The present invention relates to a metering valve assembly for dispensing a premeasured quantity of a product from an aerosol container once the stem of the aerosol valve is sufficiently depressed.
A number of metering valves are currently available in the market place. Most of these currently available metering valves utilize a ball or some other additional component which has to be separately installed in the valve housing to ensure proper metering of a desired quantity of an aerosol product from the valve assembly upon sufficient actuation or depression of the stem. The installation of this additional component, during manufacture of the aerosol valve, generally increases the production costs as well as the inspection costs associated with manufacture of the aerosol valve. Moreover, if the additional component is not properly installed or is omitted from the valve assembly for some reason, the aerosol valve will malfunction. Accordingly, an inspection step is generally required, following installation of the additional component, to confirm that the additional component was, in fact, properly installed within the aerosol valve.
Another drawback associated with prior art metering valves is that such valves have a tendency to “throttle”. That is, due to a poor or an improper valve design, it is possible for an operator to partially depress the valve stem and establish a product flow path from the interior cavity of the aerosol container through the metering valve and out through a spray button or an actuator affixed to the stem of the aerosol valve, prior to the valve stem sealing the inlet to the valve housing, so that product may be continuously discharged out through the aerosol valve. As a result of such “throttling”, the operator is able to dispense a continuous discharge of product from the aerosol container via the metering valve rather than meter a desired amount. This results in the inadvertent discharge of excess product from the aerosol container which is wasteful and generally to be avoided.
Another prior art design utilizes a frictional sealing fit between two plastic valve components to separate the contents of the container from the metering chamber. This arrangement requires that a valve spring, accommodated by the valve, be sufficiently forceful to overcome the interference fit of this sealing device upon the valve closing sequence. Apart from being subject to size and hardness changes due to immersion in the product, this design mandates extremely close tolerances of the mating components and critical alignment of molded parts during the valve assembly operation. Failure to observe these manufacturing tolerances and alignment criteria leads to an inaccurate metered spray or a valve which will not “shut-off” and thus result in the total release or dispensing of the entire product contents.
Wherefore, it is an object of the present invention to overcome the above noted drawbacks associated with the prior art aerosol metering valves.
Another object of the present invention is to minimize the amount of separate components that must be separately assembled, during manufacture of the valve assembly, to improve the easy of assembly of the metering valve assembly.
Yet another object of the present invention is to provide a metering valve assembly which reliably, consistently and accurately dispenses a desired quantity of the product contents from the metering valve assembly.
A still further object of the present invention is to provide a metering valve assembly which can be reliably manufactured while minimizing the degree of inspection required for manufacture of the metering valve assembly.
A further object of the present invention is to provide a metering valve assembly which prevents inadvertent “throttling” of the metering valve assembly by an operator.
Yet another object of the present invention is to provide a metering valve assembly which is securely affixed to the valve housing and, following insert of the valve housing onto a container, the metering valve assembly establishes a flow path with the internal cavity of the container to facilitate pressuring of the container with the product to be dispensed during the manufacturing process.
The present invention also relates to a ferrule having an aperture formed therein; a valve housing having an inlet provided in a base wall thereof, the valve housing defining an internal cavity which accommodates an annular flange of a valve stem and a compression spring therein, and a valve gasket closing the internal cavity; the valve housing being attached to the ferrule such that a stem portion of the valve stem protrudes through an aperture provided in the valve gasket and through the aperture provided in the ferrule; and the stem portion having a passageway formed therein communicating with a dispensing outlet, and an opposite end of the passageway communicating with at least one radial passageway; and the at least one radial passageway being normally closed by the valve gasket due to the spring normally biasing the valve stem into a closed position; wherein one of an undersurface of the annular flange of the valve stem and a mating surface of the valve housing is provided with a compressible sealing member and the other of the undersurface of the valve stem and the mating surface of the valve housing is provided with an annular sealing edge, and the compressible sealing member and the annular sealing edge form a seal therebetween, when the valve stem is sufficiently depressed, to partition the interior cavity into a metering chamber and a separate filling chamber so that product may be dispensed solely from the metering chamber when a product flow path is established between the metering chamber and the dispensing outlet of the valve stem.
