1. Field of the Invention
The present invention relates to a metal melting furnace which has a material charging port and flue at its top and is provided with a melting chamber at which a heating plate which melts material to be melted (“melting material”) which was charged from the material charging port at its bottom.
2. Description of the Related Art
The inventor first proposed the metal melting furnace 100 which is illustrated in
In the figures, reference notation 111 indicates a furnace wall, 112 a work inspection hole which is formed in the furnace wall 111, 113 a door of the same, 114 an inclined floor of molten material which was melted on the heating plate 140, 115 a melting material holding member which is disposed at the material charging port 121, 116 a flange section which is provided at an upper part of the melting material holding member 115, 152 a work inspection hole of the molten material holding section 150, 153 a door of the same, and 160 a molten material processing section which is defined by a partition section 165 at the molten material holding section 150, 166 a molten material communicating section which is formed at the lower part of the partition section 165, 167 an exhaust gas channel which is formed at the upper part of the partition section 165, and 170 a molten material discharge section.
On the other hand, in this type of metal melting furnace 100, the fuel consumptions of the various burners which are used when melting the melting material and holding the temperature of the molten material have a great effect on the melting costs. Therefore, more efficiently melting the melting material and holding the temperature of the molten material so as to reduce the fuel consumption compared with the past has been strongly demand.
As related art, see the above Japanese Patent No. 4352026.
The present invention was made in consideration of this point and proposes a metal melting furnace which can more effectively melt the melting material and hold the temperature of the molten material so as reduce the fuel economy compared with the past.
That is, the aspect of the invention of claim 1 relates to a metal melting furnace which has a material charging port and a flue at its top and is provided with a melting chamber which is provided with a heating plate which melts a melting material which is charged from the material charging port at its bottom, the metal melting furnace characterized in that a heating burner is disposed at a bottom side of the heating plate of the melting chamber, the heating burner is used to melt the melting material on the heating plate, and exhaust gas of the heating burner which circulates through the exhaust gas channel is used to preheat the melting material of the flue and in that at a bottom side of the heating burner of the melting chamber, a molten material holding section to which molten material which was melted on the heating plate flows down into to be stored is formed, and the heating burner is used to hold the temperature of the molten material.
The aspect of the invention of claim 2 relates to a metal melting furnace according to claim 1, wherein between an inclined floor of the molten material which was melted on the heating plate and the molten material holding section, a molten material processing section which has a partition section which is provided with a molten material communicating section at a lower part is formed and wherein the top surface of the molten material which was melted at the melting chamber is prevented from directly flowing into the molten material holding section.
The aspect of the invention of claim 3 relates to a metal melting furnace according to claim 1, wherein a discharge section which communicates with the molten material holding section is disposed and wherein the discharge section is provided with an auxiliary heater for holding the temperature of the molten material.
The aspect of the invention of claim 4 relates to a metal melting furnace according to claim 1, wherein a second heating burner is disposed for heating the melting material on the heating plate at a top side of the heating plate of the melting chamber.
The aspect of the invention of claim 5 relates to a metal melting furnace according to claim 1, wherein a molten material holding chamber which communicates with the molten material holding section, stores the molten material, and uses a holding burner to hold the temperature of the molten material is provided.
The aspect of the invention of claim 6 relates to a metal melting furnace according to claim 5, wherein the partition section at the melting chamber side which defines the molten material holding chamber is formed at a lower part with a molten material communicating section which communicates with the molten material holding section and is formed at an upper part with a second exhaust gas channel which circulates exhaust gas of the holding burner of the molten material holding chamber to the melting chamber.
The aspect of the invention of claim 7 relates to a metal melting furnace according to claim 5, wherein a discharge section which communicates with the molten material holding chamber is provided and wherein the discharge section is provided with an auxiliary heater is provided for holding the temperature of the molten material.
Summarizing the advantageous effects of the present invention, since the metal melting furnace according to the aspect of the invention of claim 1 is a metal melting furnace which has a material charging port and a flue at its top and is provided with a melting chamber which is provided with a heating plate which melts a melting material which is charged from the material charging port at its bottom, the metal melting furnace characterized in that a heating burner is disposed at a bottom side of the heating plate of the melting chamber, the heating burner is used to melt the melting material on the heating plate, and exhaust gas of the heating burner which circulates through the exhaust gas channel is used to preheat the melting material of the flue and in that at a bottom side of the heating burner of the melting chamber, a molten material holding section to which molten material which was melted on the heating plate flows down into to be stored is formed, and the heating burner is used to hold the temperature of the molten material, it becomes possible for a single heating burner to simultaneously preheat the melting material on the heating plate and the molten material which is stored in the molten material holding section and therefore possible to greatly reduce the fuel consumption during operation.
