The embodiments disclosed herein relate to metamaterial super absorbers and devices based on metamaterial super absorbers.
Imaging in the electromagnetic spectrum lying between roughly 0.3 and 3 THz—the so-called “Terahertz Gap”—can be used for a variety of applications, ranging from novel cancer detection methods to deepening our understanding of the universes creation. Other relevant areas of the electromagnetic spectrum include the infrared (IR) region where growth has been similarly limited. The development of a new class of THz and IR detectors would create new opportunities for growth in the field of THz and IR science and technology.
Metamaterial devices with environmentally responsive materials are disclosed herein. According to some aspects illustrated herein, there is provided a metamaterial perfect absorber that includes a first patterned metallic layer, a second metallic layer electrically isolated from the first patterned metallic layer by a gap, and an environmentally responsive dielectric material positioned in the gap between the first patterned metallic layer and the metallic second layer.
According to some aspects illustrated herein, there is provided a detector that includes a first patterned metallic layer, a second metallic layer electrically isolated from the first patterned metallic layer by a gap, and a pyroelectric material disposed in the gap between the first patterned metallic layer and the second metallic layer, and a voltage meter configured to record voltage generated in the pyroelectric material due to a change in temperature in the pyroelectric material.
According to some aspects illustrated herein, there is provided a spatial light modulator that includes a plurality of pixels, each pixel comprising a first patterned metallic layer, a second metallic layer electrically isolated from the first patterned metallic layer by a gap, and a phase change material positioned in the gap between the first patterned metallic layer and the second metallic layer, and a biasing source electrically connected to the pixels to switch the pixels between an absorption state and a reflection state.
According to some aspects illustrated herein, there is provided an imaging system that includes a source of radiation to irradiate an object to be imaged, a spatial light modulator having a plurality of pixels, each pixel comprising a first patterned metallic layer, a second metallic layer electrically isolated from the first patterned metallic layer by a gap, and a phase change material positioned in the gap between the first patterned metallic layer and the second metallic layer, and a biasing source electrically connected to the pixels to switch the pixels between an absorption state and a reflection state, and a radiation detector, wherein the spatial light modulator is configured to receive radiation reflected from the object and to reflect the radiation in a desired manner to the radiation detector.
The presently disclosed embodiments will be further explained with reference to the attached drawings, wherein like structures are referred to by like numerals throughout the several views. The drawings shown are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of the presently disclosed embodiments.
While the above-identified drawings set forth presently disclosed embodiments, other embodiments are also contemplated, as noted in the discussion. This disclosure presents illustrative embodiments by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of the presently disclosed embodiments.
Metamaterial devices with environmentally responsive materials are disclosed herein.
The design of MMPA, which includes the estimation of the dimensions of each different layer can be carried out by means of numerical simulation tools. Generally, for THz application the thickness of the top and bottom metallic layers is generally not a concern since the dissipation of electro-magnetic (EM) energy is negligible and the metal behaves as a perfect mirror, generally as a rule of thumb a metal thickness of 100 nm is sufficient. At IR frequencies the metal is not ideal anymore and the simulations are used also to estimate the required metal thickness. The dielectric layer thickness is flexible over a certain range as the design of the patterned metal layer can be made such that it compensates for changes in the thickness. By way of a non-limiting example,
The front layer 102 of the MMPA 100 is geometrically patterned, as will be discussed below, in order to strongly couple to a uniformly incident electric field. By partnering the front patterned layer 102 with the back layer 104 a mechanism for coupling to the magnetic component of light is created. Tuning the geometry of the front layer 102 as well as the spacing between the front and back layers 102, 104 provides the controls to tune the effective material response parameters allowing for both impedance matching and strong absorption at a certain frequency. The minimization of T(ω) and R(ω) can be carried out through the design of the front layer 102 and the back layer 104, such as by, for example, through the selection of the geometry of the front layer 104, and the proper choice of the material for the dielectric layer 106.