The present invention also relates to a method of metering dispensing of product through a metering valve assembly, the method comprising the steps of: forming an aperture in a ferrule; providing an inlet in a wall of a valve housing and defining, via the valve housing, an internal cavity which accommodates an annular flange of a valve stem and a compression spring therein, and closing the internal cavity by a valve gasket; attaching the valve housing to the ferrule such that a stem portion of the valve stem protrudes through an aperture provided in the valve gasket and through the aperture provided in the ferrule; and forming a passageway in the stem portion which communicates with a dispensing outlet of the metering valve assembly, while an opposite end of the passageway communicates with at least one radial passageway; and normally closing the at least one radial passageway the valve gasket due to the spring normally biasing the valve stem into a closed position; providing one of an undersurface of the annular flange of the valve stem and a mating surface of the valve housing with a compressible sealing member and providing the other of the undersurface of the valve stem and the mating surface of the valve housing with an annular sealing edge, and forming a seal between the compressible sealing member and the annular sealing edge when the valve stem is sufficiently depressed, to partition the interior cavity into a metering chamber and a separate filling chamber, so that product may be dispensed only from the metering chamber when a product flow path is established between the metering chamber and the dispensing outlet of the valve stem.
In the following description and appended drawings, the terms “inward” and “downward” mean toward a lower bottom portion of the respective drawing while the terms “top” and upward” mean toward an upper portion of the respective drawing.
The invention will now be described, by way of example, with reference to the accompanying drawings in which:
Turning first to
Turning now to
The stem portion 34 has a central passageway 42 with a dispensing outlet which communicates with product inlet of the actuator 38. The opposite end of the central passageway 42 communicates with at least one radial passageway 50, and possibly two, three, four or more radial passageways 50 generally equally spaced about the circumference of a lower portion of the stem portion 34 of the valve stem 26. Each one of the radial passageway(s) 50 is normally temporarily blocked from discharging product due to its sealingly engagement with an inwardly facing surface of the valve gasket 30 when the metering valve assembly is both in its normally closed position, as can be seen in
The valve housing 22 generally has a thickened mouth 56. The valve housing 22 also includes a cylindrical side wall 60 and a generally planar base wall 62 which is provided with a housing inlet 64. During the crimping operation with the pedestal portion 12, the plurality of indentations or crimps engage a lower portion of the thickened mouth 56 and force the valve housing 22 upwardly so as to compress and seal the valve gasket 30 against the inwardly facing surface of the ferrule 8 in a conventional manner. A ferrule gasket 65 is accommodated within the ferrule 8 and the ferrule gasket 65 has a central aperture formed therein which receives the valve housing 22 therein. The ferrule gasket 65 facilitates forming a fluid tight seal between the ferrule 8 and the base container 4 when the ferrule 8 is secured to the base container 4 to form the pressurizable container 2 (see FIG. 1). If a mounting cup is utilized instead of the ferrule, the mounting cup generally has a polypropylene layer provided on an inwardly facing surface thereof for engaging with and forming a fluid tight seal with the opening of the base container 4, when the mounting cup is crimped thereto, to form the pressurizable container 2, and thus the additional ferrule gasket is generally not required.
The valve stem 26 includes an annular flange 66 which is formed integral therewith in an intermediate section of the valve stem 26. If desired, an annular recess (not number) may be formed in an undersurface of the annular flange 66 to provide a space or area to allow displacement of the compressible sealing member 68, during compression thereof, thereby reducing the force required to depress the valve to the open position (see
An annular rib 66′ (see
The housing inlet 64, formed in the base wall of the valve housing 22, is coupled to a leading end of a product dip tube 74. A remote end of the product dip tube 74 is positioned so as to communicate with a base 76 of the pressurizable container 2 to facilitate dispensing of the product to be dispensed therefrom. The housing inlet 64 is sized to receive the leading end of the dip tube 74 and at least the leading end has an interference fit with the housing inlet 64 to ensure a secure and permanent connection between those two components. The housing inlet 64 may have an annular protrusion (not numbered) to assist with permanent retention of the leading end of the dip tube 74 within the housing inlet 64.
