This application claims the benefit of priority under 35 U.S.C. § 119(a) from a Korean patent application filed on Sep. 25, 2013 in the Korean Intellectual Property Office and assigned Serial No. 10-2013-0113709, the entire disclosure of which is hereby incorporated by reference.
The present disclosure relates to an apparatus and a method for controlling a screen display in an electronic device.
Electronic devices heretofore, such as mobile phones, may be configured with a touch screen panel that may integrate a display panel and a touch panel. Today's electronic devices may perform various functions and the size of their displays may vary. Such electronic devices generally use a battery and power consumption of the battery may be conserved through various techniques. The display's power consumption may make up a large portion of the device's overall power consumption. Therefore, the display panel may be switched off, when the electronic device is not in use; alternatively, the brightness of the display panel may be controlled by identifying the brightness of its surroundings using an illumination sensor. However, the illumination sensor may be installed in a specific location of the electronic device that is not optimal so that it may be difficult for the sensor to accurately detect the brightness of its surroundings. In turn, the suboptimal placement of the sensor makes it difficult to reduce battery consumption by partially switching off the display panel or controlling its brightness.
In view of the forgoing, disclosed herein are an apparatus and method for controlling a screen in an electronic device.
In accordance with an aspect of the present disclosure, a method for controlling a screen display is in an electronic device disclosed. The method may include: detecting a signal from a light-receiving pixel on a display unit, the display unit comprising light-emitting pixels and light receiving pixels arranged in a predetermined pattern; and adjusting a display intensity of the light-emitting pixels based at least partially on a brightness of light indicated by the signal from the light receiving pixels and a predetermined threshold of brightness.
In accordance with another aspect of the present disclosure, another method for controlling a screen display in an electronic device is disclosed. The method may include: detecting a signal from a light-receiving pixel of a display unit, the display unit having light-emitting pixels and light receiving pixels arranged in a predetermined pattern across a surface area of the display unit; and switching off light-emitting pixels arranged in a partial area of the display unit, when light is not detected in the partial area of the display unit by the light receiving pixels arranged in the partial area.
In accordance with yet another aspect of the present disclosure, an apparatus for controlling a screen display in an electronic device is disclosed. The apparatus may include: a display unit comprising light-emitting pixels and light-receiving pixels disposed thereon in a predetermined pattern; and at least one processor to: detect a signal from a light-receiving pixel and to adjust a display intensity of the light-emitting pixels based at least partially on a brightness of light indicated by the signal from the light receiving pixels and a predetermined threshold of brightness.
The above and other aspects, features, and advantages of the present disclosure will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:
Hereinafter, examples of the disclosure are described in detail with reference to the accompanying drawings. The same reference symbols are used throughout the drawings to refer to the same or like parts. For the purposes of clarity and simplicity, detailed descriptions of well-known functions and structures incorporated herein may be omitted to avoid obscuring the subject matter of the disclosure.
For the same reasons, some components in the accompanying drawings are emphasized, omitted, or schematically illustrated, and the size of each component does not fully reflect the actual size. Therefore, the present disclosure is not limited to the relative sizes and distances illustrated in the accompanying drawings.
An electronic device in accordance with the present disclosure may comprise a display panel having image sensors therein. Namely, the display panel may have a structure in which light-receiving pixels may be commingled with display pixels, and the entire display panel or part of the display panel may be controlled by detecting the brightness of the panel's surroundings using the light-receiving pixels.
The device may further detect the brightness of its surroundings and/or switch off an area of the display or the entire display unit based at least partially on a signal received from the light-receiving pixel.
Here, the light-receiving pixel of the display may comprise an image sensor and may identify a signal in a specific wave band. The drive control of the light-emitting pixel may include a function of changing a user interface (“UI”) of the display unit in accordance with a corresponding environment.
Referring to
A camera 120 includes an image sensor and outputs an external image by detecting and converting the image to an electric signal and digital data. The camera 120 may be configured with a dual camera. In this case, a first camera is installed at the rear side of a device and a second camera is installed at the front bezel area of the device. The first camera may be configured with an image sensor having a higher resolution than the second camera. The first and second cameras may be controlled independently or simultaneously under the control of a control unit 100.
