This document claims priority to Japanese Application Number 2011-128330, filed Jun. 8, 2011, the entire contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a conditioning method and apparatus of a polishing pad, and more particularly to a method and apparatus for conditioning a surface of a polishing pad used for polishing a substrate such as a semiconductor wafer.
2. Description of the Related Art
In recent years, high integration and high density in semiconductor device demands smaller and smaller wiring patterns or interconnections and also more and more interconnection layers. Multilayer interconnections in smaller circuits result in greater steps which reflect surface irregularities on lower interconnection layers. An increase in the number of interconnection layers makes film coating performance (step coverage) poor over stepped configurations of thin films. Therefore, better multilayer interconnections need to have the improved step coverage and proper surface planarization. Further, since the depth of focus of a photolithographic optical system is smaller with miniaturization of a photolithographic process, a surface of the semiconductor device needs to be planarized such that irregular steps on the surface of the semiconductor device will fall within the depth of focus.
Thus, in a manufacturing process of a semiconductor device, it increasingly becomes important to planarize a surface of the semiconductor device. One of the most important planarizing technologies is chemical mechanical polishing (CMP). Thus, there has been employed a chemical mechanical polishing apparatus for planarizing a surface of a semiconductor wafer. In the chemical mechanical polishing apparatus, while a polishing liquid containing abrasive particles such as ceria (CeO2) therein is supplied onto a polishing pad, a substrate such as a semiconductor wafer is brought into sliding contact with the polishing pad, so that the substrate is polished.
A polishing apparatus for performing the above CMP process includes a polishing table having a polishing pad, and a substrate holding device, which is referred to as a top ring or a polishing head, for holding a substrate such as a semiconductor wafer. By using such a polishing apparatus, the substrate is held and pressed against the polishing pad under a predetermined pressure by the substrate holding device, thereby polishing an insulating film or a metal film on the substrate.
After one or more substrates have been polished, abrasive particles in a polishing liquid or ground-off particles of the substrate are attached to the surface of the polishing pad, resulting in a change in properties of the polishing pad and deterioration in polishing performance. Therefore, as the substrates are repeatedly polished by the same polishing pad, a polishing rate is lowered and nonuniform polishing action is caused. Thus, conditioning (also referred to as dressing) of the polishing pad is performed to regenerate the surface of the polishing pad which has deteriorated.
A conditioning apparatus (dressing apparatus) for performing conditioning (dressing) of the polishing pad generally has a swingable arm and a dresser fixed to a forward end of the arm as disclosed in Japanese laid-open patent publication No. 2002-200552. In a conditioning process performed by the conditioning apparatus, while the dresser is oscillated radially of the polishing pad by the arm and is rotated about its axis, the dresser is pressed against the polishing pad on the rotating polishing table to remove the abrasive particles and the ground-off particles attached to the polishing pad and to flatten and dress the polishing pad. In general, the dresser having a surface (dressing surface), being brought into contact with the pad surface, on which diamond particles are electrodeposited is used.
In the conventional conditioning apparatus (dressing apparatus), in the case where the dresser is oscillated radially of the polishing pad, in order to maximize the life of the polishing pad, the oscillating speed of the dresser is adjusted so that the entire pad surface is uniformly dressed and the polishing pad is worn down flat.
The present inventors have repeatedly conducted experiments of polishing substrates by using the polishing pads which have been conditioned (dressed) by the dresser whose oscillating speed has been adjusted to enable each of the polishing pads to be worn down flat. As a result, the present inventors have learned that a supply amount of a polishing liquid (slurry) to a central part of the substrate becomes scarce due to the relationship between a polishing pressure, respective rotating speeds of the polishing table and the top ring, and the shape of grooves or holes in the surface of the polishing pad, and thus uniform polishing rate cannot be obtained over the entire surface of the substrate.
