008 A1
20080158154 Liberty et al. Jul 2008 A1
20080204566 Yamazaki et al. Aug 2008 A1
20080303697 Yamamoto Dec 2008 A1
20080314147 Nasiri et al. Dec 2008 A1
20080319666 Petrov et al. Dec 2008 A1
20090005975 Forstall et al. Jan 2009 A1
20090005986 Soehren Jan 2009 A1
20090007661 Nasiri et al. Jan 2009 A1
20090043504 Bandyopadhyay et al. Feb 2009 A1
20090088204 Culbert et al. Apr 2009 A1
20090128485 Wu May 2009 A1
20090282917 Acar Nov 2009 A1
20090326851 Tanenhaus Dec 2009 A1
20100013814 Jarczyk Jan 2010 A1
20100033422 Mucignat et al. Feb 2010 A1
20110101474 Funk May 2011 A1
20120154633 Rodriguez Jun 2012 A1
Foreign Referenced Citations (33)
Number Date Country
1722063 Jan 2006 CN
1853158 Oct 2006 CN
101178615 May 2008 CN
101203821 Jun 2008 CN
0429391 Aug 1995 EP
2428802 Feb 2007 GB
06291725 Oct 1994 JP
10-240434 Sep 1998 JP
2001174283 Jun 2001 JP
2001272413 Oct 2001 JP
2004517306 Jun 2004 JP
2004258837 Sep 2004 JP
2000-148351 May 2005 JP
2005233701 Sep 2005 JP
2005283428 Oct 2005 JP
2005345473 Dec 2005 JP
2006146440 Jun 2006 JP
2006275660 Oct 2006 JP
2007041143 Feb 2007 JP
2007173641 Jul 2007 JP
2008003182 Jan 2008 JP
2008091523 Apr 2008 JP
2008520985 Jun 2008 JP
0151890 Jul 2001 WO
2005103863 Nov 2005 WO
2005109847 Nov 2005 WO
2006000639 Jan 2006 WO
2006043890 Apr 2006 WO
2006046098 May 2006 WO
2007147012 Dec 2007 WO
2008026357 Mar 2008 WO
2008068542 Jun 2008 WO
2009016607 Feb 2009 WO
Non-Patent Literature Citations (26)
Entry
Civil Action No. 2:13-cv-405-JRG, “Invalidity Contentions”, Oct. 31, 2013.
Civil Action No. 2:13-cv-405-JRG, Exhibit A, Invalidity Charts for U.S. Pat. No. 8,347,717 Oct. 31, 2013.
Civil Action No. 2:13-cv-405-JRG, Exhibit C, Motivation to Combine References, Oct. 31, 2013.
Civil Action No. 2:13-cv-405-JRG, Exhibit B, Table of References, Oct. 31, 2013.
Civil Action No. 2:13-cv-405-JRG, Exhibit D, Invalidity Charts for U.S. Pat. No. 8,351,773, Oct. 31, 2013.
Civil Action No. 2:13-cv-405-JRG, Exhibit F, Motivation to Combine References, Oct. 31, 2013.
Civil Action No. 2:13-cv-405-JRG, Exhibit E, Table of References, Oct. 31, 2013.
Leondes, C.T., “MEMS/NEMS Handbook Techniques and Applications,” 2006, Springer Science + Business Media, Inc.
Higurashi, et al., “Integration and Packaging Technologies for Small Biomedical Sensors,” 2007.
Jang, et al., “MEMS Type Gyro Chip”, IT Soc Magazine.
Foxlin, et al., “Small type 6-axis tracking system for head mounted display”.
Singh, “The Apple Motion Sensor as a Human Interface Device”, www.kemelthread.com, 1994-2006.
Cho et al., Dynamics of Tilt-based Browsing on Mobile Devices. CHI 2007, Apr. 28-May 3, 2007, San Jose, California, USA, pp. 1947-1952.
Liu Jun et al., “Study on Single Chip Integration Accelerometer Gyroscope,” Journal of Test and Measurement Technology, vol. 17, Issue 2, pp. 157-158, Dec. 31, 2003.
Oboe et al., MEMS-based Accelerometers and their Application to Vibration Suppression in Hard Disk Drives. MEMS/NEMS Handbdook Techniques and Applications vol. 4, Springer 2006, pp. 1-29, see pp. 7-22.
Civil Action No. 2:13-cv-405-JRG, Exhibit H, Table of References, Oct. 31, 2013.
Jones, et al., “Micromechanical Systems Opportunities,” 1995, Department of Defense.
Brandl, M. and Kempe, V., “High Performance Accelerometer Based on CMOS Technologies with Low Cost Add-Ons,” 2001 IEEE.
Goldstein, H., “Packages Go Vertical”, 2001, IEEE/CPMT International Electronics Manufacturing Technology Symposium.
Cardarelli, D., “An Integrated MEMS Inertial Measurement Unit”, 2002, IEEE.
Hatsumei, “The Invention,” 2003.
Brandl, M. et al., “A Modular MEMS Accelerometer Concept”, 2003, AustriaMicroSystems.
Bryzek, J. “MEMS-IC integration remains a challenge”, Oct. 29, 2003, EE Times.
Gluck, N. and Last, R., “Military and Potential Homeland Security Applications for Microelectromechanical Systems (MEMS)”, Nov. 2004, Institute for Defense Analysis.
Rhee, T., et al., “Development of Character Input System using 3-D Smart Input Device,” 2005.
Cho, N., “MEMS accelerometer IOD report,” Jan. 31, 2005.
Related Publications (1)
Number Date Country
20150135831 A1 May 2015 US
Continuations (2)
Number Date Country
Parent 13096732 Apr 2011 US
Child 14606858 US
Parent 11953762 Dec 2007 US
Child 13096732 US