The annular sealing edge 70 and the compressible sealing member 68 together, due to depression of the valve stem 26, facilitate dividing, separating or partitioning the internal cavity 24 of the valve housing 22 into two separate chambers, namely, a centrally located filling chamber 78 and a radially outwardly located metering chamber 58. Due to this arrangement, when the valve stem 26 is sufficiently depressed in the direction of arrow D, the valve stem 26 partially compresses the spring 28 and moves the annular flange 66 and the compressible sealing member 68, supported by the undersurface thereof, into an abutting engagement with the annular sealing edge 70 (see FIG. 3). Once the compressible sealing member 68 and the annular sealing edge 70 sufficiently engaged with one another, such engagement partitions the internal cavity 24 into the filling chamber 78 and the radially outwardly located metering chamber 58. Such engagement prevents the further flow of product to be dispensed from the filling chamber 78 into the metering chamber 58. It is to be appreciated that the valve gasket 30 is still maintained in sealing engagement with the exterior surface of the valve portion 34 of the valve stem 26 (see
Upon further depression of the valve stem 26 in the direction of arrow D, the degree of engagement between the compressible sealing member 68 and the annular sealing edge 70 increases and the at least one radial passageway(s) 50 eventually ceases to be sealed by the valve gasket 30 so that the at least one radial passageway(s) 50 is brought into fluid communication with the metering chamber 58 (see FIG. 4A). Once this occurs, substantially all of the product, contained within the metering chamber 58, is permitted to flow radially inwardly, through the at least one radial passageway(s) 50, and axially along the central passageway 42 of the valve stem 26 to the actuator 38 and be dispensed by the actuator 38 into the surrounding environment. Due to the engagement between the compressible sealing member 68 and the annular sealing edge 70, only a portion of the product contained within the metering chamber 58, e.g., about 30 to 300 microliters, is permitted to be dispensed by the metering valve assembly 10 regardless how long or to what degree or extent the valve stem 26 is depressed by an operator. Once the pressure within the metering chamber 58 becomes essentially atmospheric, no further product is able to be dispensed from the metering chamber 58.
Once the applied depression force is removed from the valve stem 26, the valve stem 26 is biased, due to the action of the compression spring 28, in the direction of arrow U into its closed position. As this occurs, the fluid communication between the metering chamber 58 and the at least one radial passageway(s) 50 is first interrupted. After this occurs, further movement of the valve stem 26, in a direction of arrow U, re-establishes communication between the filling chamber 78 and the metering chamber 58 so that the product to be dispensed is again allowed to flow through the dip tube 74 into the internal cavity 24 of the valve housing 22 and replenish the dispensed supply of product contained within the metering chamber 58. Such replenishing of the metering chamber 58 facilitates dispensing of further product to be dispensed each time the valve stem 26 is sufficiently depressed by an operator. Due to the bias of the spring 28, the valve stem 26 is normally in its closed position and further product can not be dispensed from the metering valve assembly 10 until the valve stem 26 is again sufficiently depressed, in the direction of arrow D, to first initially partition, divide or separate the filling chamber 78 from the metering chamber 58 and, thereafter, establish a product flow path from the metering chamber 58 to the actuator 38 via the at least one radial passageway(s) 50 and the central passageway 42.
The annular flange 66 may be provided, if desired, with a downwardly directed or extending shroud, cage, sleeve, a plurality of spaced apart legs or some other component 67 (see
With reference to
Turning now to
With reference now to
The major difference between the first embodiment and the second embodiment is the location of the compressible sealing member 68 and the annular sealing edge 70. According to this embodiment, the downwardly facing surface of the annular flange 66 is provided with an integral annular sealing edge 70 while an upwardly facing and mating surface of the base wall 62 is provided with the compressible sealing member 68. The compressible sealing member 68 may be adhesively secured to or otherwise permanently affixed to the base wall 62 of the valve housing 22 to ensure a permanent attachment thereto. Alternatively, the compressible sealing member 68 may merely be secured to the downwardly facing surface of the annular flange 66 by a slight interference fit with the interior cavity 24 of the valve housing 22. The compressible sealing member 68 and the annular sealing edge 70 are normally spaced apart from one another by a small distance, e.g., about 0.020 of an inch to about 0.040 of an inch so that when the valve stem 26 is at least partially depressed, the compressible sealing member 68 engages with the annular sealing edge 70 to form a fluid tight seal between those two components. The spring 28 urges the valve stem 26, away from the base wall 62, into its elevated normally closed position. As with the first embodiment, upon initial engagement between the compressible sealing member 68 and the annular sealing edge 70, the at least one radial passageway(s) 50 is still normally closed by abutting engagement between the valve portion 34 of the valve stem 26 and the valve gasket 30.
