This application is based on and claims priority from Korean Patent Application No. 10-2013-0119730, filed on Oct. 8, 2013 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
1. Field of the invention
The present invention relates to a method and an apparatus that acquires an image for a vehicle, and more particularly, to an apparatus that acquires an image for a vehicle and provides an around view monitoring (AVM) system of the vehicle an image for a user interface to rapidly select a position around the vehicle on which image data is confirmed by a driver and provides image data in which a blind spot around the vehicle is minimized to the driver.
2. Description of the Prior Art
An around view monitoring (AVM) system is a system that confirms image data around a vehicle from a driver's seat of the vehicle. Recently, AVM systems have been mounted within the vehicle to assist in driving the vehicle and allow the driver to recognize a situation (e.g., an obstacle) around the vehicle while parking the vehicle more easily.
However, since AVM systems generally include about four imaging devices disposed at a front, a rear, a left, and a right of the vehicle and provide image data acquired from the imaging devices to the driver, it may be difficult for a driver to appropriately confirm an environment outside the vehicle and the driver may not confirm a blind spot around the vehicle, thus increasing the risk of an unexpected accident while parking the vehicle.
Accordingly, the present invention provides a method and an apparatus for acquiring an image for a vehicle, which may he an around view monitoring (AVM) system that may include a user interface that may rapidly select a position around the vehicle on which image data may be confirmed. In addition, the present invention provides an apparatus for acquiring an image for a vehicle that may minimize a blind spot around the vehicle and minimize distortion of image data when image data around the vehicle is provided to a driver. Further, the present invention provides an apparatus for acquiring an image for a vehicle that may provide image data to a driver when a state of the vehicle and an environment around the vehicle are considered.
In one aspect of the present invention, an apparatus for acquiring an image for a vehicle may include: an input configured to receive an input from the exterior; at least one imaging device configured to acquire an external image data of the vehicle; a sensor that may include at least one sensor configured to confirm a state of the vehicle; a display configured to display a region around the vehicle to be divided into a plurality of regions based on the vehicle; and a controller configured to select a virtual projection model based on a selected region or a state change of the vehicle when at least one of the plurality of regions is selected from the input or the state change of the vehicle is sensed by the sensor, and project the external age data onto the virtual projection model, to generate final image data for a position of the selected region.
The plurality of regions may include regions for confirming a front, a rear, a left front, a left rear, a right front, a right rear, and an upper portion of the vehicle and regions for continuing the front and the rear of the vehicle. The virtual projection model may include a plane model, a spherical model, a hybrid model, a cylindrical model, a three-section model, and a variable tilting model. The controller may be configured to generate a virtual imaging device model around the vehicle when the virtual projection model is selected. In addition, the controller may be configured to adjust a position, an angle, a focal length, and a distortion degree of the virtual imaging device model based on the selected region or the state change of the vehicle when at least one of the plurality of regions is selected from the input or the state change of the vehicle is sensed by the sensor. The virtual imaging device model, operated by the controller, may be configured to photograph the external image data projected on the virtual projection model to generate the final image data.
The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
It is understood that the term “vehicle” or “vehicular” or other similar term as used herein is inclusive of motor vehicles in general such as passenger automobiles including sports utility vehicles (SUV), buses, trucks, various commercial vehicles, watercraft including a variety of boats and ships, aircraft, and the like, and includes hybrid vehicles, electric vehicles, combustion, plug-in hybrid electric vehicles, hydrogen-powered vehicles and other alternative fuel vehicles (e.g. fuels derived from resources other than petroleum).
Although exemplary embodiment is described as using a plurality of units to perform the exemplary process, it is understood that the exemplary processes may also be performed by one or plurality of modules. Additionally, it is understood that the term controller/control unit refers to a hardware device that includes a memory and a processor. The memory is configured to store the modules and the processor is specifically configured to execute said modules to perform one or more processes which are described further below.
Furthermore, control logic of the present invention may be embodied as non-transitory computer readable media on a computer readable medium containing executable program instructions executed by a processor, controller/control unit or the like. Examples of the computer readable mediums include, but are not limited to, ROM, RAM, compact disc (CD)-ROMs, magnetic tapes, floppy disks, flash drives, smart cards and optical data storage devices. The computer readable recording medium can also be distributed in network coupled computer systems so that the computer readable media is stored and executed in a distributed fashion, e.g., by a telematics server or a Controller Area Network (CAN).
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Unless specifically stated or obvious from context, as used herein, the term “about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. “About” can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from the context, all numerical values provided herein are modified by the terra “about.”