Further, T(ω) and R(ω) are directly linked to, and thus depend on, the optical parameters of permittivity, 8(ω), and permeability, μ(ω), of an MMPA. The electric response ∈(ω) mainly depends on the shape of the resonator and on the thickness and the EM properties of the material used in the dielectric layer 106. The magnetic response μ(ω) results from the coupling between the front layer 102 and back layer 104. That means that such a coupling is strongly influenced by the type and the thickness of the material in the dielectric layer 106 between these two layers 102, 104. Parameters of particular importance for the dielectric layer 106 are the real part of the permittivity and the dielectric loss tangent tan δ, which is typically used to describe the energy lost in the material. For the majority of optical devices such as windows, mirrors, and filters the tan δ of the dielectric substrate is required to be negligible to avoid undesired system losses. This condition is hard to fulfill with the available dielectric materials and is doubly so when one considers resonant MM devices as the parameters governing loss increase near a resonance. In the case of MMPAs the electric and magnetic response can be tuned simultaneously by working on the dielectric medium only and large values of tan δ are not detrimental to the overall performances of the MMPA.
In some embodiments, the front layer 102 is a geometrically patterned metamaterial layer. Most metals are suitable for use in the front and back layers of the MMPA. The design is robust enough that differences in the conductivities of the metals can easily be accounted. In some embodiments, gold is used, due to its oxidation and corrosion resistance, with a thin (on the order of 10-20 nm adhesion layer) while copper is typically used for RF and microwave MM. A variety of metals are available for use in designs including but not limited to silver, titanium, aluminum, tungsten, and even superconducting materials have been shown to be viable choices in metamaterials. As shown in
Because the MMPA can be designed to work in any frequency band of interest the dimensions of the unit cell and the corresponding resonator are generally expressed in terms of the wavelength. In some embodiments, the values of MMPAs lattice constants a are between about λ/10 to about λ/4, where λ is the wavelength of the lowest resonant mode supported by the system. That is, if the MMPA is design to work at about 3 THz, the lattice constant ranges between about 10 μm and about 24 μm.
In some embodiments, the width of the metallic line that form the resonators is normally between a/10 and a/5 where a is the lattice constant. As for the lattice constant, also the range for the widths and lengths of the resonator span between λ/10 to λ/4. In some embodiments, the distance between the resonators corresponds to the lattice constant.
It should also be noted that although
In some embodiments, the resonators 204 of the front layer 102 are of the electric resonator Class A type, such as a wire resonator (
The unit cells 202 presented in
In some embodiments, the MMPA of the present disclosure is a multi-band absorber, absorbing in multiple distinct bands or in a broad band. Because resonators with different sizes resonate at different frequencies, by combining different-sized resonators in one unit cell, multiple resonances can appear in the absorption spectrum. If these absorption resonances are sufficiently close in frequency, then they can combine to form a broadband absorber. On the other hand, if these absorption resonances are further away from each other, then a multiple band absorber can be formed. In some embodiments, each unit cell 202 includes individual resonators 204 sized such that the MMPA of the present disclosure is a multi-band absorber. In some embodiment, the front layer 102 is designed such that two distinct resonant frequencies can be excited. In some embodiments, each unit cell 202 includes individual resonators 204 sized such that the MMPA of the present disclosure is a broadband absorber.
In some embodiments, the resonators are designed such that different sections of a single resonator resonate at different frequencies to form a multi-band MMPA or a broadband MMPA.
In some embodiments, the MMPA 100 of the present disclosure includes lumped elements to introduce tunability. Suitable examples of lumped elements include, but are not limited to, varactors, capacitors and inductors. Generally lumped elements are inserted at the gap between two metallic lines.
Referring back to
As further shown to
In reference to
In some embodiments, the dielectric material may be used to encapsulate the MMPA 100, in whole or in part. Such coverage can be used to protect against physical damage to the MMPA 100 or from exposure of the MMPA 100 to harmful materials that may corrode or oxidize the front layer or the back layer. Damage to these layers may alter the response of the MMPA 100. Such encapsulation may also be used to adjust or modify the working frequency of the metamaterial front layer 102. In some embodiments, the dielectric layer 106 or the functional dielectric layer 106 comprises a pyroelectric material. Suitable pyroelectric materials include, but are not limited to, Poly Vinylidene Fluoride (PVDF), Tri Glycerin Sulphate (TGS), PST (Lead Stannic Titanate), LiTaO3 (Lithium Tantalate), LiNbO3 (Lithium Niobate), PZT (Lead Zirconate Titanate), Deuterated triglycine sulfate (DTGS), Barium Strontium Titanate (BST) or similar materials.
