This application claims priority from Korean Patent Application No. 10-2005-0064798 filed on Jul. 18, 2005, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
Apparatuses and methods consistent with the present invention relate to a Micro-Electro-Mechanical Systems (MEMS) switch and a method for manufacturing the same.
2. Description of the Related Art
Electronic systems for use in a high frequency bandwidth are getting slimmer, smaller, lighter, and better in performance. Ultra-small microswitches using a new technology such as micromachining are being developed to substitute for semiconductor devices such as Field Effect Transistors (FET) and pin diodes, which have been used for controlling such electronic systems.
Among radio frequency (RF) devices using MEMS technologies, most devices manufactured are switches. RF switches are frequently applied in signal transmission circuits and impedance matching circuits for use in wireless terminals and systems using micro- or millimeter-wavelength bandwidth.
In conventional MEMS switches, electrification is caused when a DC voltage is applied to a fixed switch and thus a movable electrode is attracted to a substrate due to an electrostatic attraction. As the movable electrode is attracted to the substrate, a contact member provided on the movable electrode comes into contact with a signal line provided on the substrate. The switch operates so that the switch is turned on and off as the contact member comes into contact with and is separated from the signal line in response to the voltage application.
However, MEMS switches performing their switching operations by electrostatic attraction have disadvantages as discussed below.
First, such conventional MEMS switches operate at a high driving voltage.
Second, in manufacturing the MEMS switches on a wafer, structures constituting the MEMS switches are not the same over the entire area of the wafer, that is, the uniformity of the structures manufactured in the wafer is not good.
Third, since the manufacturing method of the MEMS switches includes lots of process steps, the MEMS switches are manufactured in low yield.
Here, “uniformity” means that distances between fixed electrodes and movable electrodes in lots of cells are constant all over the wafer.
Fourth, since a contact force of the contact member to the signal line is not stable, an insertion loss also increases as the number of switching operations increases.
An exemplary embodiment of the present invention provides a MEMS switch driven at a low voltage, having a stable contact force, and being capable of manufacture in a high yield, and a method for manufacturing the MEMS switch where the method is capable of enhancing a production yield by including a smaller number of process steps than conventional methods.
According to one exemplary embodiment of the present invention, there is provided an MEMS switch including a lower substrate having a signal line on an upper surface thereof; an upper substrate, having a cavity therein, being disposed apart from the upper surface of the lower substrate by a distance and having a membrane layer on a lower surface thereof; a bimetal layer formed in the cavity on the membrane layer; a heating layer formed on a lower surface of the membrane layer; and a contact member formed on a lower surface of the heating layer and coming into contact with or separating from a signal line.
The MEMS switch further includes a sealing layer disposed between the upper and lower substrates for maintaining the distance between the upper and lower substrates and for sealing an inner space between the upper and lower substrates.
The MEMS switch may further include a cover disposed over the upper substrate for covering the cavity.
The membrane layer may be made, for example, of an oxide material and the heating layer may be made, for example, of a polysilicon material.
The heating layer may have an electrical resistance heating body and the electrical resistance heating body may have, for example, a helical shape.
The electrical resistance heating body may further have a power supply unit for supplying a voltage. The power supply unit may include an upper voltage application pad connected to the resistance heating body, a lower voltage application pad formed on the upper surface of the lower substrate and connected to the upper voltage application pad, a voltage connection part buried in the lower substrate through a hole and connected to the lower voltage application pad, and an external voltage application pad formed on a lower surface of the lower substrate and connected to an external voltage application pad connected to the voltage connection part.
The MEMS switch may further include a signal line connection unit on the lower substrate for connecting the signal line to an external circuit. The signal line connection unit may include a signal line connection part buried in the lower substrate through a hole and connected to the signal line, and a signal line pad formed on the lower surface of the lower substrate and connected to the signal line connection part.
The upper and lower substrates may be made, for example, of a silicon material and the cover may be made, for example, of a glass material. The upper substrate and the cover may be joined, for example, by an anodic bonding method.
The signal line, contact member, and sealing layer may be made, for example, of a bondable conductive material and the conductive material may be one of Au, AuSn, and PbSn.
According to another embodiment of the present invention, there is provided a method for manufacturing an MEMS switch, including preparing a lower substrate by depositing a conductive layer and forming a signal line on a substrate by patterning the conductive layer; preparing an upper substrate by depositing a membrane layer on a lower surface of an upper substrate; depositing a heating layer on a lower surface of the membrane layer; forming a cavity by selectively etching the upper substrate; forming a bimetal on the membrane layer in the cavity; depositing a conductive layer on a lower surface of the heating layer and patterning the conductive layer to form a contact member; and combining the upper substrate and the lower substrate such that a surface having the signal line of the lower substrate faces a surface having the contact member of the upper substrate and the upper and the lower substrates are disposed apart by a distance.
The method further includes patterning the heating layer in a helical shape after the patterning the contact member.