A display unit 130 may include light-emitting pixels for displaying a screen image and light-receiving pixels disposed commingled with the light-emitting pixels in a predetermined pattern. Here, the light-emitting pixels may be RGB pixels and the light-receiving pixels may be image sensors. The display unit 130 may display a screen of an application executing in the electronic device under the control of control unit 100. The light-receiving pixels may generate a signal indicating the surrounding brightness of the whole or partial area of the display unit 130. Such signal may be sent to the control unit 100. In one example, the light-emitting pixel of the display unit 130 may be an LCD or an OLED and the light-receiving pixel may be an image sensor. An input unit 140 generates input signals detectable by control unit 100. The display unit 130 and the input unit 140 may be configured with a touch screen panel in an integral form.
The control unit 100 controls general operations of the electronic device. Control unit 100 may comprise at least one processor which may be any number of processors, such as processors from Intel® Corporation. In another example, the processor may be an application specific integrated circuit (“ASIC”). The control unit 100 may detect brightness by analyzing a signal detected by the light-receiving pixel of the display unit 130. The control unit 100 may adjust the brightness of the display unit 130 in accordance with the surrounding brightness read from the light-receiving pixels. Further, the control unit 100 may identify a partial area of display unit 130 that receives more or less light than other areas and may adjust the light-emitting pixels in the identified area accordingly.
A storage unit 110 may be configured with a memory for storing programs or computer executable instructions that control the brightness of display unit 130, and a data memory for storing photographed images.
Referring to
When each unit pixel 210 is configured with the pattern of sub-pixels 230, the display unit 130 may have the overall pattern shown in
As shown in
The control unit 100 may control the brightness of the display unit 130 having the above example configuration. The control unit 100 may have at least one reference or threshold value for controlling the brightness of the display unit 130 in accordance with the surrounding brightness and control data for controlling the brightness of the display unit 130 based on the reference value. Further, the control unit 100 may detect the surrounding brightness through the light-receiving pixels of the display unit 130. Since the light-receiving pixels are disposed in a predetermined pattern throughout the surface area of display unit 130, as shown in
If a user or an object covers the display unit 130, the light-receiving pixels located in the covered area may not detect light. In this instance, the control unit 100 analyzes signals from the light-receiving pixels indicating that no light is detected in that particular area and switches off the drives of the light-emitting pixels located in that area. Namely, if a partial area of the display unit 130 is covered by an object, the control unit 100 may switch off the light emitting pixels in that area only while maintaining the light emitting pixels in the other areas. Accordingly, when controlling the drive of the display unit 130, the control unit 100 may simultaneously switch on an area of the display having light-receiving pixels detecting light and switch off another area of the display having light-receiving pixels not detecting light.
Referring now to the example method shown in
The light-receiving pixels may detect light and generate a signal to control unit 100. Control unit 100 may identify the brightness of the detected light based on the signal at operation 315. Control unit 100 may identify whether to adjust the brightness of display unit 130 by comparing the detected brightness to a predetermined threshold at operation 317. In one example, the control unit 100 identifies whether the brightness is dark enough to adjust the brightness of the display unit 130. At operation 319, the control unit 100 may adjust the screen brightness, if necessary, by adjusting the brightness of the light-emitting pixels at operation 319. A method for adjusting the screen display may be performed as shown in
Referring to
As described above, control unit 100 may adjust the screen's brightness in accordance with the brightness detected by the light-receiving pixels of the display unit 130. For example, when the surrounding light becomes darker, the light-receiving pixels detects the change and control unit 100 adjusts the screen's brightness to a darker level by reducing the brightness of the light-emitting pixels.
Referring back to
Referring now to the working example in
Referring now to the working example of
Referring now to the example of
Referring now to the example method in
The light-receiving pixels may detect the surrounding light and may output signals indicative of the surrounding light's brightness to control unit 100. The light-receiving pixels may be evenly disposed in a predetermined pattern across the surface area of display unit 130. As noted above, light-receiving pixels located in a covered area of the screen may not detect the light; accordingly, control unit 100 may identify that some of the light receiving pixels are covered at operation 615. If no part of the display is covered, the light emitting pixels and the light receiving pixels may be kept on, at operation 619. At operation 617, if a part of the display is covered, the light intensity of the light emitting pixels in the covered area may be reduced or shut down, while the light intensity of the light-emitting pixels in an uncovered area may be maintained, at operation 617. However, if no area of the display unit 130 is covered, the control unit 100 may maintain the brightness of all the light-emitting pixels mounted across the surface area of display unit 130.