Pyroelectric materials are materials capable of generating a voltage in response to a change in temperature, such as when the material is heated or cooled. Due to this property of the pyroelectric materials, during the electromagnetic wave absorption process in the MMPA, a temporary electric voltage is produced between the two opposite ends of the pyroelectric layer. When the MMPA is not illuminated the voltage signal is flat, whereas when light impinges on the top layer of the MMPA it converts the EM energy into heat. In reference to
MMPAs of the present disclosure with one or more pyroelectric materials can be used in a number of different applications. In general pyroelectric detectors have a number of important characteristics (low cost, low power, wide operating range of temperature etc) which make them ideal for applications where the cost, power and cooling requirements of photoconductive or photovoltaic detectors are impractical and the very highest radiometric performance is not required. In some embodiments, MMPAs with pyroelectric materials can be used in energy-sensitive devices, in particular infrared and THz detectors.
In some embodiments, the light incident on the detector may be modulated as the pyroelectric response is based on a change in temperature and vanishes at thermal equilibrium. This typically done by optically chopping (rotating shutter wheel with alternating open and closed regions) or if actively illuminating a scene modulating the light source directly. Signal noise can be reduced by using a lock-in amplifier which captures signals only at the modulation frequency. A preamplifier may also be used if the signal is weak.
In reference to
Traditional pyroelectric detectors typically include a broadband absorber coating on the top of the device. The broadband absorber coating absorbs light and converts the absorbed light to heat within the broad band absorber coating. The heat then needs to be transferred from the broadband absorber coating to the pyroelectric layer, so the voltage is generated in the pyroelectric material due to increase in temperature of the pyroelectric material. On the other hand, in the pyroelectric detectors of the present disclosure, the light is absorbed and converted into heat directly in the pyroelectric layer, as shown in
In some embodiments, pyroelectric material based MMPAs of the present disclosure can be configured to absorb all incident light over a given frequency band, such as THz frequency band or IR frequency band. Pyroelectric based MMPA sensors offer a number of advantages over conventional pyroelectric sensors. For example, pyroelectric based MMPA sensors are more advantageous for those applications where very narrow bandwidth response is required. Conventional pyroelectric detectors are intrinsically broad band and their bandwidth depends on the properties of the pyroelectric compound. There is a pletora of applications where small inexpensive and narrowband chemical sensors are necessary like detection and identification of toxic industrial chemicals and chemical agents, or for Civilian Support Teams and Fire Departments that have a critical need for a rugged, inexpensive sensor that can be transported to the field to test for possible contamination by CW agents.
In some embodiments, the temperature shift in the pyroelectirc material due to the absorbed light can be measured as a voltage response from the pyroelectric material. In some embodiments, taking advantage of the ability of pyroelectric materials to generate heat from an applied voltage and pursuant to Kirchhoffs law of thermal radiation, the defined absorption band of an MMPA with a pyroelectic material can also have a corresponding well defined emissivity. In some embodiments, an MMPA with a pyroelectric material can be used as an IR blackbody source with frequency specific emission.
In
There are a number of different categories of anticipated end-users for MMPAs with pyroelectric materials, including consumer/commercial products (compare to low cost visible camera sensors and their wide spread inclusion in modern electronics), industrial applications such as process and quality control, and military imaging systems. Thermal imaging systems have proved invaluable for firefighters and rescue personnel. Because of their intrinsic narrow band response pyroelectric based MMPAs can also be used for applications such as the detection and identification of toxic industrial chemicals and chemical agents. A rugged, inexpensive chemical sensor can benefit the manufacturing community by providing inexpensive monitoring of chemical processes. Also, first responders such as Civilian Support Teams and Fire Departments have a critical need for a rugged, inexpensive sensor that can be transported to the field to test for possible contamination by hazardous agents.
