1. Field of the Invention
The present invention relates generally to the field of downhole sampling analysis and in particular to a sample tank having a window or an internal light source for introduction of electromagnetic energy into a confined fluid sample. There response to the introduction of electromagnetic energy into the tank is used to perform non-invasive analysis of a sample in the tank without opening the tank or otherwise disturbing the sample.
2. Summary of the Related Art
Earth formation fluids in a hydrocarbon producing well typically comprise a mixture of oil, gas, and water. The pressure, temperature and volume of formation fluids control the phase relation of these constituents. In a subsurface formation, high well fluid pressures often entrain gas within the oil above the bubble point pressure. When the pressure is reduced, the entrained or dissolved gaseous compounds separate from the liquid phase sample. The accurate measurement of pressure, temperature, and formation fluid composition from a particular well affects the commercial viability for producing fluids available from the well. The data also provides information regarding procedures for maximizing the completion and production of the respective hydrocarbon reservoir.
Certain techniques analyze the well fluids downhole in the well bore. U.S. Pat. No. 6,467,544 to Brown, et al. describes a sample chamber having a slidably disposed piston to define a sample cavity on one side of the piston and a buffer cavity on the other side of the piston. U.S. Pat. No. 5,361,839 to Griffith et al. (1993) disclosed a transducer for generating an output representative of fluid sample characteristics downhole in a wellbore. U.S. Pat. No. 5,329,811 to Schultz et al. (I 994) disclosed an apparatus and method for assessing pressure and volume data for a downhole well fluid sample.
Other techniques capture a well fluid sample for retrieval to the surface. U.S. Pat. No. 4,583,595 to Czenichow et al. (1986) disclosed a piston actuated mechanism for capturing a well fluid sample. U.S. Pat. No. 4,721,157 to Berzin (1988) disclosed a shifting valve sleeve for capturing a well fluid sample in a chamber. U.S. Pat. No. 4,766,955 to Petermann (1988) disclosed a piston engaged with a control valve for capturing a well fluid sample, and U.S. Pat. No. 4,903,765 to Zunkel (1990) disclosed a time-delayed well fluid sampler. U.S. Pat. No. 5,009,100 to Gruber et al. (1991) disclosed a wireline sampler for collecting a well fluid sample from a selected wellbore depth. U.S. Pat. No. 5,240,072 to Schultz et al. (1993) disclosed a multiple sample annulus pressure responsive sampler for permitting well fluid sample collection at different time and depth intervals, and U.S. Pat. No. 5,322,120 to Be et al. (1994) disclosed an electrically actuated hydraulic system for collecting well fluid samples deep in a wellbore.
Temperatures downhole in a deep wellbore often exceed 300 degrees F. When a hot formation fluid sample is retrieved to the surface at 70 degrees F., the resulting drop in temperature causes the formation fluid sample to contract. If the volume of the sample is unchanged, such contraction substantially reduces the sample pressure. A pressure drop causes changes in the situ formation fluid parameters, and can permit phase separation between liquids and gases entrained within the formation fluid sample. Phase separation significantly changes the formation fluid characteristics, and reduces the ability to evaluate the actual properties of the formation fluid.
To overcome this limitation, various techniques have been developed to maintain pressure of the formation fluid sample. U.S. Pat. No. 5,337,822 to Massie et al. (1994) pressurized a formation fluid sample with a hydraulically driven piston powered by a high-pressure gas. Similarly, U.S. Pat. No. 5,662,166 to Shammai (1997) used a pressurized gas to charge the formation fluid sample. U.S. Pat. No. 5,303,775 (1994) and U.S. Pat. No. 5,377,755 (1995) to Michaels et al. disclosed a bi-directional, positive displacement pump for increasing the formation fluid sample pressure above the bubble point so that subsequent cooling did not reduce the fluid pressure below the bubble point.