The annular sealing edge 70 and the compressible sealing member 68 together facilitate dividing, separating or partitioning the internal cavity 24 of the valve housing 22 into the centrally located filling chamber 78 and the radially outwardly located metering chamber 58. Accordingly, as with the first embodiment, when the valve stem 26 is sufficiently depressed in the direction of arrow D, the valve stem 26 partially compresses the spring 28 and moves the annular flange 66 and the annular sealing edge 70, supported by the undersurface thereof, into an abutting engagement with the compressible sealing member 68. Once the compressible sealing member 68 and the annular sealing edge 70 sufficiently engaged with one another, such engagement partitions the internal cavity 24 into the filling chamber 78 and the radially outwardly located metering chamber 58. Such engagement prevents the further flow of product to be dispensed from the filling chamber 78 to the metering chamber 58. It is to be appreciated that the valve gasket 30 is still maintained in sealing engagement with the exterior surface of the valve portion 34 of the valve stem 26 (see
Upon further depression of the valve stem 26 in the direction of arrow D, the degree of engagement between the compressible sealing member 68 and the annular sealing edge 70 increases and the at least one radial passageway(s) 50 eventually ceases to be sealed by the valve gasket 30 so that the at least one radial passageway(s) 50 is brought into fluid communication with the metering chamber 58 (see FIG. 7). Once this occurs, a portion of the product, contained within the metering chamber 58, is permitted to flow radially inwardly, through the at least one radial passageway(s) 50, and axially along the central passageway 42 of the valve stem 26 to the actuator 38 and be dispensed by the actuator 38 into the surrounding environment. Due to the engagement between the compressible sealing member 68 and the annular sealing edge 70, only a portion of the product contained within the metering chamber 58, e.g., about 30 to 300 microliters, is permitted to be dispense by the metering valve assembly 10 regardless how long or to what degree or extent the valve stem 26 is depressed by an operator. Once the pressure within the metering chamber 58 becomes essentially atmospheric, no further product is able to be dispensed from the metering chamber 58.
When the applied depression force is removed from the valve stem 26, the valve stem 26 is biased, due to the action of the compression spring 28, in the direction of arrow U into its closed position. As this occurs, the fluid communication between the metering chamber 58 and the at least one radial passageway(s) 50 is first interrupted. After this occurs, further movement of the valve stem 26, in a direction of arrow U, re-establishes communication between the filling chamber 78 and the metering chamber 58 so that the product to be dispensed is again allowed to flow through the dip tube 74 into the internal cavity 24 of the valve housing 22 and replenish the supply of product contained within the metering chamber 58. Such replenishing of within the metering chamber 58 facilitates dispensing of further product to be dispensed each time the valve stem 26 is sufficiently depressed by an operator. Due to the bias of the spring 28, the valve stem 26 is normally in its closed position and further product can not be dispensed from the metering valve assembly 10 until the valve stem 26 is again sufficiently depressed, in the direction of arrow D, to first initially partition, divide or separate the filling chamber 78 from the metering chamber 58 and, thereafter, establish a product flow path from the metering chamber 58 to the actuator 38 via the at least one radial passageway(s) 50 and the central passageway 42.
With reference now to
A novel feature of the ferrule gasket 65, according to the present invention, relates to the shape of the through hole 82 which passes through the ferrule gasket 65. Rather than there being a traditional cylindrical through hole, the through hole 82 of the ferrule gasket 65 according to the present invention is a complex shape. That is, a portion of the through hole 82 through the ferrule gasket 65 generally comprises three generally flat surfaces or sides of an equilateral triangle 84 while the apexes of each mating surfaces or sides of the equilateral triangle is an acuate section 86, as can be seen in
It is to be appreciated that the three flat surfaces 84 of the ferrule gasket 65 provide a sufficiently tight engagement with the exterior surface of the valve housing 22 to essentially permanently attach the ferrule gasket 65 and thus facilitate manipulation and transportation of the valve assembly 10 without the ferrule gasket 65 becoming dislodged or separated from the remainder of the metering valve assembly 10. The secure attachment of the ferrule gasket 65 to the metering valve assembly 10 reduces the inspection of the metering valve assembly 10 during manufacture of the pressurizable container 2.
The metering chamber is designed to hold a volume of between 30 and 300 microliters of the product to be dispensed, more preferably the metering chamber is designed to hold a volume of between 40 and 100 microliters of the product to be dispensed metering chamber and preferably the metering chamber is designed to hold about 50 microliters of the product to be dispensed. The annular sealing edge 70 preferably has a diameter of between about 0.18 of an inch and about 0.25 of an inch and has a height of between about 1/32 of an inch and about 1/16 of an inch. The compressible sealing member 68 preferably has a diameter of between about 0.20 of an inch and about 0.30 of an inch and has a thickness of between about 0.045 of an inch and about 0.070 of an inch. The compressible sealing member is preferably manufactured from rubber, some other elastomeric material or from some other suitable gasket or seal material. Such arrangement ensures a sufficient sealing between the compressible sealing member 68 and the annular sealing edge 70 when the valve stem 26 is sufficiently depressed.