In particular, in the ceria CMP process in which the polishing pad, called a perforated pad, having a number of small holes in the surface of the polishing pad is used and the substrate is polished while a polishing liquid containing ceria (CeO2) as abrasive particles is supplied to the polishing pad, in the case of high-pressure polishing for polishing the substrate by pressing the substrate against the polishing pad at a high-pressure of 400 hPa or higher, it is difficult for the polishing liquid (slurry) to enter the central part of the surface, being polished, of the substrate. Therefore, an amount of the polishing liquid (slurry) becomes scarce to lower the polishing rate at the central part of the surface, being polished, of the substrate, resulting in nonuniform polishing rate in the entire substrate.
Further, as in the case where an insulating film or a metal film having a relatively large thickness on the substrate is removed, when prolonged polishing is required, the polishing performance of the ceria abrasive particles is lowered due to temperature rise of the surface of the polishing pad, and supply capacity of the polishing liquid (slurry) is lowered with time due to a change in surface state of the polishing pad.
The present invention has been made in view of the above circumstances. It is therefore an object of the present invention to provide a conditioning method and apparatus of a polishing pad which can prevent a polishing rate in a central part of a surface, being polished, of a substrate such as a semiconductor wafer from lowering, and can planarize the surface, being polished, of the substrate uniformly over the entire surface of the substrate.
In order to achieve the above object, according to a first aspect of the present invention, there is provided a method of conditioning a polishing pad on a polishing table for polishing a thin film formed on a surface of a substrate by being brought into contact with the thin film, comprising: bringing a dresser into contact with the polishing pad; and conditioning the polishing pad by moving the dresser between a central part of the polishing pad and an outer circumferential part of the polishing pad. A moving speed of the dresser at a predetermined area of the polishing pad is higher than a standard moving speed of the dresser at the predetermined area of the polishing.
In a preferred aspect of the present invention, the standard moving speed of the dresser is such a moving speed as to wear down an entire surface of the polishing pad uniformly.
According to the present invention, there is provided a method of conditioning a polishing pad on a polishing table for polishing a thin film formed on a surface of a substrate by being brought into contact with the thin film, comprising: bringing a dresser into contact with the polishing pad; and conditioning the polishing pad by moving the dresser between a central part of the polishing pad and an outer circumferential part of the polishing pad. A moving speed of the dresser at a predetermined area of the polishing pad is higher than a moving speed of the dresser at the predetermined area of the polishing pad in a standard moving recipe to increase a polishing rate of the thin film on the substrate which is polished by being brought into contact with the predetermined area of the polishing pad.
According to the present invention, by making a moving speed of the dresser for dressing a polishing pad at a predetermined area of the polishing pad higher than a moving speed of the dresser at the predetermined area of the polishing pad in a standard moving recipe to condition the polishing pad, the pad scratching distance by the dresser is small in the predetermined area where the moving speed of the dresser is high, and the pad scratching distance by the dresser is large in other areas where the moving speed of the dresser is low. Thus, the amount of slurry remaining in the predetermined area on the polishing pad becomes large, and the amount of slurry remaining in the other areas of the polishing pad becomes small. Therefore, the polishing rate of the thin film on the substrate which is brought into sliding contact with the predetermined area where the amount of residual slurry is large on the polishing pad and is polished can be enhanced. Conventionally, because the moving speed of the dresser has been a moving speed adjusted to wear down the entire surface of the polishing pad uniformly, a certain area on the substrate (e.g., the central area of the substrate) has been polished insufficiently. However, according to the present invention, the polishing rate is prevented from lowering in such an area on the substrate to improve in-plane uniformity of the polishing rate over the entire surface of the substrate. The pad scraping distance is defined as a travel distance in which abrasive particles on the surface of the dresser travel on the surface of the polishing pad within a predetermined time while the dresser is brought into contact with the surface of the polishing pad.
The standard moving recipe does not mean that the moving speed of the dresser is uniform over all of the areas on the polishing pad. Because the dresser has a limitation in operation range, the dresser needs turn-back operation, and the dresser body has a certain size, even if the dresser is moved at a uniform speed over all of the areas on the polishing pad, the polishing pad is not worn down uniformly. The standard moving recipe is experimentally produced by performing experiments on the basis of simulation which takes into account the above points and by repeating feedback of the experimental results. Here, making the moving speed of the dresser high or making the moving speed of the dresser low means that the moving speed of the dresser is made higher or lower than that in the identical area in the standard moving recipe.
