This invention relates to a method and apparatus for welding a resonance chamber to an air induction system component without adversely affecting tuning tube length.
Typically in an air induction system, tuning tubes are used to reduce undesirable noise and are positioned for communication between an air duct and a resonance chamber. Tuning tubes are designed to a specified length and diameter to achieve a desired tuning frequency. Traditionally, the air duct includes a first tuning tube half and the resonance chamber includes a second tuning tube half. The first and second tuning tube halves are abutted against each other and a weld is formed about the diameter of the tuning tube.
This traditional attachment method has several disadvantages. For example, improper welding can affect the frequency of the tuning tube. If too much pressure is exerted on the tube during the welding process, the overall length of the tube can change, which in turn changes the frequency. Improper welding can also result in leaking at the mid-section of the tuning tube, which can also adversely affect the frequency.
Thus, it is desirable to have a method and system for attaching a resonance chamber to an air duct component that does not vary the desired frequency of the associated tuning tube, as well as overcoming the other above mentioned deficiencies with the prior art.
An air induction system includes an air duct, a tuning tube supported by the air duct, and a resonance chamber that engages the air duct at an attachment interface. During assembly, the tuning tube is inserted through an opening in the resonance chamber such that a distal end of the tuning tube is positioned inside the resonance chamber. A weld area formed at the attachment interface to securely attach the air duct to the resonance chamber.
Preferably, the tuning tube is integrally formed with the air duct as one piece. A shoulder portion transitions from the air duct to a base end of the tuning tube. The shoulder has a greater diameter than the tuning tube and defines a first attachment surface. A flange is formed about the opening of the resonance chamber and is positioned adjacent to the base end of the tuning tube. The flange defines a second attachment surface with the first and second attachment surfaces being generally parallel to each other. The first attachment surface abuts the second attachment surface to define the attachment interface.
The subject system and method provides a more robust attachment between a resonance chamber and an air duct, and further provides an additional benefit of not compromising the tuning tube frequency during the assembly process. These and other features of the present invention can be best understood from the following specifications and drawings, the following of which is a brief description.
A traditional induction system is shown generally at 10 in FIG. 1. The induction system 10 includes an air duct 12 that includes a first tuning tube half 14. A resonance chamber includes a chamber portion 16 and a second tuning tube half 18. In order to attach the resonance chamber to the air duct 12, the first 14 and second 18 tuning tube halves are welded together at 20. The tuning tube 14, 18 is tuned to a desired frequency to reduce noise. The desired frequency is determined by the length and diameter of the tuning tube.
Improper welding can affect the frequency of the tuning tube. For example, if too much pressure is exerted on the tube 14, 18 during the welding process, the overall length of the tube can change, which in turn changes the frequency.
An improved air induction system is shown generally at 30 in FIG. 2. The induction system 30 includes an air duct 32 and a resonance chamber 34. As shown in the cross-sectional view of
Preferably, the air duct 12 and the entire tuning tube 36 are integrally formed together as one piece. In other words, there is a contiguous, unbroken surface extending from the air duct 32 to the shoulder portion 38 to the distal end 42 of the tuning tube 36.
The resonance chamber 34 includes an opening 44 that is surrounded by a flange portion 46. The opening 44 has a diameter that is less than the diameter of the shoulder portion 38, and which is greater than the diameter of the tuning tube 36 such that the distal end 42 of the tuning tube 36 can be inserted through the opening 44 without interference during assembly.
The flange portion 46 includes an external surface 48 and an internal surface 50. The external surface 48 abuts against an external surface 52 of the shoulder portion 38 to define an attachment interface. The external surfaces 48, 52 are generally flat and parallel to each other.
A weld 54 is formed at the attachment interface to securely attach the resonance chamber 34 to the air duct 32. Preferably a hot-plate welding process is used, however, any type of welding process known in the art could also be used to attach the resonance chamber 34 to the air duct 32. Once the air duct 32 and resonance chamber 34 have been welded together, the opening 44 generally surrounds the base end 40 of the tuning tube 36.
As the attachment interface is separate from the tuning tube 36, the length of the tuning tube 36 is unaffected by the welding process. Thus, the frequency of the tube remains at a desired level after the welding operation has been completed. Also, because the attachment interface includes a shoulder portion 38 that transitions into the tuning tube 36, the weld itself is stronger, more rigid, and more robust than traditional air duct/tuning tube welds.
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
The application claims priority to U.S. Provisional Application No. 60/336,769, which was filed on Dec. 3, 2001.
Number | Name | Date | Kind |
---|---|---|---|
3998614 | Schonberger et al. | Dec 1976 | A |
4281741 | Blaser et al. | Aug 1981 | A |
4342373 | Erickson et al. | Aug 1982 | A |
4779415 | Richardson et al. | Oct 1988 | A |
4782912 | Wandless | Nov 1988 | A |
5163387 | Lee | Nov 1992 | A |
5333576 | Verkleeren | Aug 1994 | A |
5349141 | Horibe et al. | Sep 1994 | A |
5424494 | Houle et al. | Jun 1995 | A |
5477819 | Kopec | Dec 1995 | A |
5559308 | Hayashi | Sep 1996 | A |
5572966 | Doddy et al. | Nov 1996 | A |
5628287 | Brackett et al. | May 1997 | A |
6024188 | Yamaguchi et al. | Feb 2000 | A |
6192849 | Powell | Feb 2001 | B1 |
6213077 | Horii | Apr 2001 | B1 |
6213827 | Hattori et al. | Apr 2001 | B1 |
6508331 | Stuart | Jan 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20030102183 A1 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
60336769 | Dec 2001 | US |