The invention relates to blow molding processes and to apparatus for making blow-molded articles.
Conventional blow-molded containers generally have small-diameter top ends that are threaded to accept screw-on caps. In some applications, such top ends are undesirable because of the nature of the contents of the container, which in some cases may require wide-mouth openings to facilitate getting the contents into and out of the container. Thus, alternative closures such as seal-on membranes or seamed-on metal closures would be desirable in many cases.
However, it has not been practical or cost-effective to employ seal-on membranes or seamed-on metal end closures for such containers because the blow-molding process has not allowed for easily making the type of flat, outwardly extending flanges required for such closures. To provide such a flange in a blow-molded container, it has been necessary to form an intermediate blow-molded article in a particular manner and then perform finishing operations on the intermediate article. More specifically, the tubular side wall of the intermediate article is molded to include a hollow generally U-shaped section that extends radially outwardly from the side wall. A lower leg of the U-shaped section extends generally radially and will form the flange on a finished container. The lower leg is joined at its outer end to the rest of the generally U-shaped section. After removing the intermediate article from the mold, the article is subjected to two separate cutting operations. In a first cutting operation, a cut is made near the outer edge of the lower leg of the U-shaped section to sever the leg from the rest of the section. A second trimming operation is then performed by cutting through the lower leg in the axial direction to remove a radially outer end portion of the leg. The remaining portion of the leg thus forms a flange on the container. This post-mold finishing process is relatively complicated and costly. It would be desirable to provide a flanged container in a simpler and less costly manner.
It has also been suggested, for instance in U.S. Pat. No. 4,496,064, that a high degree of biaxial orientation in the flange of a plastic container is needed to tolerate high bending stresses placed on the flange when a metal closure is double-seamed onto the container. The '064 patent teaches a stretch blow molding and finishing process to achieve such high degree of biaxial orientation. In particular, an intermediate article is stretch blow molded and post-mold finishing operations are performed as previously described to produce the finished container, such that the flange is formed from a portion of the intermediate article subjected to biaxial stretching. As noted, the post-mold finishing operations are relatively costly. Furthermore, with the conventional stretch blow-molding process, the flange thickness is constrained to be uniform in the radial direction and essentially equal to the thickness of the side wall of the container. It would be desirable to be able to vary the flange thickness and/or profile as required in each instance.
In co-pending application Ser. No. 10/224,101, an improved process is disclosed for forming a blow-molded container, in which a solid radially outwardly extending flange is blown into the tubular side wall of the article. A circumferentially extending recess or groove is formed in the inner surface of the mold that molds the tubular side wall of the article. A parison of thermoplastic material is extruded from an annular throat of a die, and the parison is enclosed in the mold. While the thermoplastic material is still flowable, the parison is inflated by blowing to blow the thermoplastic material against the walls of the mold. During the inflation, the groove is filled by the flowable thermoplastic material. The material cools and solidifies and the resulting article is removed from the mold. The material that filled the groove forms a solid radially outwardly extending flange molded to the tubular side wall of the article.
This process is an improvement over prior processes as noted above, in that the complexity of post-mold finishing operations is reduced and the flange thickness can be controlled independently of the container wall thickness by suitably configuring the groove in the mold wall. It has been found, however, that it can be difficult to completely fill the groove when the radial length of the groove is relatively large in comparison with the axial width of the groove (i.e., when the flange is long and thin).
The invention addresses the above needs and achieves other advantages, by providing an apparatus and process for making a blow-molded container having a solid flange projecting radially outward from the container, wherein the mold includes a circumferential groove that is filled with flowable thermoplastic material when the material is inflated in the mold, and wherein a localized region of the mold adjacent the groove is heated by a heating system to a higher temperature than other portions of the mold to render the thermoplastic less viscous so that the groove is completely filled. The heating system can be of various types, including electrical heaters, circulated hot fluid heaters, etc., and is locally disposed in the vicinity of the groove in the mold for heating the mold surfaces in the groove.
In another embodiment, the mold also includes a cooling system locally disposed in the vicinity of the groove for cooling the flange of the blow-molded article just prior to opening the mold and removing the article. The cooling system can comprise, for example, a circulated coolant system or the like.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present inventions now will be described more fully hereinafter with reference to the accompanying drawings, in which some but not all embodiments of the invention are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
The container 20 also includes a solid radially outwardly extending flange 26, shown in greater detail in
The flange 26 also includes a radially outermost edge 32. In accordance with the invention, the upper surface 28, lower surface 30, and edge 32 of the flange are molded by mold surfaces during the blow molding of the container, as further explained below. Accordingly, the contour and dimensions of the flange 26 can be precisely controlled and no trimming of the flange is needed after molding to achieve a desired diameter of the flange.
The flange 26 is formed by blowing flowable thermoplastic material into a groove formed in the surface of the blow mold.
Molten thermoplastic material is fed into the die 40 through an infeed port 54 that leads into the passage 44. The die throat plug 46 includes an annular recess 56 to facilitate distributing the incoming molten material about the circumference of the plug. The molten material then flows down through the annular space 48 of the die and is discharged from the die throat 50 to form a parison 58 of molten material.
The mold 60 is provided in two complementary halves that are movable toward and away from each other. Once the parison 58 has been extruded to the desired length based on the length of the article to be produced, the mold halves are brought together to enclose the parison in the mold. In the process of closing the mold, one end of the parison, in this case the leading end, is pinched off and closed by the mold, and the opposite end, in this case the trailing end, is severed from the extrudate that continues to be extruded from the die; as known in the art, it is possible to reverse the mold orientation so that the trailing end of the parison is pinched and closed. The opposite end of the parison from the closed end remains open and extends into an opening 62 in the closed mold 60.