According to a second aspect of the present invention, there is provided a method of conditioning a polishing pad on a polishing table for polishing a thin film formed on a surface of a substrate by being brought into contact with the thin film, comprising: bringing a dresser into contact with the polishing pad; and conditioning the polishing pad by moving the dresser between a central part of the polishing pad and an outer circumferential part of the polishing pad. A moving speed of the dresser at a predetermined area of the polishing pad is lower than a standard moving speed of the dresser at the predetermined area of the polishing pad.
In a preferred aspect of the present invention, the standard moving speed of the dresser is such a moving speed as to wear down an entire surface of the polishing pad uniformly.
According to the present invention, there is provided a method of conditioning a polishing pad on a polishing table for polishing a thin film formed on a surface of a substrate by being brought into contact with the thin film, comprising: bringing a dresser into contact with the polishing pad; and conditioning the polishing pad by moving the dresser between a central part of the polishing pad and an outer circumferential part of the polishing pad. A moving speed of the dresser at a predetermined area of the polishing pad is lower than a moving speed of the dresser at the predetermined area of the polishing pad in a standard moving recipe to decrease a polishing rate of the thin film on the substrate which is polished by being brought into contact with the predetermined area of the polishing pad.
According to the present invention, by making a moving speed of the dresser for dressing a polishing pad at a predetermined area of the polishing pad lower than a moving speed of the dresser at the predetermined area of the polishing pad in a standard moving recipe to condition the polishing pad, the pad scratching distance by the dresser is large in the predetermined area where the moving speed of the dresser is low, and the pad scratching distance by the dresser is small in other areas where the moving speed of the dresser is high. Thus, the amount of slurry remaining in the predetermined area on the polishing pad becomes small, and the amount of slurry remaining in the other areas of the polishing pad becomes large. Therefore, the polishing rate of the thin film on the substrate which is brought into sliding contact with the predetermined area where the amount of residual slurry is small on the polishing pad and is polished can be lowered. Conventionally, because the moving speed of the dresser has been a moving speed adjusted to wear down the entire surface of the polishing pad uniformly, a certain area on the substrate (e.g., the outer circumferential area of the substrate) has been excessively polished. However, according to the present invention, the polishing rate can be lowered in such an area on the substrate to improve in-plane uniformity of the polishing rate over the entire surface of the substrate.
In a preferred aspect of the present invention, the moving speed of the dresser is an oscillating speed of the dresser which is oscillated about a swing shaft located outside the polishing table. The moving speed of the dresser includes a moving speed of the dresser in the case where the dresser is moved linearly in a radial direction or a substantially radial direction of the polishing pad as well as the oscillating speed of the dresser where the dresser is oscillated (swung).
In a preferred aspect of the present invention, the polishing pad comprises a polishing pad having a number of holes in a surface thereof.
According to the present invention, in the case where the polishing pad comprises a perforated pad having a large number of fine holes formed in a surface thereof, the amount of residual slurry tends to be larger in the predetermined area where the oscillating speed of the dresser is high than the amount in the other areas where the oscillating speed of the dresser is low.
In a preferred aspect of the present invention, a polishing liquid containing ceria particles is used when the thin film on the substrate is polished. As a polishing liquid, other than a polishing liquid containing ceria abrasive particles, a polishing liquid containing silica particles (SiO2 particles) is effective depending on film quality of an object to be polished.
In a preferred aspect of the present invention, the polishing pad is cooled by blowing a cooling gas on the polishing pad when the thin film on the substrate is polished.
According to the present invention, by blowing a cooling gas toward the surface of the polishing pad, temperature of the polishing pad can be controlled. Therefore, as in the case where an insulating film or a metal film having a relatively large thickness on the substrate is removed, when prolonged polishing is required, the problem of the polishing performance of the ceria abrasive particles which is lowered due to temperature rise of the surface of the polishing pad and the problem of supply capacity of the polishing liquid (slurry) which is lowered with time due to a change in surface state of the polishing pad can be solved.