Typically, sample tanks are transported to laboratories for analysis for determination of formation fluid properties based on the sample. The samples typically have to be transferred to a transportation tank, thus risking sample damage and spoilage due to pressure loss and formation of bubbles or asphaltene precipitation within the sample. Moreover, even if the sample is transferred successfully to the laboratory, it typically takes weeks or months to receive a full laboratory analysis of the sample. Thus there is a need for a rapid sample analysis system that provides accurate results and eliminates the risk of sample spoilage.
The present invention addresses the shortcomings of the related art described above. The present invention provides a downhole sample tank having at least one window for introduction of visible, near-infrared (NIR), mid-infrared (MIR) and other electromagnetic energy into the tank for samples collected in the sample tank downhole from an earth boring or well bore. The window is made of sapphire or another material capable of allowing electromagnetic energy to pass through the window. The entire sample tank can be made of sapphire or another material capable of allowing electromagnetic energy to pass another material enabling visual inspection or analysis of the sample inside the sample chamber. The present invention also provides interior NIR/MIR light sources and sensors that communicate from inside of the sample tank via electronic data signals. NIR, MIR and visible light analysis (transmittance, reflectance, and absorption) is performed on the sample via the window to provide a non-invasive analysis of sample properties and contamination level. A single window transmits light reflected off a reflective surface inside of the sample tank to obtain transmittance data through a single window.
The surface and down hole analysis comprises determination of gas oil ratio, API gravity and various other physical parameters associated with the sample which can be calculated or estimated by a trained neural network or chemometric equation. A flexural mechanical or piezoelectric resonator is also provided to estimate fluid density and viscosity from which additional parameters can be estimated by a trained neural network, non linear least squares fit, chemometric equation or other soft modeling techniques well appreciated in the art. The sample tank is over pressurized above the bubble point for the sample to prevent adverse pressure drop. When very high pressures are desired the sample is supercharged with a pressurization gas charge. The down hole sample tank comprises a housing having a hollow interior and at least one window, a fiber optics lead, optical conduit or internal light source or sensor for introduction and detection of electromagnetic energy into the sample tank.
For detailed understanding of the present invention, references should be made to the following detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, in which like elements have been given like numerals, wherein:
Suspended within the wellbore 11 at the bottom end of a wireline 12 is a formation fluid sampling tool 20. The wireline 12 is often carried over a pulley 13 supported by a derrick 14. Wireline deployment and retrieval is performed by a powered winch carried by a service truck 15, for example.
Pursuant to the present invention, an exemplary embodiment of a sampling tool 20 is schematically illustrated by
The formation fluid extractor 22 comprises an extensible suction probe 27 that is opposed by bore wall feet 28. Both, the suction probe 27 and the opposing feet 28 are hydraulically extensible to firmly engage the wellbore walls. Construction and operational details of the fluid extraction tool 22 are more expansively described by U.S. Pat. No. 5,303,775, the specification of which is incorporated herewith.
Turning now to
The present example of the AOA top sub 818 provides one or more optical conduits, which in this example are high-pressure sapphire windows 814 for ingress and egress of electromagnetic energy into the analysis chamber 800 optical analysis of parameters of interest for formation fluid sample 821. The entire AOA including the analysis chamber can be made of sapphire or another material which enables electromagnetic energy to pass through the material, thereby enabling visual inspection and noninvasive spectral and other analysis of the contents of the AOA, including the sample chamber. Optical conduits other than a sapphire window are acceptable. An analysis module 738 comprising a light source, light sensor and processor is provided which can be used for analysis of the sample 821 down hole or at the surface. Analysis module 738 is in contact with the sample 821 in sample region 823 for transmission and reception of NIR/MIR light into and through the sample in region 823. The light reflected, fluoresced and transmitted NIR/MIR light is analyzed for transmittance, reflectance and luminance by the processor in analysis module 738. A flexural mechanical resonator 840 connected to analysis module 738 by communication line 741 is also provided to determine fluid viscosity, density and other parameters of interest for the fluid sample using soft modeling techniques.