A lower sealing layer for sealing the upper and lower substrates may be patterned while patterning the signal line, and an upper sealing layer for sealing the upper and lower substrates may be patterned while patterning the conductive layer to form a contact member.
The method further includes forming a signal line connection unit for connecting the signal line and the heating layer to an external circuit.
Forming the signal line connection unit may include: forming a plurality of holes to be extended to the signal line and the heating layer in the lower substrate before the forming the signal line; polishing the lower substrate after the upper and lower substrates are bonded to expose a surface of a conductive layer buried in the hole, where the conductive layer is formed for the signal line; and patterning an external voltage application pad and a signal line pad after depositing a conductive layer on the lower surface of the lower substrate.
The membrane layer may be made, for example, of an oxide material and the heating layer may be made, for example, of a polysilicon material.
The method further includes bonding a cover for covering the cavity to the upper surface of the upper substrate after the forming the bimetal layer.
The upper and lower substrates may be made, for example, of a silicon material and the cover may be made; for example, of a glass material.
The signal line, contact member, and sealing layer may be made, for example, of a bondable conductive material and the conductive material may be one of Au, AuSn, and PbSn.
The above and other features of the present invention will be described in reference to certain exemplary embodiments thereof with reference to the attached drawings in which:
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown.
Referring to FIGS. 1 to 3, the MEMS switch 100 includes a signal part 110 and a driving part 150.
The signal part 110 includes a lower substrate 111, a signal line 113 formed on an upper surface of the lower substrate 111, a signal line connection unit 130 for connecting external circuits, and a power supply unit 120 for supplying a voltage to a heating layer 155 in the driving part 150 to be described later. The lower substrate 111 may be made, for example, of a silicon material.
The driving part 150 includes an upper substrate 151 having a cavity 151a therein, a membrane layer 153 formed on a lower surface of the upper substrate 151, the heating layer 155 formed on a lower surface of the membrane layer 153, a bimetal layer 157 formed on an upper surface of the membrane layer 153, and a contact member 159 formed on a lower surface of the heating layer 155.
The upper substrate 151 may be made, for example, of a silicon material and the membrane layer 153 may be formed, for example, of an oxide material.
The heating layer 155 is an electrical resistance heating body 155a and may be formed, for example, of a polysilicon material. The heating layer 155 may be formed to have a coil shape and is movable by expansibility of the bimetal layer 157.
The contact member 159 is disposed on the lower surface of the heating layer 155, which is movable due to the expansibility of the bimetal layer 157 and serves to transfer RF signals when in contact with a signal line 113. The contact member 159 is made of a conductive material such as, for example, Au, AuSn, or PbSn.
The bimetal layer 157 is a switch formed of two different metal layers 157a and 157b joined together to form one unit having a differential expansion rating. The bimetal layer 157 will bend if there is a temperature change, that is, the metal layer 157a having a relatively high expansion rate bends toward the metal layer 157b having a relatively low expansion rate. The contact member 159 comes into contact with the signal line 113 due to this characteristic of the bimetal layer 157.
Referring to
Referring to
Referring to
The sealing layer 141 can be simultaneously patterned with the contact member 159 and the signal line 113. In this instance, the contact member 159 and the signal line 113 are made of the same material. Further, an upper sealing layer 141a formed on the upper substrate 151 and a lower sealing layer 141b formed on the lower substrate 111 are joined by a bonding method. Bondable conductive materials include, for example, Au, AuSn, and PbSn.
On the other hand, a cover 161 is provided on the upper surface of the upper substrate 151 to cover the cavity 151a. The cover 161 is formed of, for example, a glass material, and the upper substrate 151 and the cover 161 can be joined by an anodic bonding method.
In the MEMS switch having the structure described above, when a certain voltage is supplied to the MEMS switch through the external voltage application pads 125a and 125b, the voltage is supplied to the electrical resistance heating body 155a of the heating layer 155 through the voltage connection parts 123a and 123b and the upper and lower voltage application pads 121a, 121b, 127a, and 127b. Accordingly, the electrical resistance heating body 155a generates heat which is transferred to the bimetal layer 157. At this time, the bimetal layer 157 bends down due to the differential expansion rating of the metal layers 157a and 157b. In association with the bending of the bimetal layer 157, the membrane layer 153 and the heating layer 155 also bend down together so that the contact member 159 comes into contact with the signal line 113.
Hereinafter, a method for manufacturing an MEMS switch will be described.
Referring to
Referring to
As such, after finishing processing of the lower substrate 111, the upper substrate 151 providing the switch driving part 150 is processed. The method for processing the upper substrate 151 will be described below.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
As described above, the MEMS switch according to the present invention has at least the following advantages.
First, the MEMS switch according to the present invention operates at a lower driving voltage compared to conventional MEMS switches.
Second, since an additional packaging process is not needed, a yield of producing the MEMS switches is enhanced.
Third, since the contact member comes into contact with the signal line by the bimetal switching operation, a contact force is enhanced compared to the conventional switches.
While the invention has been shown and described with reference to certain embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2005-0064798 | Jul 2005 | KR | national |