In a preferred aspect of the present invention, the predetermined area of the polishing pad is an area which is brought into contact with a central area of the substrate during polishing of the substrate.
According to a third aspect of the present invention, there is provided an apparatus for conditioning a polishing pad on a polishing table for polishing a thin film formed on a surface of a substrate by being brought into contact with the thin film, comprising: a dresser configured to be brought into contact with the polishing pad, the dresser being moved between a central part of the polishing pad and an outer circumferential part of the polishing pad for conditioning the polishing pad; and a controller configured to control the dresser such that a moving speed of the dresser at a predetermined area of the polishing pad is higher than a standard moving speed of the dresser at the predetermined area of the polishing pad.
In a preferred aspect of the present invention, the standard moving speed of the dresser is such a moving speed as to wear down an entire surface of the polishing pad uniformly.
According to the present invention, there is provided an apparatus for conditioning a polishing pad on a polishing table for polishing a thin film formed on a surface of a substrate by being brought into contact with the thin film, comprising: a dresser configured to be brought into contact with the polishing pad, the dresser being moved between a central part of the polishing pad and an outer circumferential part of the polishing pad for conditioning the polishing pad; and a controller configured to control the dresser such that a moving speed of the dresser at a predetermined area of the polishing pad is higher than a moving speed of the dresser at the predetermined area of the polishing pad in a standard moving recipe to increase a polishing rate of the thin film on the substrate which is polished by being brought into contact with the predetermined area of the polishing pad.
According to a fourth aspect of the present invention, there is provided an apparatus for conditioning a polishing pad on a polishing table for polishing a thin film formed on a surface of a substrate by being brought into contact with the thin film, comprising: a dresser configured to be brought into contact with the polishing pad, the dresser being moved between a central part of the polishing pad and an outer circumferential part of the polishing pad for conditioning the polishing pad; and a controller configured to control the dresser such that a moving speed of the dresser at a predetermined area of the polishing pad is lower than a standard moving speed of the dresser at the predetermined area of the polishing pad.
In a preferred aspect of the present invention, the standard moving speed of the dresser is such a moving speed as to wear down an entire surface of the polishing pad uniformly.
According to the present invention, there is provided an apparatus for conditioning a polishing pad on a polishing table for polishing a thin film formed on a surface of a substrate by being brought into contact with the thin film, comprising: a dresser configured to be brought into contact with the polishing pad, the dresser being moved between a central part of the polishing pad and an outer circumferential part of the polishing pad for conditioning the polishing pad; and a controller configured to control the dresser such that a moving speed of the dresser at a predetermined area of the polishing pad is lower than a moving speed of the dresser at the predetermined area of the polishing pad in a standard moving recipe to decrease a polishing rate of the thin film on the substrate which is polished by being brought into contact with the predetermined area of the polishing pad.
In a preferred aspect of the present invention, the moving speed of the dresser is an oscillating speed of the dresser which is oscillated about a swing shaft located outside the polishing table.
In a preferred aspect of the present invention, the polishing pad comprises a polishing pad having a number of holes in a surface thereof.
In a preferred aspect of the present invention, a polishing liquid containing ceria particles is used when the thin film on the substrate is polished.
In a preferred aspect of the present invention, the polishing pad is cooled by blowing a cooling gas on the polishing pad when the thin film on the substrate is polished.
In a preferred aspect of the present invention, the predetermined area of the polishing pad is an area which is brought into contact with a central area of the substrate during polishing of the substrate.
According to the present invention, there is provided a polishing method of polishing a thin film formed on a surface of a substrate, comprising: conditioning a polishing pad by the above conditioning method; and polishing a thin film formed on a surface of a substrate by bringing the substrate into contact with the polishing pad which has been conditioned.