In some embodiments, the dielectric layer 106 or the functional dielectric layer 106 comprises a phase change material. Phase change materials are materials that can be reversibly switched between crystal and amorphous phases when properly biased. These phases have different values of permittivity and their use in the dielectric layer 1060R the functional dielectric layer in the MMPA 100 results in a tunable MMPA.
Suitable phase change materials include, Vanadium Oxide, Germanium Antimony Tellurium (Ge2Sb2Te5), Germanium Arsenic Gallium Selenium (Ge30As8Ga2Se60), Germanium Gallium Selenium (Ge35Ga5Se60), Germanium Arsenic Sulfur (Ge10As20S60), Arsenic Sulfide (As2S3), Gallium Lanthanum Sulfide (GaLaS), Silver Indium Antimony Tellurium (AgInSbTe), and combinations thereof.
Liquid crystal materials (LCs) are also a suitable example of a phase change material. Liquid crystal materials can be used to introduce tunability in the MMPA in a similar fashion as phase change materials. Tuning can be obtained by changing the orientation of the LC droplets, which can be embedded in between the front and back layers 102, 104 of the MMPA 100 of the present disclosure, through a voltage bias. Suitable liquid crystal materials include, but are not limited to, PP5CN (5CB), PP4NCS, PPP(3,5F)40NCS, PTP4NCS, PTP40NCS, PTP5O1, BL037, PCH-5 and combinations thereof.
As a modulator the front layer 102 and the back layer 104 can play two different roles simultaneously in this process. One role is to be an active part of the MMPA 100 by interacting with each other and thus contributing to the electric and magnetic response when irradiated with light. The other role is to act as biasing pad. This represents an important advantage since it provides an ideal setup for the design of a tunable device.
The claimed advantage arises from the fact that in order to change the properties of a phase change material a voltage bias needs to be applied between two opposite face of the material through two metallic pads. In the MMPA, the phase change material is sandwiched between two metallic layers located at the two opposite ends. This allows switching of the phase change material with no need of other extra metallic pads. The above is an advantage in terms of practicality of the fabrication process because there is no need to add extra metallic line on top of the MMPA surface to provide the correct biasing for the switching. Basically, the tuning is achieved at zero additional costs. Also there is clear intrinsic advantage over MM with phase change materials in the gap since in the latter case it would require more accurate fabrication techniques to precisely place the material inside the gap. By way of a non-limiting example, for THz applications the gap can be smaller than about 10 μm, while for IR applications the gap size can be hundreds of nanometers, which can be challenging from a device fabrication point of view.
In some embodiments, MMPAs of the present disclosure comprising one or more phase change materials is used as a basic building block of a spatial light modulator (SLM).
SLMs are devices that impose some form of spatially varying modulation on a beam of light. SLMs exist in two configurations, transmission and reflection. In the transmission configuration, the transmitted component of the light intensity is modulated, whereas in the reflection configuration, the reflected portion is modulated. SLMs are widely used in a number of technologies that see everyday use such as projectors which make use of an array of micro mirrors that can be actuated to direct light and liquid crystal displays. Other applications are holographic data storage, holographic display technology, and holographic optical tweezers. Another growing field that is directly related to imaging and sensing where SLM plays a key role is single pixel imaging via compressive sensing. For many of the above applications the frame rate (the speed at which the SLM can update the modulation pattern) represents a limiting factor. Typical values range between hundreds of Hertz to few kHz. For real time single pixel applications frame rates of the order of MHz are necessary.
In some embodiments, MMPAs of the present disclosure comprising one or more phase change materials can be used for a reflecting SLM. Typically SLMs are formed by an array of pixels, when light shines on the array each pixel can either reflect or absorb the light. A SLM can be built by arraying together MMPA pixels embedded with phase change materials and controlling the absorption/reflection of each pixel electrically through biasing, as explained above in reference to
One benefit of using MMPA of the present disclosure including one or more phase change materials for SLMs is in their intrinsic narrow band response, which is a great advantage in those applications where imaging needs to be carried out at a single frequency.