In order to fill the pressurizable container 2 with a desired propellant and product, a charging head (not shown) is connected to a source product and/or propellant (not shown) under relatively high pressure, e.g., 900 psig, and the charging head is designed to surround and sealingly engage with the top surface of the mounting cup or ferrule 8 to facilitate charging of the pressurized component(s). During the filing process, e.g., typically a button-off-filling process, the charging head is first lowered into a sealingly engagement with the pressurizable container 2 to prevent the inadvertent escape of propellant and/or product during the charging process. A product charging path is established by the charging head along an exterior surface of the valve stem 26 and the aperture 36 in the ferrule 8 and then between a top surface of the gasket 30, as it is at least partially spaced from an inwardly facing surface of the ferrule 8, e.g. a few thousandths of an inch or so, to form a propellent and/or product flow path therebetween. The propellant and/or product continues to flow radially along the inwardly facing surface of the ferrule 8, between the ferrule 8 and the gasket 30, and then axially down along the inwardly facing surface of the ferrule 8, between the ferrule 8 and the exterior surface of the valve housing 22, until the propellent and/or product reaches the product/propellent internal cavity 6 of the pressurized container 2. Upon completion of the charging process, the charging head is withdrawn.
With reference to
The downwardly facing surface of the annular flange 66 is provided with a an annular recess 92 which tapers from an entry toward a base 94 thereof, i.e., the annular recess is slightly narrower at its entry and has an increasing taper to a slightly wider base 94. The mating facing surface of the compressible sealing member 68, on the other hand, is provided with a complimentary shaped head 96, i.e., the complimentary shaped head 96 is slightly narrower at its trunk and tapers to a slightly wider free end thereof. Due to this arrangement, the complimentary shaped head 96 of the compressible sealing member 68 is captively received by the annular recess 92 to fixedly retain the compressible sealing member 68 to the lower surface of the annular flange 66 to permanently retain the compressible sealing member 68 attached to the annular flange 66. In this embodiment, preferably the compressible sealing member 68 has a thickness of about 0.05 inches and is manufactured from an elastomer material.
The embodiment of
A fourth embodiment of the present invention will now be discussed with reference to FIG. 10. As this embodiment is very similar to the previous embodiments, a detailed description concerning only the differences between this embodiment and the prior embodiments will be provided.
As with the prior embodiments, the valve stem 26 includes an annular flange 66 which is formed integral therewith in an intermediate region of the valve stem 26. Rather than a downwardly facing surface of the annular flange 66 being provided with either a compressible sealing member 68 or sealing edge 70, the lower most end portion of the annular flange 66 has a cavity 98 or other recess which accommodates and supports a compressible sealing member 68. The compressible sealing member 68 may be adhesively secured to or otherwise permanently affixed to the cavity 98 or lower most end portion of the annular flange 66 to ensure a permanent attachment thereto or, alternatively, the compressible sealing member 68 may be secured with the valve stem 26 by a fictional connection, a two step molding process, or some or conventional connection. An exterior surface of the compressible sealing member 68 and the annular sealing seat 100 of the valve housing are normally spaced apart from one another by a small distance, e.g., about 0.020 of an inch to about 0.040 of an inch, so that when the valve stem 26 is at least partially depressed, a leading face of the compressible sealing member 68 engages with the annular sealing seat 100 to form a fluid tight seal between those two components and prevent the flow of fluid thereby.
The annular sealing seat 100 and the compressible sealing member 68 together facilitate dividing, separating or partitioning the internal cavity 24 of the valve housing 22 into two chambers, namely, a metering chamber 58 located within the valve assembly, and the housing inlet 64 which forms a filling chamber 78. Due to this arrangement, when the valve stem 26 is sufficiently depressed in the direction of arrow D, the valve stem 26 partially compresses the spring 28 and moves the annular flange 66 and the compressible sealing member 68, supported at a leading end thereof, into an abutting engagement with the annular sealing seat 100. Once the compressible sealing member 68 and the annular sealing seat 100 sufficiently engage with one another, such engagement partitions the internal cavity 24 into the metering chamber 58 and a remainder of the pressurized container 2. Such engagement prevents the further flow of product to be dispensed from the remainder of the pressurized container 2 into the metering chamber 58. It is to be appreciated that the valve gasket 30 is initially still maintained in sealing engagement with the exterior surface of the valve portion 34 of the valve stem 26 so that the dispensing of product through the at least one radial passageway(s) 50 and the central passageway 42 is not permitted until the valve stem 26 is sufficiently depressed.