According to the present invention, there is provided a polishing apparatus for polishing a thin film formed on a surface of a substrate, comprising: a polishing table having a polishing pad; a substrate holding device configured to hold a substrate and pressing the substrate against the polishing pad; and the above conditioning apparatus.
According to the present invention, a polishing rate in a central part of a surface, being polished, of a substrate such as a semiconductor wafer can be prevented from lowering, and thus the surface, being polished, of the substrate can be planarized uniformly over the entire surface of the substrate.
Further, according to the present invention, a moving speed of the dresser for dressing the polishing pad at a predetermined area of the polishing pad is made higher or conversely lower than a moving speed of the dresser at the predetermined area of the polishing pad in a standard moving recipe to increase or decrease a polishing rate of the thin film on the substrate which is polished by being brought into contact with the predetermined area of the polishing pad. Therefore, the present invention can meet the request to increase or decrease the stock removal in the predetermined area of the substrate intentionally.
A conditioning method and apparatus of a polishing pad according to embodiments of the present invention will be described below with reference to
The top ring 10 is connected to a top ring shaft 11, and the top ring shaft 11 is vertically movable with respect to a top ring head 12. When the top ring shaft 11 moves vertically, the top ring 10 is lifted and lowered as a whole for positioning with respect to the top ring head 12. The top ring shaft 11 is configured to be rotated by operating a top ring rotating motor (not shown). The top ring 10 is rotated about the top ring shaft 11 by rotation of the top ring shaft 11.
The top ring 10 is configured to hold the substrate W such as a semiconductor wafer on its lower surface. The top ring head 12 is configured to be pivotable about a top ring head shaft 13. Thus, the top ring 10, which holds the substrate W on its lower surface, is movable from a position at which the top ring 10 receives the substrate to a position above the polishing table 1 by pivotable movement of the top ring head 12. Then, the top ring 10 is lowered to press the substrate W against the surface (polishing surface) of the polishing pad 2. At this time, while the polishing table 1 and the top ring 10 are respectively rotated, a polishing liquid is supplied onto the polishing pad 2 from the polishing liquid supply nozzle 3 provided above the polishing table 1. The polishing liquid containing ceria (CeO2) as abrasive particles is used. In this manner, while the polishing liquid is supplied onto the polishing pad 2, the substrate W is pressed against the polishing pad 2 and is moved relative to the polishing pad 2 to polish an insulating film, a metal film or the like on the substrate. Examples of the insulating film include SiO2, and examples of the metal film include a Cu film, a W film, a Ta film and a Ti film.
As shown in
Further, as shown in
On the other hand, the dresser 22 is swung about the swing shaft 23 on the polishing pad 2, and thus the dresser 22 is radially reciprocated between the central part of the polishing pad 2 and the outer circumferential edge of the polishing pad 2. The outer diameter of the dresser 22 is set to be smaller than the diameter of the substrate W to be polished. Specifically, in the case where the diameter of the dresser 22 is d and the diameter of the substrate W to be polished is D, d is set in the range of ( 1/15) D to 1D, i.e., d=( 1/15) D to 1D. Then, the oscillating speed (swing speed) of the dresser 22 can be adjusted in each of the areas on the polishing pad 2 when the dresser 22 is oscillated between the outer circumferential edge of the polishing pad 2 and the central part of the polishing pad 2. Specifically, when the dresser 22 is swung from the center of the polishing pad 2 toward the outer circumferential edge of the polishing pad 2, the oscillating speed of the dresser 22 is set such that the oscillating speed is low at the area A1 from the concentric circle C1 to the concentric circle C2, high at the area A2 from the concentric circle C2 to the concentric circle C4, and low at the area A3 from the concentric circle C4 to the concentric circle C5. Conversely, when the dresser 22 is swung from the outer circumferential edge of the polishing pad 2 toward the center of the polishing pad 2, the oscillating speed of the dresser 22 is set such that the oscillating speed is low at the area A3 from the concentric circle C5 to the concentric circle C4, high at the area A2 from the concentric circle C4 to the concentric circle C2, and low at the area A1 from the concentric circle C2 to the concentric circle C1. In this manner, the oscillating speed of the dresser 22 is changed in each of the areas, and this change of the oscillating speed is performed by setting an oscillating recipe in the controller 40, and the conditioning apparatus 20 is controlled on the basis of the oscillating recipe by the controller 40. The controller 40 may be installed in the conditioning apparatus 20. In each of the cases where the dresser 22 is moved from the center of the polishing pad 2 toward the outer circumferential edge of the polishing pad 2 one time, the dresser 22 is moved from the outer circumferential edge of the polishing pad 2 toward the center of the polishing pad 2 one time, the dresser 22 is oscillated between the center of the polishing pad 2 and the circumferential edge of the polishing pad 2 one time, and the dresser 22 is oscillated between the center of the polishing pad 2 and the outer circumferential edge of the polishing pad 2 several times, the moving speed or the oscillating speed of the dresser 22 is controlled in each of the areas in the same manner as the above.
