Objects, features, and advantages of the present device will become apparent upon reading the following description in conjunction with the drawing figures, in which:
While the method and device described herein are susceptible to various modifications and alternative constructions, certain illustrative embodiments thereof have been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the invention to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the disclosure.
Referring now to the drawings and with specific reference to
A variety of suppliers make thermal imagers that might be suitable for this application. One common type of infrared camera is based on microbolometer technology and has a typical spectral response range of 7 to 14 microns. Most of the packaging materials use thin plastics that have varying degrees of transmission in this region. The greater the transmission the more of the background the camera sees rather than the packaging material. Plastic has various regions which are substantially more opaque than others. There are many plastic formulations that will shift where the most opaque region is. To maximize the camera's sensitivity to the defects in the seals 28, the camera's spectral response should be tailored to the target material. There is a tradeoff in camera performance when the spectral range is reduced so it is best to make the spectral range as wide as possible. A good compromise for the microbolometer camera is a region of 7.5 to 8.2 microns. However, with other types of cameras a region centered near 3.4 microns may work as well.
As illustrated in
In one exemplary embodiment, the detector output is digitized with the results filling a block of memory in the controller 24 through the digital frame grabber 26. The frame grabber 26 may be used to digitize and/or store video information into a bitmap image, for example. Frame grabbers can be stand-alone units or may be a function built into video graphics boards in the camera 22.
The application software that is pre-programmed and stored in the controller 24 may have one or more components. One component of the application software is the part detection routine. An external signal could be used to signal each piece as it comes into view, but the software's auto detection logic may simplify the customer interface requirements. For example, as the part or target containing the seal 28 is moving in the field of view of the camera 22 there will be some pixels showing an increase in signal, due to the thermal activity on the target. In contrast, it is also true that some pixels will show a decrease in signal, due to the natural thermal decay that is occurring on the target. Such thermal decay is also present when the target is stationary. Therefore, sensing a decrease in signal may be an unreliable way of detecting motion.
Three variables, among others, may affect the reliability of this technique. One variable is inherent noise in the thermal imaging camera 22 which may be accounted for or covered by a temperature threshold delta adjustment. Another variable is slow moving targets which might not show enough signal change between frames. This variable may be accounted for by a setting that requires a minimum number of frames before the signal changes above the noise threshold. Finally, a false start or false trigger may be prevented or accounted for by an absolute minimum threshold temperature adjustment.
Another component of the application software is an image filtering routine. The image noise filtering relies on the concept that a hot object will cool at an exponential decay rate until it reaches thermal equilibrium with its surroundings. The routine collects data on every pixel, typically 76800 points, from every frame while the target is stationary. A best fit curve is computed for each individual pixel position using standard curve fitting techniques such as Gaussian reduction. Using such equations a clean thermal image is created along with a rate of change. It is even possible to extrapolate an image pattern for any point in time using the equations. The rate of change is important for detecting certain types of sealing faults. It is important to note that while an exponential equation is best for extrapolating images beyond the observation period a simple linear equation is usually sufficient for the fault detection logic.
Another component of the application software is commonly referred to in the vision industry as blob analysis. The blob result comes from a common function in vision systems that convert the image so that it contains only black pixels and white pixels, and thereby removes any shades of gray from the image. This is accomplished by comparing each raw pixel value against some threshold. If the value is greater than the threshold then the corresponding blob pixel is made white, otherwise it is set to black. The resulting blob pattern is sometimes easier to work with in locating parts and in doing dimensional analysis on the part.
In other words, a binary pattern is generated from the thermal image obtained from the thermal imager 22. If a pixel is above some threshold it is set to 1 otherwise it is set to 0. The blob pattern is defined by the pixels which the seal defect analysis operates on. In a number of situations it is possible to generate a complete thermal outline of the seal area, including the defective areas, because all these areas are heated. Accordingly, no reference image or data is required because the seal analysis can be completed by comparing or analyzing various portions of the seal area and the seal 28 relative to each other.
In other situations it will be necessary to rely on the blob data from a known, good reference image. In a real process the image location will shift somewhat from one part to the next. The benefit of not using a reference is that there is no need for software realignment of the test image against the reference image. The drawback to not using a reference image is that there are less failure detection criteria to choose from. Of course the user may choose to use both reference and non-reference based schemes together to either reduce false defect signals or missed faults.
Another component of the application software provides refinement of the blob pattern to make the blob pattern useful in thermal fault detection schemes. In particular, data near edges of the seal 28 may indicate temperatures substantially lower than they should. This is mainly due to the actual seal boundary not aligning with the camera's pixel boundary, but may also be due to thermal leakage into adjacent cooler areas and other factors. Accordingly, the software may use a blob thinning or blob fattening routine to affect boundaries of the seal 28.
One thinning scheme is based on looking at eight surrounding pixels of any particular pixel. If the surrounding pixels are all ones then a one is written a 1 to the new blob, otherwise is written a 0. Other trimming or thinning schemes may prove useful under certain circumstances. For example, if the seal 28 is just a horizontal bar you may only want to look at the pixels above and below the seal 28.