With reference to
As with the first embodiment, the metering valve assembly 10 comprises a valve housing 22 having an internal cavity 24 which supports a lower portion of an upstanding valve stem 26, a compression spring 28, a compressible sealing member 68 and an annular sealing edge 70. However, the arrangement of the lower portion of the valve stem 26, the compression spring 28, the compressible sealing member 68 and annular sealing edge 70 are modified. According to this embodiment, the lower downwardly extending tip portion 104 of the valve stem 26 is cylindrical in shape and supports the compressible sealing member 68, for example, via an interference fit between a central aperture formed in the compressible sealing member 68 and the exterior cylindrical surface of the lower downwardly extending tip portion of the valve stem 26. Preferably, a leading end of the tip portion 104 of the valve stem 26 is semispherical in shape and located to be received within the inlet 64 of the valve housing 22. Due to this arrangement, the valve stem 26 cooperates with the inlet 64 of the valve housing 22 to prevent the compressible sealing member 68 from inadvertently becoming dislodged or separated from the valve stem 26 during operation of the valve.
The opening of the inlet 64 tapers toward a smaller opening and this taper forms a valve seat 106. The annular sealing edge 70 is formed integral with and circumscribes the valve seat 106 of the inlet 64. According to this embodiment, the annular sealing edge 70 does not protrude or extend away from the base wall 62 as much as the embodiment of FIG. 2. An upwardly directed or extending sleeve 108 is formed integral with a base wall 62 of the valve housing 22 and circumscribes both the annular sealing edge 70 and the valve seat 106 of the inlet 64. The upwardly directed or extending sleeve 108 confines the reconfiguration, expansion and/or radial movement of the compressible sealing member 68 during compression thereof by the valve stem 26. A first end of the compression spring 28 completely circumscribes the sleeve, the annular sealing edge 70 and the valve seat 106 while a second end of the compression spring 28 mates with and is centered by an undersurface of the annular flange 66 of the valve stem 26.
As with the previous embodiments, the annular sealing edge 70 engages with the sealing member 68, once the valve stem 26 is sufficiently depressed, to divide, separate or partition the valve housing 22 into two separate chambers, namely, a metering chamber 58 and a filling chamber 78. However, according to this embodiment, the entire internal cavity 24 is partitioned off to form the metering chamber 58 while the inlet 64 to the valve housing 22 comprises the filling chamber 78. Due to this arrangement, when the valve stem 26 is sufficiently depressed in the direction of arrow D, the valve stem 26 at first partially compresses the spring 28 and moves the compressible sealing member 68 into an abutting engagement with the annular sealing edge 70. Once the compressible sealing member 68 and the annular sealing edge 70 are sufficiently engaged with one another, the flow of further product to be dispensed into the metering chamber 58 is prevented.
Upon further depression of the valve stem 26 in the direction of arrow D, the degree of engagement between the compressible sealing member 68 and the annular sealing edge 70 increases, the compressible sealing member 68 seals against the valve seat 106, and the at least one radial passageway(s) 50 eventually ceases to be sealed by the valve gasket 30 so that substantially all of the product, contained within the metering chamber 58, is permitted to flow radially inwardly, through the at least one radial passageway(s) 50, and axially along the central passageway 42 of the valve stem 26 to the actuator (not shown in this Figure) and be dispensed by the actuator into the surrounding environment. Once the pressure within the metering chamber 58 becomes essentially atmospheric, no further product is able to be dispensed from the metering chamber 58.
When the applied depression force is removed, the valve stem 26 is biased, due to the action of the compression spring 28, in the direction of arrow U into its closed position. As this occurs, the fluid communication between the metering chamber 58 and the at least one radial passageway(s) 50 is first interrupted. Further movement of the valve stem 26, in a direction of arrow U, re-establishes communication between the filling chamber 78 and the metering chamber 58 so that the product to be dispensed is again allowed to flow through the dip tube (not shown in this Figure) into the internal cavity 24 of the valve housing 22 and replenish the dispensed supply of product contained within the metering chamber 58.