In surface operations, as shown in
The external optical analyzer 930 or internal analyzer 738 in the current example uses wavelength ranges from 1500 nm to 2000 nm to scan the fluid sample to determine or estimate through soft modeling techniques, parameters of interest, such as sample contamination percentage, gas oil ratio (GOR), density and asphaltene deposition pressure. A tunable diode laser and a Raman spectrometer are also provided in analysis module 738 for spectral analysis of the fluid sample. Each of the light sources and sensors are located inside of the sample tank 816 or communicate with the interior of the sample tank via the optical window 814 or an equivalent optical conduit providing data or electromagnetic energy ingress and egress to the interior of the sample tank and the sample retained therein.
The analysis module 738 is attached as an integral part of the sample tank in the AOA prior to going down hole. The analysis module is used to perform NIR/MIR and other analysis described herein downhole during a run or at the surface upon completion of a sampling run downhole. Some of the numerous advantages of the AOA of the present invention are shown by comparison to
Turning now to
Turning now to
As shown in
The tunable diode laser 1415 spectrometer enable the ultra high resolution spectroscopy downhole or at the surface. Sorption cooling unit 1416 cools the tunable diode laser as necessary to obviate the adverse affects of downhole temperatures.
Turning now the
In another embodiment, the method and apparatus of the present invention is implemented as a set computer executable of instructions on a computer readable medium, comprising ROM, RAM, CD-ROM, Flash RAM or any other computer readable medium, now known or unknown that when executed cause a computer to implement the functions of the present invention.
While the foregoing disclosure is directed to the preferred embodiments of the invention various modifications will be apparent to those skilled in the art. It is intended that all variations within the scope of the appended claims be embraced by the foregoing disclosure. Examples of the more important features of the invention have been summarized rather broadly in order that the detailed description thereof that follows may be better understood, and in order that the contributions to the art may be appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject of the claims appended hereto.
This patent application claims priority from U.S. Provisional Patent Application Ser. No. 60/467,668 entitled “A Method and Apparatus for an Advanced Optical Cylinder” by M. Shammai et al. filed on May 2, 2003.
Number | Name | Date | Kind |
---|---|---|---|
3448611 | Lebourg | Jun 1969 | A |
3608715 | Snyder et al. | Sep 1971 | A |
3780575 | Urbanosky, Harold J. | Dec 1973 | A |
3859851 | Urbanosky, Harold J. | Jan 1975 | A |
4994671 | Safinya et al. | Feb 1991 | A |
5166747 | Schroeder et al. | Nov 1992 | A |
5329811 | Schultz et al. | Jul 1994 | A |
5337822 | Massie et al. | Aug 1994 | A |
5734098 | Kraus et al. | Mar 1998 | A |
5741962 | Birchak et al. | Apr 1998 | A |
5859430 | Mullins et al. | Jan 1999 | A |
5939717 | Mullins | Aug 1999 | A |
6092416 | Halford et al. | Jul 2000 | A |
6178815 | Felling et al. | Jan 2001 | B1 |
6218662 | Tchakarov et al. | Apr 2001 | B1 |
6350986 | Mullins et al. | Feb 2002 | B1 |
6378364 | Pelletier et al. | Apr 2002 | B1 |
6437326 | Yamate et al. | Aug 2002 | B1 |
6683681 | DiFoggio et al. | Jan 2004 | B2 |
20020129936 | Cernosek | Sep 2002 | A1 |
20030033866 | Diakonov et al. | Feb 2003 | A1 |
20030066646 | Shammai et al. | Apr 2003 | A1 |
20040089448 | DiFoggio | May 2004 | A1 |
Number | Date | Country |
---|---|---|
0295923 | Jun 1988 | EP |
1205630 | May 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20040218176 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
60467668 | May 2003 | US |