One fattening scheme, for aligning the blob pattern with a reference blob, for example, includes looking at the eight surrounding pixels of a pixel and writing a one if any of the surrounding pixels is a one, or writing a 0 if they all are zero. The image is then incrementally shifted up, down, left, and right a reasonable number of pixels and correlated against the reference image. The adjusted alignment is then assumed to be the position that yields the highest correlation.
Another blob refinement scheme is to allow the user to manually edit the reference blob adding or subtracting to the image, but many other blobbing schemes, additional to the ones disclosed herein, may be used.
Another component of the application software provides the detection of faults or failures in the seal 28. The faults may be detected by using a reference or a non-reference detection scheme.
There are two schemes for detecting faults without comparing to a reference. The two schemes each look at the value of the thermal data only at the locations where the blob pattern has a 1. The first scheme looks at the absolute temperature and if any pixel is below some adjustable threshold a fault is indicated. The second scheme looks at the rate of change of the pixels and, again, if any pixel is below some adjustable threshold a fault is indicated. The rate of change scheme best detects faults originating from extra material occurring in the seal area. The extra material may be from a fold in the plastic or other contaminants. The material still reaches the same absolute temperature in the press but the larger mass slows the cooling rate and, hence, is detected.
More specifically, as the seal 28 comes to a rest, at least a first thermal image and a second thermal image will be obtained. More likely, however, a plurality of thermal images will be obtained including the first thermal image and a last thermal image. Accordingly, by subtracting the intensity of the last thermal image from the first thermal image, a difference in intensity is obtained. The elapsed time between the first and last thermal image is also known. Thus, by dividing the elapsed time between the taking of the first and last thermal image into the difference in intensity of the first and last thermal image, a thermal rate of change or a rate of change of intensity is obtained. As briefly described above, this a rate of change may be utilized to obtain a blob image, but may also be utilized in fault detection schemes, or any other scheme that may benefit from comparing rates of change.
There are several fault detection schemes that may be implemented when comparing against a reference. One technique is calculating the correlation between the test image and the reference image. The sensitivity of this technique is improved by using only thermal data corresponding to the fat blob results. Other techniques may include the standard deviation or the maximum deviation between the images, but many other fault detection schemes, additional to the ones disclosed herein, may be used.
In one exemplary fault detection scheme, as is shown in
Specifically, as mentioned above, many vision pattern matching routines rely on comparison of the test image against an idealized reference image. One way of obtaining an idealized reference image is to average the data from several good parts. However, the reference image may be obtained in any manner know to those of ordinary skill in the art. In addition, while the typical thermal image is composed of a two dimensional array of intensity values, for clarity just a subset of data from a single column will be used to illustrate the concept. Of course, the method applies equally well to rows of data. For a complete implementation, the method would be applied across all rows in one inspection and across every column in a second inspection.
Referring now to
One typical pattern matching scheme is to subtract the intensity values from the two images and look at the resultant absolute deviation, as sown in
To provide a numerical value in evaluating the sensitivity of the comparison methods, a sensitivity value can be defined where the larger the value the better the reliability for fault detection.
In particular, sensitivity value=PeakBadValue/PeakGoodValue
For the resultant data as shown in
Using the following disclosed technique a sensitivity value greater than 3 is achieved from the data.
In brief the junction where a good seal section meets a bad seal section is detected by a differential change in intensity level surrounding the boundary point.
Assume:
i represents a column position
n represents the last position in the column
R[i] represents a value in the Reference column
S[i] represents a value in the Sample column
DV[i] represents a value in the Differential Value column
Abs( ) is the absolute value function
A differential value is computed for each intensity value using the formula:
DV[i]=Abs((S[i−1]−S[i+1])−(R[i−1]−R[i+1]))
When applied to the test data of
A simple implementation has been described which can be expanded upon. Measurement noise can be reduced for example by averaging two or more previous values and then subtracting the average of two or more following samples to get a filtered differential value.
The results of each of the detection schemes may be combined logically in various ways to produce a single pass fail indication. The system may provide one or more methods of notifying the user of the pass/fail result. Two common outputs may be a relay contact and TCP/IP based communications. The results of the detection schemes may also be utilized in many other ways, with various types of output devices. For example, an output of the controller 24 may be communicably coupled to a monitor or display for viewing the seal 28.
In an exemplary operation, as is shown in
The two layers of plastic, one disposed on top of the other, may be disposed on a conveyer system 31 (
For example, as illustrated in
Although certain embodiments of an imaging system 20 have been described herein in accordance with the teachings of the present disclosure, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all embodiments of the teachings of the disclosure that fairly fall within the scope of permissible equivalents.
This application claims benefit of the following United States Provisional Applications: Ser. No. 60/789,974, entitled “An Improved Method and Apparatus for Analyzing Thermographic Images to Detect Defects in Thermally Sealed Packaging” filed Apr. 6, 2006 (attorney docket no. 29123/40154B), the disclosure of which is hereby expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60789974 | Apr 2006 | US |