Preferably the valve stem 26 is manufactured from nylon, for example, while the compressible sealing member 68 is manufactured from an olefin based thermo elastomer, for example. Due to this selection of the materials, the compressible sealing member 68 is capable of chemically bonding with the valve stem 26 thereby avoiding the need to mechanically bond the compressible sealing member 68 to the valve stem 26.
The term “ferrule” as used throughout the specification and in the following claims, is interchangeable with the term “mounting cup” and is to be construed in such manner.
Since certain changes may be made in the above described improved metering valve assembly, without departing from the spirit and scope of the invention herein involved, it is intended that all of the subject matter of the above description or shown in the accompanying drawings shall be interpreted merely as examples illustrating the inventive concept herein and shall not be construed as limiting the invention.
This application is a Continuation-in-Part of Ser. No. 10/174,407 filed Jun. 17, 2002.
Number | Name | Date | Kind |
---|---|---|---|
2631814 | Abplanalp | Mar 1953 | A |
2701163 | Teller et al. | Feb 1955 | A |
2723055 | Beard, Jr. | Nov 1955 | A |
2856235 | Ward | Oct 1958 | A |
2867356 | Thomas | Jan 1959 | A |
2932432 | Beard, Jr. | Apr 1960 | A |
2998168 | Waldherr | Aug 1961 | A |
3055560 | Meshberg | Sep 1962 | A |
3073489 | Friedman | Jan 1963 | A |
3158298 | Briechle | Nov 1964 | A |
3180374 | Muller | Apr 1965 | A |
3186605 | Potoczky | Jun 1965 | A |
3219069 | Kuffer | Nov 1965 | A |
3313459 | Mizuguchi | Apr 1967 | A |
3319669 | Abplanalp | May 1967 | A |
3375957 | Kuffer | Apr 1968 | A |
3567081 | Meshberg | Mar 1971 | A |
3581946 | Meshberg | Jun 1971 | A |
3581958 | Meshberg | Jun 1971 | A |
3583606 | Ewald | Jun 1971 | A |
3583608 | Green | Jun 1971 | A |
3589571 | Green | Jun 1971 | A |
3612361 | Ewald | Oct 1971 | A |
3637114 | Meshberg | Jan 1972 | A |
3651997 | Venus, Jr. | Mar 1972 | A |
3756465 | Meshberg | Sep 1973 | A |
3777946 | Livingstone | Dec 1973 | A |
3791561 | Ewald | Feb 1974 | A |
3813013 | Kotuby et al. | May 1974 | A |
3845887 | Meuresch et al. | Nov 1974 | A |
3848778 | Meshberg | Nov 1974 | A |
3858768 | Meshberg | Jan 1975 | A |
3920158 | Meshberg | Nov 1975 | A |
3927806 | Meshberg | Dec 1975 | A |
3949910 | Focht | Apr 1976 | A |
3949912 | Meshberg et al. | Apr 1976 | A |
3986248 | Meshberg et al. | Oct 1976 | A |
4008830 | Meshberg | Feb 1977 | A |
4015752 | Meuresch et al. | Apr 1977 | A |
4015757 | Meuresch et al. | Apr 1977 | A |
4034899 | Meshberg | Jul 1977 | A |
4061247 | Meshberg | Dec 1977 | A |
4062517 | Jones | Dec 1977 | A |
4078705 | Butcher | Mar 1978 | A |
4113145 | Meshberg | Sep 1978 | A |
4135648 | White | Jan 1979 | A |
4230242 | Meshberg | Oct 1980 | A |
4271875 | Meshberg | Jun 1981 | A |
4311255 | Meshberg | Jan 1982 | A |
4324351 | Meshberg | Apr 1982 | A |
4362257 | Shay | Dec 1982 | A |
4389003 | Meshberg | Jun 1983 | A |
4413755 | Brunet | Nov 1983 | A |
4427137 | Dubini | Jan 1984 | A |
4434914 | Meshberg | Mar 1984 | A |
4435135 | Knickerbocker | Mar 1984 | A |
4441634 | Meshberg | Apr 1984 | A |
4456153 | Meshberg | Jun 1984 | A |
