1. Field of the Disclosure
The invention generally relates to metered pump stands for metered pumps that periodically pump measured amounts of chemical or biological material into septic or sewage systems.
2. Related Technology
Certain systems require periodic additions of chemical or biological material to keep the systems running smoothly. For example, boiler systems, cooling towers, septic tanks, or other sewage systems, may require periodic additions of chemical or biological material to break down sewage in the system, or to clean fouling substances from pipes, so that the system continues to run smoothly. Similarly, plumbing systems, in particular drains in plumbing systems, may require periodic additions of chemical or biological materials to clear drains of blockages or build-ups.
Pumps and pumping devices have been developed that periodically meter a set amount of chemical or biological material into drains or sumps of septic or sewage systems. These pumps are connected to a supply of chemical or biological material. The pumps generally include an internal timer, a power source (e.g., battery or A/C power from an outlet), a processor, and an input device (such as a keyboard, a touchscreen, an input button, a data port, etc.). A user may program the pump with a material addition schedule by which the pump periodically or regularly adds chemical or biological material to the septic or sewage system. One example of such a pumping system is the United 757 NEEM-BAC Gelled Drain Treatment System produced by United Laboratories Inc. The United 757 NEEM-BAC system injects several bacterial strains and Neem oil in a gelled formulation that provides the bacteria sufficient surface contact time to implant into build-up found in drains. The bacteria work to eliminate the build-up by degrading organic solids, proteins, starch, cellulose and grease.
Known pumps or pumping devices are usually permanently mounted to a wall or other structure in a conventional way, such as by using fasteners, wall anchors, etc. An input of the pump is then connected to a source of chemical or biological material and an output of the pump is connected to a drain, sump, or pipe in a septic or sewage system. Because the pump is permanently mounted in a specific location, the source of chemical or biological material must be located in proximity to the pump. Known sources of chemical or biological material are usually stored in bulk containers, such as deltangular containers, which come in many sizes, for example six gallon sizes.
Permanently mounted pumps are not easy to relocate. The permanently mounted pump must first be removed from the wall or other support. Next, new holes must be drilled in the new location. Additional mounting hardware may also be required.
Recently, pumps have been mounted directly to the bulk containers of the chemical or biological material to save space. Pumps mounted to the bulk container often result in a pump/container configuration that is large or awkwardly shaped. In other words, the container mounted pumps often do not fit well into locations near drains or sumps, which are often spatially limited.
A metered pump system includes a metered pump stand having a main panel with first and second sides, a top edge, a bottom edge, and a pair of side edges. A pair of feet extends from the first side of the main panel near the bottom edge. An upper flange extends from the second side of the main panel near the top edge. A metered pump may be attached to the first side of the main panel. A material container for supplying chemical or biological material to the metered pump may be located proximate the second surface of the main panel. The disclosed metered pump system is customizable by interchanging components while using the same metered pump stand.
Objects, features, and advantages of the present invention will become apparent upon reading the following description in conjunction with the drawing figures, in which:
The metered pump stand 20 has a pair of feet 28 extending outwardly from the first surface 24, near the bottom edge 25. Other embodiments may have more or less than two feet. For example, other embodiments may have one, three, four, five, or more feet. The feet 28 in this embodiment are generally rectangular in shape having a length that is greater than a height. However, other embodiments of the metered pump stand 20 may have feet 28 with other shapes, or other relative dimensions. For example, other embodiments may have feet 28 that have a height that is greater than a length, or the feet 28 may be triangular in shape. Regardless of size or shape, the feet 28 stabilize the metered pump stand and counter any moment created by the weight of the metered pump 60 when the metered pump 60 is mounted on the first surface 24, as illustrated in
A pair of guide rails 30 extends outwardly from the first surface 24 along the side edges 29. The guide rails 30 may be integral with the feet 28, as in the embodiment illustrated in
An upper flange 32 extends outwardly from the second surface 26 near the upper edge 27 of the main panel 22. The upper flange 32 may include an opening 34 that is sized to receive a spout or mouth 86 (see
The first surface 24 also includes one or more mounting structures, such as a mounting pin 36. The mounting pin 36 may fit into a complementary recess in a rear side of the metered pump 60 when the metered pump 60 is mounted on the metered pump stand 20. Other mounting structures are possible in other embodiments of the metered pump stand 20. For example, other embodiments may use mounting shelves, mounting fasteners, mounting hooks, etc. However, the mounting structures should releasably secure the metered pump 60 to the first surface 24.
Turning now to
The metered pump 60 also includes an input device, such as a timer 74, by which a user may program a specific pumping schedule. For example, a user may set the timer 74 to pump a metered amount of material into the septic system every two days. Other pumping schedules are possible depending on the needs of the particular system. The pump body 62 also includes a power switch 76 to turn the metered pump 60 on or off. A material input/output hose 78 is connected to a source of material in the material container 80 at one end, and the sump 100 or drain 112 at the other end. The metered pump 60 draws chemical or biological material in from the material container 80 through an input hose and pumps the chemical or biological material into the sump or drain through an output hose. The input and output hoses may be flexible hoses made of plastic or rubber, or the input and output hoses may be more rigid hoses made of PVC or metal, for example.
The disclosed metered pump stands and systems advantageously provide greater spatial flexibility and portability over prior art metered pump systems. Moreover, the disclosed metered pump stands and systems may be easily customized to particular septic or sewer systems. For example, different metered pumps and/or material containers may be interchanged with one another to provide different capabilities while using a common metered pump stand.
Although certain metered pump stands and metered pump systems have been described herein in accordance with the teachings of the present disclosure, the scope of the appended claims is not limited thereto. On the contrary, the claims cover all embodiments of the teachings of this disclosure that fairly fall within the scope of permissible equivalents.
This application is a non-provisional application that claims priority benefit of U.S. Provisional Patent Application No. 61/413,757, filed Nov. 15, 2010, the entirety of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2763288 | Tharp | Sep 1956 | A |
4003504 | Johnson et al. | Jan 1977 | A |
4432470 | Sopha | Feb 1984 | A |
4600129 | Kondo | Jul 1986 | A |
D306477 | Weiss | Mar 1990 | S |
D357728 | Carano | Apr 1995 | S |
5810213 | Flores et al. | Sep 1998 | A |
7735685 | Bertram | Jun 2010 | B2 |
8177144 | Rossner et al. | May 2012 | B2 |
20080292481 | Castagnetta et al. | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
2658021 | Jul 1978 | DE |
19511885 | Oct 1996 | DE |
2000203615 | Jul 2000 | JP |
Entry |
---|
A757 UltraDose Automatic Dispensing Pump Model #1160. Believed to be publically available as early as Nov. 15, 2011. |
United 757 Material Safety Data Sheet, United Laboratories, Jul. 22, 2009. |
Number | Date | Country | |
---|---|---|---|
20120183416 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
61413757 | Nov 2010 | US |