Since the aspect of the invention of claim 2 comprises claim 1 wherein between an inclined floor of the molten material which was melted on the heating plate and the molten material holding section, a molten material processing section which has a partition section which is provided with a molten material communicating section at a lower part is formed and wherein the top surface of the molten material which was melted at the melting chamber is prevented from directly flowing into the molten material holding section, it is possible to raise the cleanliness of the molten material in the molten material holding section to hold the quality high, and the work of removing impurities is simplified, so the work efficiency is improved.
Since the aspect of the invention of claim 3 comprises claim 1 wherein a discharge section which communicates with the molten material holding section is disposed and wherein the discharge section is provided with an auxiliary heater for holding the temperature of the molten material, oxidation of the molten material is suppressed and therefore the metal loss is reduced and, further, temperature control of the molten material becomes easy, so the burden on the heating burner is lightened to reduce the fuel consumption.
Since the aspect of the invention of claim 4 comprises claim 1 wherein a second heating burner is disposed for heating the melting material on the heating plate at a top side of the heating plate of the melting chamber, the burden on the heating burner can be lightened and the occurrence of unmelted or half-melted materials can be more effectively prevented.
Since the aspect of the invention of claim 5 comprises claim 1 wherein a molten material holding chamber which communicates with the molten material holding section, stores the molten material, and uses a holding burner to hold the temperature of the molten material is provided, it is possible to efficiently hold the temperature even when a large amount of molten material is stored and possible to reduce the fuel consumption during operation.
Since the invention of claim 6 comprises claim 5 wherein the partition section at the melting chamber side which defines the molten material holding chamber is formed at a lower part with a molten material communicating section which communicates with the molten material holding section and is formed at an upper part with a second exhaust gas channel which circulates exhaust gas of the holding burner of the molten material holding chamber to the melting chamber, it is possible to raise the cleanliness of the molten material in the molten material holding section to hold the quality high, the work of removing impurities is simplified and the work efficiency is improved, and the burden on the heating burner can be lightened and fuel consumption can be reduced.
Since the invention of claim 7 comprises claim 5 wherein a discharge section which communicates with the molten material holding chamber is provided and wherein the discharge section is provided with an auxiliary heater is provided for holding the temperature of the molten material, oxidation of the molten material is suppressed and therefore the metal loss is reduced and, further, temperature control of the molten material becomes easy and the burden on the heating burner and holding burner is lightened to reduce the fuel consumption.
A metal melting furnace 10 according to one embodiment of the present invention which is shown in
The melting chamber 20, as shown in
The exhaust gas channel 25, as shown in
This exhaust gas channel 25, as shown in
The melting material holding member 30, as shown in
The material of the melting material holding member 30 is a part which can be heated from the outside. The melting material is charged and exposed to a 900° C. or more high temperature there. Therefore, a material which is good in heat conductivity and excellent in heat resistance and impact resistance is preferably used. For example, it is a thickness 10 mm or so stainless steel material (heat-resistant cast steel) which is coated with alumina (Al2O3) at its outer surface side so as to prevent oxidation and improve the durability.
The heating plate 40, as shown in
The heating burner 50, as shown in
Further, the heating burner 50 is separated from the melting material by the heating plate 40, so the area around the heating burner 50 and the inside of the same is free of sherbet-like half-melted material splattering on them and sticking as oxides, the work of removal of the oxides becomes unnecessary, and the work of cleaning the inside of the furnace can be shortened.
At the metal melting furnace 10, as shown in
This molten material holding section 60, as shown in
Further, in the metal melting furnace 10 of this embodiment, as shown in
Furthermore, in the metal melting furnace 10, as shown in
In the metal melting furnace 10 according to the above first embodiment, the heating burner 50 is used to simultaneously preheat the melting material on the heating plate 40 and the molten material M which is stored in the molten material holding section 60 and thereby enable a single heating burner 50 to be jointly used as the burner for heating and melting the melting material on the heating plate 40 and the burner for holding the temperature of the molten material M of the molten material holding section 60. For this reason, it is possible to greatly reduce the fuel consumption during operation of the metal melting furnace 10. In this embodiment, the fuel consumption for holding and raising the temperature was improved about 75% compared with a conventional metal melting furnace.
Further, the molten material holding section 60 is a space at the bottom side of the heating plate 40 at which the heating burner 50 is disposed, so the melting furnace 10 can be made smaller, space can be saved, and the manufacturing costs can be reduced.
Next,
In a metal melting furnace 10A according to a second embodiment which is shown in
Further, while not shown, in the metal melting furnace 10A of the second embodiment, in the same way as the metal melting furnace 10, a discharge section 80 which communicates with the molten material holding section 60 is disposed. In accordance with need, the discharge section 80 is provided with an auxiliary heater 85 for holding the temperature of the molten material M.