Next, a blow pin 65 is inserted into the opening 62 of the mold and sealingly engages the open end of the parison, and air is blown through the blow pin into the interior of the parison to inflate the parison so that the still-flowable material expands against the inner surfaces of the mold as shown in
In accordance with the invention, the mold side wall inner surface 66 includes a circumferential groove 68 for forming the flange on the top end of the side wall of the container 20. The groove 68 is located at the juncture between the portion of the mold surface that shapes the side wall 24 of the finished article 20 and the portion of the mold surface that shapes an accommodation portion 70 (
The groove 68 in the mold surface is configured as a negative image of the desired flange profile. During the inflation of the parison, flowable thermoplastic material is blown into the groove 68 to substantially fill the groove. The resulting article as shown in
To make the finished container 20, the accommodation portion 70 must be severed from the top end of the side wall 24 and the flange 26. Advantageously, only a single cut need be made to accomplish this. As shown in
Solid flanges of considerable radial extent (e.g., equal to or greater than the side wall thickness) are desired in some cases. To achieve this object, sufficient thermoplastic material must be provided in a localized region of the parison corresponding to the location of the groove 68 in the mold wall so that the groove will be substantially filled with material. To this end, the extrusion die 40 preferably includes a servo 52 or other suitable rapidly responsive actuator for moving the die throat plug 46 to control parison thickness. As the parison is being extruded, the die throat size is set at a relatively small width for extruding the portions of the parison that will form the base wall 22 and side wall 24 of the container. At a location of the parison corresponding to the location of the groove 68 in the mold, however, the die throat plug 46 is very rapidly moved to substantially enlarge the width of the die throat (e.g., to at least about 5 times the width before the enlargement, or to at least about 10 times the prior width in some cases), and then after a very short period of time the plug 46 is rapidly moved back to constrict the die throat again to extrude the part of the parison corresponding to the accommodation portion 70 of the molded article. Thus, the die throat size is “spiked” upwardly in the region of the groove 68.
Even when there is sufficient thermoplastic material in the part of the parison adjacent the groove 68 to completely fill the groove, it can be difficult in some cases to cause the thermoplastic to flow into and completely fill the groove. This is particularly true when the groove is relatively long in the radial direction and narrow in the axial direction. In accordance with the invention, a region of the mold adjacent the groove is heated to a higher temperature than other portions of the mold outside such region so that the thermoplastic in the localized region of the groove is raised in temperature. The viscosity of the thermoplastic goes down with increased temperature and thus the thermoplastic is rendered more-flowable so that it can more-readily fill the entire groove.
The mold can also include a cooling system 90 locally disposed in the vicinity of the groove 68 for cooling the flange of the blow-molded article at the completion of the blow cycle and prior to the opening of the mold and ejection of the article. After ejection of the article, the cooling system is deactivated and the heating system is activated to heat the flange area in preparation for blow-molding the next article. Thus, the heating and cooling systems advantageously are alternately activated such that during part of the blow-molding process the heating system is activated while the cooling system is deactivated, and during another part of the process the cooling system is activated while the heating system is deactivated.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application is a continuation-in-part of application Ser. No. 10/224,101, filed Aug. 20, 2002, now abandoned, which is currently pending and is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2069213 | Carew | Feb 1937 | A |
2984381 | Bennett | May 1961 | A |
3516572 | Davis | Jun 1970 | A |
3784038 | Uhlig | Jan 1974 | A |
3868202 | Valyi | Feb 1975 | A |
3880973 | Yoshikawa et al. | Apr 1975 | A |
4233022 | Brady et al. | Nov 1980 | A |
4496064 | Beck et al. | Jan 1985 | A |
4576843 | Beck et al. | Mar 1986 | A |
4665682 | Kerins et al. | May 1987 | A |
4822543 | Iizuka et al. | Apr 1989 | A |
H671 | Cho et al. | Sep 1989 | H |
4865533 | Hart et al. | Sep 1989 | A |
4871507 | Ajmera | Oct 1989 | A |
4894268 | Greenwood et al. | Jan 1990 | A |
5100607 | Robbins, III | Mar 1992 | A |
5190715 | Yamada et al. | Mar 1993 | A |
5253996 | Moore | Oct 1993 | A |
5342663 | Yokobayashi | Aug 1994 | A |
5505612 | Mero et al. | Apr 1996 | A |
5507998 | Yokobayashi | Apr 1996 | A |
5599567 | Gellert | Feb 1997 | A |
6062408 | Beck et al. | May 2000 | A |
6126886 | Beck et al. | Oct 2000 | A |
6228317 | Smith et al. | May 2001 | B1 |
6237791 | Beck et al. | May 2001 | B1 |
6264050 | Darr et al. | Jul 2001 | B1 |
6413075 | Koch et al. | Jul 2002 | B1 |
6444159 | Petre | Sep 2002 | B1 |
6497569 | Koch et al. | Dec 2002 | B1 |
20010000373 | Beck | Apr 2001 | A1 |
20020017501 | Clements et al. | Feb 2002 | A1 |
20030077351 | Ryan et al. | Apr 2003 | A1 |
Number | Date | Country |
---|---|---|
519 377 | Dec 1981 | AU |
468 286 | Feb 1969 | CH |
12 98 926 | Jul 1969 | DE |
198 51 076 | May 2000 | DE |
0 137 235 | Apr 1985 | EP |
0 140 719 | May 1985 | EP |
1 216 812 | Jun 2002 | EP |
1 344 618 | Sep 2003 | EP |
48 9580 | Jul 1969 | JP |
03278935 | Dec 1991 | JP |
Number | Date | Country | |
---|---|---|---|
20040159983 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10224101 | Aug 2002 | US |
Child | 10780402 | US |