4457454 | Meshberg | Jul 1984 | A |
4457455 | Meshberg | Jul 1984 | A |
4577784 | Brunet | Mar 1986 | A |
4597512 | Wilmot | Jul 1986 | A |
4696415 | Meshberg | Sep 1987 | A |
4702400 | Corbett | Oct 1987 | A |
4735347 | Schultz et al. | Apr 1988 | A |
4811868 | Nitta | Mar 1989 | A |
4842168 | Bougamont et al. | Jun 1989 | A |
4858790 | Howlett | Aug 1989 | A |
4867352 | Meshberg | Sep 1989 | A |
4895279 | Schultz | Jan 1990 | A |
4942985 | Schultz | Jul 1990 | A |
4953759 | Schmidt | Sep 1990 | A |
RE33552 | Bougamont et al. | Mar 1991 | E |
5027985 | Abplanalp | Jul 1991 | A |
5037013 | Howlett | Aug 1991 | A |
5085351 | Martin | Feb 1992 | A |
5100029 | Meshberg | Mar 1992 | A |
5158211 | Meshberg | Oct 1992 | A |
5169038 | Di Giovanni | Dec 1992 | A |
5183186 | Delaney, Jr. | Feb 1993 | A |
5222636 | Meuresch | Jun 1993 | A |
5263616 | Abplanalp | Nov 1993 | A |
5265771 | Meshberg | Nov 1993 | A |
5273191 | Meshberg | Dec 1993 | A |
5290539 | Marecki | Mar 1994 | A |
5301846 | Schmitz | Apr 1994 | A |
5305810 | Meshberg | Apr 1994 | A |
5310112 | Meshberg | May 1994 | A |
5318205 | Delaney, Jr. | Jun 1994 | A |
5343901 | Meshberg | Sep 1994 | A |
5348199 | Smith | Sep 1994 | A |
5363992 | Meshberg | Nov 1994 | A |
5363993 | Mascitelli et al. | Nov 1994 | A |
5370862 | Klokkers-Bethke et al. | Dec 1994 | A |
5392962 | Meshberg | Feb 1995 | A |
5433343 | Meshberg | Jul 1995 | A |
5460207 | Meshberg | Oct 1995 | A |
5516006 | Meshberg | May 1996 | A |
5593064 | Meshberg | Jan 1997 | A |
5620113 | Meshberg | Apr 1997 | A |
D383382 | Meshberg | Sep 1997 | S |
5667104 | Meshberg | Sep 1997 | A |
5702031 | Meshberg et al. | Dec 1997 | A |
D402542 | Meshberg | Dec 1998 | S |
5875932 | Meshberg | Mar 1999 | A |
5906046 | Abplanalp et al. | May 1999 | A |
5918778 | Schultz | Jul 1999 | A |
5938085 | Conroy et al. | Aug 1999 | A |
RE36410 | Meshberg | Nov 1999 | E |
5975378 | Bayer | Nov 1999 | A |
6003737 | Mascitelli | Dec 1999 | A |
6006745 | Marecki | Dec 1999 | A |
6016974 | Mascitelli | Jan 2000 | A |
6039306 | Pericard et al. | Mar 2000 | A |
6047856 | Meshberg et al. | Apr 2000 | A |
6047946 | Kolanus | Apr 2000 | A |
6092698 | Bayer | Jul 2000 | A |
6126042 | Meshberg | Oct 2000 | A |
6131777 | Warby | Oct 2000 | A |
6170713 | Schultz | Jan 2001 | B1 |
6170717 | Di Giovanni et al. | Jan 2001 | B1 |
6202900 | Tsutsui et al. | Mar 2001 | B1 |
6247613 | Meshberg | Jun 2001 | B1 |
6254104 | Hafner | Jul 2001 | B1 |
6267304 | Schultz | Jul 2001 | B1 |
6296155 | Smith | Oct 2001 | B1 |
6357633 | Zimmerhackel et al. | Mar 2002 | B1 |
6375046 | Alleard et al. | Apr 2002 | B1 |
6382463 | Meshberg | May 2002 | B2 |
6394321 | Bayer | May 2002 | B1 |
Number | Date | Country |
---|---|---|
198 35 273 | Mar 1999 | DE |
201 14 780 | Jan 2002 | DE |
0 352 915 | Jan 1990 | EP |
0 350 376 | Jan 1993 | EP |
0 798 233 | Oct 1997 | EP |
1 162 829 | Sep 1958 | FR |
2 767 801 | Mar 1999 | FR |
WO 9012743 | Nov 1990 | WO |
9207777 | May 1992 | WO |
9211190 | Jul 1992 | WO |
0026116 | May 2000 | WO |
0210037 | Feb 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20030230603 A1 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10174407 | Jun 2002 | US |
Child | 10454309 | US |