A metal melting furnace 10B according to a third embodiment which is shown in
The molten material holding chamber 90 is a space which stores a large amount of molten material M and can hold the temperature of the molten material M by a holding burner 95. It is communicated with the molten material holding section 60 through a holding chamber partition section 91 which has a molten material communicating section 91a at the lower part. This molten material holding chamber 90 is configured so that the holding chamber partition section 91 keeps the top surface M1 of the molten material M inside the molten material holding section 60 from flowing into the molten material holding chamber 90, so it is possible to prevent the inflow of impure molten material from the molten material holding section 60. Further, the stored molten material M is preheated by the heating burner 50 in the molten material holding section 60 and is preheated by the holding burner 95 in the molten material holding chamber 90. For this reason, the molten material M is preheated at both the molten material holding section 60 and the molten material holding chamber 90, the molten material M can be efficiently held in temperature even when a large amount of molten material M is stored, and the fuel consumption during operation can be reduced.
The molten material holding chamber 90 of the embodiment is communicated with the flue 22 of the melting chamber 20 through an inclined floor 14A of the molten material M which was melted on the heating plate 40. For this reason, the exhaust gas of the holding burner 95 for holding the temperature of the molten material M in the molten material holding chamber 90 runs over the inclined floor 14A to circulate through the inside of the melting chamber 20 and be discharged to the outside from the material charging port 21 serving also as an exhaust port. Due to this, the exhaust gas from the molten material holding chamber 90 is circulated through the entire furnace so can not only hold the temperature of the molten material M inside the molten material holding chamber 90, but can also preheat the melting material on the heating plate 40 on an auxiliary basis to enable it to be more efficiently heated and melted and enable the burden on the heating burner 50 to be lightened and the fuel efficiency to be improved. Note that, the molten material M which is melted on the heating plate 40 flows down to the molten material holding chamber 90 and flows into the molten material holding section 60 through the molten material communicating section 91a. Further, the inclined floor 14A is formed at the upper part of the holding chamber partition section 91.
In the metal melting furnace 10B of the third embodiment, as shown in
Further, in the metal melting furnace 10B, as shown in
A metal melting furnace 10C according to a fourth embodiment which is shown in
The molten material processing section 70A is a space which is interposed between the molten material holding chamber 90 and the melting chamber 20 and molten material holding section 60 and once stores the molten material M from the inclined floor 14A and the molten material M from the molten material holding section 60 without allowing it to directly flow into the molten material holding chamber 90 and is formed with a molten material communicating section 76A which connects the molten material holding section 60 and the molten material holding chamber 90 at the lower part of the partition section 75A. The molten material processing section 70A is configured so that the partition section 75A prevents the top surface M1 of the molten material M in the molten material processing section 70A from flowing into the molten material holding chamber 90, so can prevent the inflow of impure molten material from the inclined floor 14 and the molten material holding section 60. Further, as illustrated, the bottom side of the molten material communicating section 76A is provided at a position higher than the bottom surface of the molten material processing section 70A, so even if there are heavy metals etc. in the impurities which settle in the molten material and deposit on the bottom surface over a long period of time, they can be prevented from flowing into the molten material holding chamber 90.
Furthermore, at the upper part of the partition section 75A, a second exhaust gas channel 77A which circulates exhaust gas of the holding burner 95 of the molten material holding chamber 90 to the melting chamber 20 is formed. The second exhaust gas channel 77A is a passage for making the exhaust gas from the holding burner 95 of the molten material holding chamber 90 circulate through the furnace as a whole to effectively utilize it. That is, the exhaust gas of the holding burner 95 passes through the second exhaust gas channel 77A, then passes over the inclined floor 14A, circulates through the inside of the melting chamber 20, and is exhausted to the outside from the material charging port 21 which serves also as an exhaust port. Due to this, the exhaust gas from the molten material holding chamber 90 runs through the furnace as a whole and not only holds the temperature of the molten material M inside the molten material holding chamber 90, but also can preheat the melting material on the heating plate 40 in an auxiliary basis and therefore can more efficiently heat and melt it and can lighten the burden on the heating burner 50 and improve the fuel consumption. Note that, the second exhaust gas channel 77A is needless to say formed at a position higher than the top surface M1 of the molten material M.
Further, in the metal melting furnace 10C of the fourth embodiment, in the same way as the metal melting furnace 10B, a discharge section 80A which is communicated with the molten material holding chamber 90 is disposed. In accordance with need, an auxiliary heater 85 for holding the temperature of the molten material M is provided at the discharge section 80A.