In those imaging application where it is required, a narrowband response of the SLM will allow to extrapolate information about the physical properties of the object under investigations at that specific frequencies of interest and discard all that are not of interests. Current SLMs are made with LCs or micro mirror devices (DMD), which are essentially broad band. When light impinges on it and reflects back all the spectral content is more or less preserved. For example, if white light, which includes the contribution from all the rainbow colors, is shown on a DMD SLM, the reflected light is still white, whereas if the SLM has narrow band pixels it is possible to reflect only a single color of the spectrum. In ordinary SLMs color discriminations can be done by combining color filters by this affects the energy throughput. In narrow band applications this can be a benefit since it doesn't require extra color filter after the light is reflected off the SLM.
Also, by changing the geometry of the front layer 102 it is possible to provide a multiband capability to the SLM, as described above. Another potential benefit of using MMPA of the present disclosure including one or more phase change materials is in their property of scalability, which allows achieving the same EM absorption characteristics at different frequencies. In contrast, existing technology, such as LC and DMD, are not scalable. These technologies were originally made to work at optics and IR but as any other material they also have an electromagnetic response in frequency bands like THz and microwaves, in each band the mechanism of absorption is different. In the MMPAs, the property of scalability provides a way to have the same mechanism of absorption at different frequencies. This is achieved simply by scaling the dimensions of the resonators. In some embodiments, this property can be used to form an SLM for Terahertz, millimeter waves and microwave frequencies, which would provide great benefit in the field of radio communications, imaging, homeland security, etc, because currently all the SLM available on the market, are based on LC and MEMS technology and can only work in the visible and IR range.
In some embodiments, the dielectric layer 106 includes one or more ferroelectric, magnetoelectric, piezoelectric, semiconductors, superconductors. MMPAs with such materials can be used in applications described in connection with MMPAs with one or more phase change materials or liquid crystal materials. In some embodiments, the dielectric layer 106 includes semiconductors and superconductors. MMPAs with such materials can be used in applications described in connection with MMPAs with one or more pyroelectric materials.
The technologies outlined above offer the potential for the creation of a wide array of devices at THz and IR frequencies that incorporate tunable frequency and amplitude behavior as well as a new class of imaging systems and detectors. The THz detectors based on MMPAs of the present disclosure have multiple advantages that can be used for reducing the operating cost of the device specifically through the elimination of expensive consumables such as the cryogens liquid nitrogen and liquid helium and though improved power efficiency. A room temperature MMPA THz detector offers direct and indirect advantages for reducing the energy consumption of a research laboratory. The metamaterial perfect absorber array located in each pixel requires no operating power. Indeed the only power needed by the detector is for the electronics used to measure the output from the pyroelectric. Because of the low power requirements, in some embodiments, THz detectors and imagers of the present disclosure may be light-weight and handheld.
The detection aspect is also viable at IR frequencies well outside of the THz band, offering many of the same benefits as the THz implementation such as the size, weight, and power. New FPA imaging systems could be created that do not rely on cryogenics and offering improved sensitivity when compared to the current class of IR detectors. Over certain IR bands existing detectors have reduced performance due in part to the lack of suitable materials the MMPA pyroelectric detector would not be required to sacrifice important performance related metrics as they are not material limited in their potential operational frequency range.
Metamaterial perfect absorber functioning as a thermal detector has several key advantages. Outside of the operational frequency (ω0), the reflectivity is quite high, with values well over 80%. Thus this natural narrowband metamaterial resonance is a salient feature for thermal detectors as it is naturally apodizing, in the sense that radiation outside of the range of interest is reflected form entering the device. Other “broad-band” thermal detectors, e.g. liquid helium silicon bolometer, utilize other elements to perform this same function, thus adding complexity, weight and size. Another advantageous property of the metamaterial imaging pixel is the narrow band resonant behavior. In order to achieve sufficient signal-to-noise for any given detector, especially in the case of thermal detectors, it is necessary to restrict bandwidth, especially in regions of the electromagnetic spectrum where variations in the background may vary significantly, such as the THz. Further, the option to perform hyperspectral imaging also requires narrow bandwidth to resolve the narrow lines that materials of interest may yield. The highly resonant nature of the metamaterial perfect absorber yields a high absorption coefficient. This low thermal mass is ideal for response time, as well as necessary to achieve a compact, lightweight design. Since the elements which constitute our bolometer are sub-wavelength, metamaterials can inherently image at the diffraction limit. In some embodiments, the device may include only a single unit cell in the propagation direction, (with a thickness significantly smaller than the wavelength λ/80), yet achieves an experimental absorbance of about 95%.