As noted above, control unit 100 may detect an area of the screen covered by a hand or an object such that control unit 100 may adjust the light-emitting pixels located in the covered area. As such, control unit 100 may reduce power consumption by identifying the light detected by the light-receiving pixels in the display unit 130 and switching off the corresponding light emitting pixels arranged in an area covered by an object (e.g., a cover, object, or user's hand), as shown in
Referring back to
The method for switching on the light-receiving pixels when the device is turned on again may be applied as described in
Advantageously, the brightness surrounding an entire or partial surface area of a display may be detected. In turn, the brightness of the whole or part of the display may be adjusted in order to preserve battery life.
The above-described examples may be implemented in hardware, firmware or via the execution of software or computer code that can be stored in a recording medium such as a CD ROM, a Digital Versatile Disc (DVD), a magnetic tape, a RAM, a floppy disk, a hard disk, or a magneto-optical disk or computer code downloaded over a network originally stored on a remote recording medium or a non-transitory machine readable medium and to be stored on a local recording medium, so that the methods described herein can be rendered via such software that is stored on the recording medium using a general purpose computer, or a special processor or in programmable or dedicated hardware, such as an ASIC or FPGA. As would be understood in the art, the computer, the processor, microprocessor controller or the programmable hardware include memory components, e.g., RAM, ROM, Flash, etc. that may store or receive software or computer code that when accessed and executed by the computer, processor or hardware implement the processing methods described herein. In addition, it would be recognized that when a general purpose computer accesses code for implementing the processing shown herein, the execution of the code transforms the general purpose computer into a special purpose computer for executing the processing shown herein. Any of the functions and steps provided in the Figures may be implemented in hardware, software or a combination of both and may be performed in whole or in part within the programmed instructions of a computer. No claim element herein is to be construed under the provisions of 35 U.S.C. 112, sixth paragraph, unless the element is expressly recited using the phrase “means for”.
In addition, an artisan understands and appreciates that a “processor”, “controller”, “control unit” or “microprocessor” constitute hardware in the claimed invention. Under the broadest reasonable interpretation, the appended claims constitute statutory subject matter in compliance with 35 U.S.C. § 101. The functions and process steps herein may be performed automatically or wholly or partially in response to user command. An activity (including a step) performed automatically is performed in response to executable instruction or device operation without user direct initiation of the activity.
The terms “unit” or “module” referred to herein is to be understood as comprising hardware such as a processor or microprocessor configured for a certain desired functionality, or a non-transitory medium comprising machine executable code, in accordance with statutory subject matter under 35 U.S.C. understood as comprising software per se.
Although the disclosure herein has been described with reference to particular examples, it is to be understood that these examples are merely illustrative of the principles of the disclosure. It is therefore to be understood that numerous modifications may be made to the examples and that other arrangements may be devised without departing from the spirit and scope of the disclosure as defined by the appended claims. Furthermore, while particular processes are shown in a specific order in the appended drawings, such processes are not limited to any particular order unless such order is expressly set forth herein; rather, processes may be performed in a different order or concurrently and steps may be added or omitted.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0113709 | Sep 2013 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
20020050974 | Rai | May 2002 | A1 |
20070296685 | Kang et al. | Dec 2007 | A1 |
20090200088 | Chuang | Aug 2009 | A1 |
20100201275 | Cok et al. | Aug 2010 | A1 |
20110014955 | Kim | Jan 2011 | A1 |
20110065474 | Won | Mar 2011 | A1 |
20110134252 | Furukawa | Jun 2011 | A1 |
20110221888 | Choi et al. | Sep 2011 | A1 |
20120212467 | Kohtoku | Aug 2012 | A1 |
20130176283 | Nakata | Jul 2013 | A1 |
20140010549 | Kang | Jan 2014 | A1 |
20140128131 | Sin | May 2014 | A1 |
20140183269 | Glaser | Jul 2014 | A1 |
20150015761 | Ikeda | Jan 2015 | A1 |
20160334851 | Shedletsky | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
2 293 273 | Mar 2011 | EP |
2011-33720 | Feb 2011 | JP |
10-2011-0103571 | Sep 2011 | KR |
Number | Date | Country | |
---|---|---|---|
20150084997 A1 | Mar 2015 | US |