Hereinafter, exemplary embodiments of the present invention will be described in more detail with reference to the accompanying drawings. In describing the exemplary embodiments of the present invention, a description of technical contents that are well-known in the art to which the present invention pertains and are not directly related to the present invention will be omitted if possible. The reason why an unnecessary description is omitted is to make the purpose of the present invention clear.
The imaging devices 110 may be installed at a front, a rear, a left, and a right of the vehicle, respectively, and may be configured to acquire external image data around the vehicle, and provide the acquired image data to the controller 160. In particular, the number of installed imaging devices 110 may be changed by those skilled in the art. The sensor 120 may include at least one sensor configured to sense a state change of the vehicle such as a gear change of the vehicle, a vehicle speed change, an angle change of a steering wheel, an operation change of a door of the vehicle, and the like. The input 130 may be configured to transfer an input signal, setting of various functions, and a key signal input in relation to a function control of the image acquiring apparatus 100 from a user to the controller 160. The input 130 may be formed of an input device that may include a multi-input and a gesture based on a form of the image acquiring apparatus 100. Additionally, the input 130 may include a touch screen and may be included in the display 140. In the exemplary embodiment of the present invention, the input unit 130 may be formed of a touch pad or a touch screen to improve user convenience.
The display unit 140 may be configured to display screen data, for example, various menu data, digital broadcasting screen data, external image data around the vehicle, generated during execution of a program under a control of the controller 160, and display screen data 141 in which a region around the vehicle is displayed to be divided into a plurality of regions, vehicle icons 142, and the like, as illustrated in
The storage 150 may be configured to store application programs (e.g., programs that generate a virtual projection model and a virtual imaging device model) required for function operations according to the exemplary embodiment of the present invention. In addition, the storage 150 may be configured to store a region selected from the screen data 141 in which the region around the vehicle is displayed to be divided into the plurality of regions and a virtual projection model in a mapping table form in which the selected region and the virtual projection model are mapped to each other as illustrated in
When a selection signal for at least one of the plurality of regions around the vehicle is input or a signal for a state change of the vehicle is input via the sensor 120 from the input 130, the controller 160 may be configured to select the virtual projection model based on the selected region or the stage change of the vehicle. The controller 160 may be configured to project the external image data acquired from the imaging devices 110 onto the selected virtual projection model to generate final image data appropriate for a position of the selected region and output the generated final image data via the display 140.
A detailed description will be provided with reference to
When the virtual projection model is selected based on the vehicle V as illustrated in
In addition, although the controller 160 may be configured to operate the VC to photograph the external image data projected onto the projection surface PS has been described, this does not mean that the image data are substantially photographed, but may be interpreted as meaning that image data included in the region b of the VC among the external image data projected onto the projection surface PS are captured. Further, a screen that acquires and displays the final image data from the external image data projected onto the projection surface PS of the virtual projection model selected by the controller 160 may be as follows.
When the front {circle around (1)} (or the rear {circle around (4)}) of the vehicle may be selected as illustrated in
In addition, when a bumper portion {circle around (7)} of the vehicle V is selected as illustrated in
Furthermore, the controller 160 may be configured to adjust a position of the VC based on the state change of the vehicle V, for example, a gear change, a vehicle speed change, an angle change of a steering wheel, an operation change of a door of the vehicle, and the like, as illustrated in
In addition, when a signal that senses that a door of the vehicle is opened is received from the sensor 120 after the selection signal for the region {circle around (5)} in 141 is received as shown in
When a selection signal for regions {circle around (3)}, {circle around (4)}, and {circle around (5)} in 141 is received from the driver as illustrated in
Further, when a steering wheel turn signal of the vehicle is received from the sensor 120 after the selection signal for the regions {circle around (3)}, {circle around (4)}, and {circle around (5)} in 141 is received from the driver as illustrated in
As described above, according to the exemplary embodiment of the present invention, when the image data around the vehicle is provided to the driver, the image data may be provided using various virtual projection models and virtual imaging device models, to minimize a blind spot around the vehicle, minimize distortion of the image data, output image data in which a state of the vehicle and an environment around the vehicle are considered, to allow the driver to drive the vehicle more stably.
In addition, an around view monitoring (AVM) system including a user interface that allows the driver to select at least one region in the reference numeral 141 or select any one of the vehicle icons 142 to rapidly select a position around the vehicle on which image data are to be confirmed as shown in
Although the exemplary embodiments of the present invention have been illustrated in the present specification and the accompanying drawings and specific terms have been used, they are used in a general meaning to assist in the understanding the present invention and do not limit the scope of the present invention. It will be obvious to those skilled in the art to which the present invention pertains that other modifications based on the spirit of the present invention may be made, in addition to the abovementioned exemplary embodiments.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0119730 | Oct 2013 | KR | national |