As illustrated and explained above, in the metal melting furnace 10 of the present invention, the heating burner 50 is disposed at the bottom side of the heating plate 40 of the melting chamber 20, the heating burner 50 is used to melt the melting material on the heating plate 40, the exhaust gas of the heating burner 50 which runs through the exhaust gas channel 25 preheats the melting material in the flue 22 and, at the same time, at the bottom side of the heating burner 50 of the melting chamber 20, and a molten material holding section 60 into which the molten material M which was melted on the heating plate 40 flows down to be stored is formed so the molten material M is held in temperature by the heating burner 50, so a single heating burner 50 can be used to simultaneously preheat the melting material on the heating plate 40 and the molten material M which is stored at the molten material holding section 60. Therefore, it becomes possible to jointly use the heating burner 50 for the burner for heating and melting of the melting material and the burner for holding the temperature of the molten material M and possible to greatly reduce the fuel consumption during operation of the metal melting furnace 10.
Further, if forming, between the inclined floor 14 of the molten material M which was melted on the heating plate 40 and the molten material holding section 60, a molten material processing section 70 which has a partition section 75 which is provided with a molten material communicating section 76 at its bottom so as to prevent the top surface M1 of the molten material M which was melted at the melting chamber 20 from directly flowing into the molten material holding section 60, the impure molten material can be collected at the top surface M1 of the molten material M and only the clean molten material M can be made to flow into the molten material holding section 60 through the molten material communicating section 76 of the lower part of the partition section 75. Therefore, it is possible to raise the cleanliness of the molten material in the molten material holding section 60 to hold the quality high, the work of removal of the impurities is simplified, and the work efficiency is improved.
Furthermore, by disposing the discharge section 80 so as to communicate with the molten material holding section 60 and providing an auxiliary heater for holding the temperature of the molten material M at the discharge section 80, it becomes possible to hold the temperature without allowing the molten material M to burn, so oxidation of the molten material is suppressed and the metal loss is reduced and, in addition, temperature control of the molten material becomes easy and the burden on the heating burner can be lightened so the fuel consumption is reduced.
In addition, if disposing a second heating burner 55 for heating the melting material on the heating plate 40 at the upper side of the heating plate 40 of the melting chamber 20, it becomes possible to efficiently preheat the melting material and possible to lighten the burden on the heating burner 50 and it becomes possible to more effectively prevent the formation of unmelted or half-melted material.
On the other hand, if providing the molten material holding chamber 90 which communicates with the molten material holding section 60, stores the molten material M, and uses a holding burner 95 to hold the temperature of the molten material M, it becomes possible to store a large amount of molten material M, even when a large amount of molten material is stored, the molten material M can be preheated and efficiently held in temperature at both the molten material holding section 60 and the molten material holding chamber 90, and the fuel consumption during operation can be reduced.
Further, the partition section 75A at the melting chamber side which defines the molten material holding chamber 90, the molten material communicating section 76A which communicates with the molten material holding section 60 is formed at the lower part, so the impure molten material collects at the top surface M1 of the molten material M and only clean molten material M can be made to flow through the molten material communicating section 76A at the lower part of the partition section 75A to the molten material holding chamber 90, the cleanliness of the molten material in the molten material holding chamber is raised, the quality can be held high, and the work of removing impurities is simplified so the work efficiency is improved. In addition, at the upper part of the partition section 75A, a second exhaust gas channel 77A which circulates exhaust gas of the holding burner 95 of the molten material holding chamber 90 to the melting chamber 20 is formed, so the exhaust gas from the molten material holding chamber 90 is circulated through the furnace as a whole and therefore can preheat the melting material on the heating plate 40 in an auxiliary manner and can lighten the burden on the heating burner to improve the fuel economy.
Furthermore, by disposing a discharge section 80A so as to communicate with the molten material holding chamber 90 and providing an auxiliary heater at the discharge section 80A to hold the temperature of the molten material M, it becomes possible to hold the temperature without allowing the molten material M to burn, so the oxidation of the molten material is suppressed and the metal loss is reduced. In addition, temperature control of the molten material becomes easy and the burden of the heating burner can be lightened to reduce the fuel consumption.
Note that, the metal melting furnace of the present invention is not limited to the configurations explained in the above embodiments. It also possible to work the invention by making various changes in a range not deviating from the gist of the invention. For example, in the embodiments, the melting material holding member was made a tubular member comprised of a stainless steel material which was coated with alumina (heat-resistant cast steel), but the invention is not limited to this. It is also possible to use silicon carbide (SiC) or graphite mixtures. It may also be formed by any of a porous member or mesh member or a frame member.
Further, in the first and second embodiments, a flat shaped heating plate was used, but it is also possible to use the substantially U-shaped heating plate which was used in the third and fourth embodiments. Similarly, it is also possible to use a flat shaped heating plate in the third and fourth embodiments.
Number | Date | Country | Kind |
---|---|---|---|
2013-165381 | Aug 2013 | JP | national |