Accordingly, MMPAs of the present disclosure may be used to develop hand held THz detectors and cameras, THz security and screening portals, low cost room temperature THz detectors, THz medical imaging systems, IR bolometers, handheld IR thermal imagers, IR detectors, frequency tunable optics components for THz and IR, such as, mirrors, windows, modulators, beam splitters, spatial light modulators of THz and IR, and devices for energy harvesting from IR sources, such as waste heat and solar heat converters.
The methods and materials of the present disclosure are described in the following Examples, which are set forth to aid in the understanding of the disclosure, and should not be construed to limit in any way the scope of the disclosure as defined in the claims which follow thereafter. The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the embodiments of the present disclosure, and are not intended to limit the scope of what the inventors regard as their invention nor are they intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g. amounts, temperature, etc.) but some experimental errors and deviations should be accounted for.
An optical microscope image of the fabricated device is shown in
The liquid crystal 4′-n-pentyl-4-cyanobiphenyl (5CB) is deposited on top of the metamaterial array and completely fills in and encapsulates the polyimide/metal structure. 5CB possesses a nematic LC phase at room temperature with large birefringence (ne−no=Δn) at THz frequencies ranging between 0.11 to 0.21, where the refractive index can be switched between its ordinary no and extraordinary ne value in the presence of an electric field. A schematic shown in
The frequency dependent reflection [R(ω)] was characterized at an incident angle of 20 degrees from 2.0 to 3.5 THz using a Fourier-transform infrared spectrometer, liquid helium-cooled Si bolometer detector, and a germanium coated 6 μm mylar beam splitter. The measured reflection spectra are normalized with respect to a gold mirror and calculation of the frequency dependent absorption as A(ω)=1−R(ω) since the transmitted intensity was zero due to the metal ground plane. The measurements were performed with the THz electric field perpendicular to the metal connecting wires, as depicted in
The absorption was characterized for a number of different bias values and modulation frequencies.
Although tuning of the absorption peak is relatively small, (less than 5%), in many applications amplitude modulation only over a narrow band may be desired. For example, operating at a fixed frequency of ω0=2.62 THz, i.e. the peak absorption of the unbiased case is plotted in
Full wave 3D electromagnetic simulations were performed. The Au/Ti metal layers were modeled as a lossy metal with a frequency independent conductivity of σ=4.56×107 S/m, and the polyimide layer with a relative permittivity of {tilde over ( )}∈poly=∈1+i∈2=2.88+i0.09. The complex refractive index of 5CB, (with zero applied bias) was modeled as a lossy dielectric with {tilde over ( )}n5CB=n5CB+iκ5CB=1.82+i0.14. As mentioned, the LC encapsulates the metamaterial array and thus a 2 μm thick layer was modeled on top of the ERR. It is assumed that any LC not lying in-between the ERR and ground plane is unaltered by the applied bias, as shown in
Results from the computational investigation are presented in
The particular mode exhibited by the presently-disclosed device at the maximum of the absorption, i.e. 2.62 THz, is examined. This can be explored by observation of the surface current density and magnitude of the THz electric field (plotted a plane centered between the two metallizations), as shown in
To frequency tune a metamaterial in which both the electric and magnetic properties have been designed, these properties were adjusted identically to preserve the desired electromagnetic response. Therefore dynamic magneto-dielectric metamaterials utilizing two separate unit cells may require complicated tuning mechanisms in order to maintain their properties. In contrast, a salient feature of the perfect absorber design is the ability to simultaneously adjust ∈(ω) and μ(ω) by simply altering the dielectric properties of the dielectric spacing layer, as demonstrated here with liquid crystal. This can be verified by plotting the extracted material parameters for the perfect absorber obtained from simulations utilizing a frequency dependent Drude model (plasma frequency ωp=2π×2175 THz and collision frequency ωc=2π×6.5 THz). As shown in
In conclusion, THz liquid crystal meta-material perfect absorber was electronically controlled. A 30% amplitude tuning of the absorption at 2.62 THz was achieved and a frequency tunability greater than 4% was realized. Because the both liquid crystal properties and metamaterial perfect absorbers are scalable, designs disclosed herein can be extended to both higher and lower frequencies. The prospect of electronically controlled metamaterial perfect absorbers have implications in numerous scientific and technological areas rich in applications, particularly in sensing, adaptive coded aperture imaging, and dynamic scene projectors.
The reflectivity R (ω) was characterized from a frequency of 2-5 THz using a Fourier-transform infrared spectrometer combined with an infrared microscope, liquid helium-cooled Si-bolometer detector, and a germanium coated 6 μm mylar beamsplitter. The reflected energy was measured at an incident angle of 20° and it is normalized with respect to a gold mirror. With the measured reflectivity, the frequency dependent absorptivity defined as A(ω)=1−R(ω) was calculated. The transmissivity was zero because of the ground plane. The alignment of the LCs was realized through a square wave applied between the top metal layer and the ground plane. The peak to peak amplitude of the square wave was 10V whereas the modulation frequency was set to 1 kHz. Use of a modulated bias prevented free carrier build-up at the electrode metal interface which can occur for DC applied potentials. To prove the tunable response of the absorber, the absorptivity A(ω) was measured under two different biasing conditions, unbiased (V=0) and biased (V≠0). The tunable electromagnetic response for the first two resonances was studied.
These results were also confirmed by numerical simulations (CST Microwave Studio 2012). The polymide layer was modeled with a relative complex permittivity ∈poly=2.9+i0.08, whereas for the liquid crystal in the unbiased state the following value for the ordinary complex refractive index of n0=1.80+i0.14 was used, as shown by the biased curve in
Electronically tunable single pixel metamaterial absorber was realized by exploiting the birefringence shown in 5CB liquid crystals at THz. The absorption of energy was measured for the first and second resonance and it was demonstrated that large modulation factors up to 140% may be possible. Biasing the metamaterial pixel normally to the absorber plane resulted into a 9.5% and 8.7% frequency shift and in 36% and 42% amplitude modulation for the first and the second resonance respectively. All experimental results were in agreement with numerical simulations.
The spatial light modulator used in this Example was composed of a 6×6 pixels array. The pixel pitch was 480 μm×466 μm. Electric ring resonators forming the top metallic plane of each pixels were fabricated to form a rectangular array with 45 μm lattice spacing in the horizontal direction and 30 μm along the vertical direction. Each unit cell was formed by a top section and bottom section electrically separated from each other through three 4 μm wide gaps. Both sections were connected to their neighbors via horizontal 4 μm width metallic wires. All ERRs arrays forming the top layer of each individual pixel were all electrically connected through 200 μm wide continuous gold lines. The ground plane on the other hand, formed by 200 nm Au/Ti E-beam deposited layer on top of a supporting silicon substrate was pixelated into isolated square islands with dimensions matching those of the ERR pixel. To avoid electrical short-circuit between the ground plane pads, a 10 nm thermally grown SiO2 layer was added to the wafer. 4 μm Au metallic lines electrically connected each ground planes and the top continuous metallic layer to rectangular pads arranged around the pixels matrix. The dielectric spacer was formed by spin coating a 5.2 μm thick liquid polyimide layer (PI-2611 from HD Microsystems™). Ultraviolet (UV) photolithography was used to pattern photoresist which was used for the deposition of 200 nm Au/Ti and for creating both the ground plane and ERR layers. The ERR structures served as a hard mask for inductively coupled plasma and reactive ion etching in order to remove all polyimide not directly underneath the metamaterial layer and form the trenches for hosting the LC. In order to further improve the control over the MPA response, small undercuts were created by over overetching of the polyimide. The fabricated device was glued to a chip carried and wire-bonded to it.
Highly birefringent and highly anisotropic isothiocyanate-based liquid crystal mixture, LCMS-1107 from LC Matters, was employed. The mixture was first dropped with a pipette on the metamaterial SLM array and was allowed to sit for few days in order to allow the evaporation of the water content. The surface tension of the LC combined with the smooth gold surfaces of the metamaterial resulted in poor adhesion of the LC to the device face. The above drying step improved the grip of the LC substantially. A final blow of He gas carefully pointed toward the MPA surface improved the uniformity of the LC cap layer.
Prior to perform the optical characterization the electrical connection were tested in order to check for possible short-circuits between the top metal layer and the ground planes. The experiment was carried out at THz using a Hyperion-2000 infrared microscope connected to a FTIR spectrometer. The sample was illuminated at an incident angle of 20° with a Hg-arc lamp source. The frequency dependent absorptivity A(ω)=1−R(ω) was measured by means of a liquid He cooled Si bolometer detector in the frequency range [2-6] THz where the metamaterial resonates. Moreover, the sample was placed in a plexiglass box and a continuous flow of dry air guaranteed a level of humidity below 1%.
The orientation of the LC dimers was electronically controlled by biasing each pixel with a 15 V peak-to-peak square waveform oscillating a 1 kHz.
First the absorptivity A(ω) for each pixel was measured in the unbiased state, then it was measured in the biased conditions.
In order to provide a quantitative description of the mechanism responsible for the modulation of the MPA response, the measured frequency dependent absorptivities in the unbiased and biased state were matched for an individual pixel with those obtained through numerical simulations, as shown in
The inset of
The ability of the reconfigurable MPA to work as a spatial light modulator is confirmed in the intensity map plotted in
In some embodiments, a metamaterial perfect absorber of the present disclosure includes a front metamaterials layer, a back layer, and a dielectric layer in between the front layer and the back layers, wherein the dielectric layers includes one or more environmentally responsive materials. In some embodiments, environmentally responsive materials include pyroelectric materials, phase change materials, liquid crystal materials and combinations thereof.
In some embodiments, a multi-pixel MMPA-based device, such as detector or SLM device, including one or more metamaterial perfect absorber of the present disclosure, including a front metamaterials layer, a back layer, and a dielectric layer in between the front layer and the back layers, wherein the dielectric layers includes one or more environmentally responsive materials, such as, for example, pyroelectric materials, phase change materials, liquid crystal materials and combinations thereof.
In some embodiments, a metamaterial perfect absorber includes a first patterned metallic layer, a second metallic layer electrically isolated from the first patterned metallic layer by a gap, and an environmentally responsive dielectric material positioned in the gap between the first patterned metallic layer and the metallic second layer.
In some embodiments, a detector includes a first patterned metallic layer, a second metallic layer electrically isolated from the first patterned metallic layer by a gap, and a pyroelectric material disposed in the gap between the first patterned metallic layer and the second metallic layer, and a voltage meter configured to record voltage generated in the pyroelectric material due to a change in temperature in the pyroelectric material.
In some embodiments, a spatial light modulator includes a plurality of pixels, each pixel comprising a first patterned metallic layer, a second metallic layer electrically isolated from the first patterned metallic layer by a gap, and a phase change material positioned in the gap between the first patterned metallic layer and the second metallic layer, and a biasing source electrically connected to the pixels to switch the pixels between an absorption state and a reflection state.
In some embodiments, an imaging system includes a source of radiation to irradiate an object to be imaged, a spatial light modulator having a plurality of pixels, each pixel comprising a first patterned metallic layer, a second metallic layer electrically isolated from the first patterned metallic layer by a gap, and a phase change material positioned in the gap between the first patterned metallic layer and the second metallic layer, and a biasing source electrically connected to the pixels to switch the pixels between an absorption state and a reflection state, and a radiation detector, wherein the spatial light modulator is configured to receive radiation reflected from the object and to reflect the radiation in a desired manner to the radiation detector.
All patents, patent applications, and published references cited herein are hereby incorporated by reference in their entirety. While the devices and methods of the present disclosure have been described in connection with the specific embodiments thereof, it will be understood that they are capable of further modification. Furthermore, this application is intended to cover any variations, uses, or adaptations of the devices and methods of the present disclosure, including such departures from the present disclosure as come within known or customary practice in the art to which the devices and methods of the present disclosure pertain.
This application claims the benefit of and priority to U.S. Provisional Application No. 61/651,727, filed on May 25, 2012, and which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61651727 | May 2012 | US |