As shown in
Although the case where the polishing pad 2 is divided into three dressing areas and the oscillating speed of the dresser 22 is changed in each of the areas has been described, the polishing pad 2 may be divided further into six dressing areas, twelve dressing areas or the like, and the oscillating speed of the dresser 22 may be changed in each of the areas.
Next, experimental results obtained by conditioning the polishing pad in such a manner that the oscillating speed of the dresser 22 is changed in each of the areas and by polishing substrates using the polishing pad which has been conditioned with the changed oscillating speed will be described with reference to
In
Here, the standard oscillating speed in the radial position of about 80 mm is 11 mm/sec, the standard oscillating speed in the radial position of about 180 mm is 21 mm/sec, the standard oscillating speed in the radial position of about 220 mm is 21 mm/sec, and the standard oscillating speed in the radial position of about 350 mm is 13 mm/sec.
In
In
From the above experimental results, the following has been confirmed: In the case where the polishing pad conditioned by the recipe in which the oscillating speed of the dresser in the area A2 of the polishing pad is higher than that in the standard oscillating recipe is used, the amount of slurry remaining on the polishing pad 2 is large at the central area of the substrate and is small at the outer circumferential area of the substrate. Thus, when the substrate is polished by the polishing pad having different amounts of residual slurry in each of the areas, the polishing rate is prevented from lowering in the central area where the amount of residual slurry is large, thus improving in-plane uniformity of the polishing rate.
Although the case where the dresser 22 is swung has been described in the embodiments shown in
By using the above-described conditioning method and apparatus of the polishing pad, the polishing apparatus can planarize a surface, being polished, of a substrate such as a semiconductor wafer over the entire surface of the substrate.
Although the embodiments of the present invention have been described herein, the present invention is not intended to be limited to these embodiments. Therefore, it should be noted that the present invention may be applied to other various embodiments within a scope of the technical concept of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201 1-1 28330 | Jun 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5216843 | Breivogel et al. | Jun 1993 | A |
5547417 | Breivogel et al. | Aug 1996 | A |
5876271 | Oliver | Mar 1999 | A |
6896583 | Rodriquez et al. | May 2005 | B2 |
6905397 | Sharan | Jun 2005 | B2 |
7011566 | Chandrasekaran | Mar 2006 | B2 |
7837534 | Aiyoshizawa et al. | Nov 2010 | B2 |
20010006874 | Moore | Jul 2001 | A1 |
20020164932 | Kamimura et al. | Nov 2002 | A1 |
20020197745 | Shanmugasundram et al. | Dec 2002 | A1 |
20040192168 | Faustmann et al. | Sep 2004 | A1 |
20060003670 | Golzarian | Jan 2006 | A1 |
20070049168 | Fujita | Mar 2007 | A1 |
20090137190 | Togawa et al. | May 2009 | A1 |
20100035525 | Deshpande et al. | Feb 2010 | A1 |
20100081361 | Fukuda et al. | Apr 2010 | A1 |
20100227435 | Park et al. | Sep 2010 | A1 |
20110070745 | Matsui et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
2000-761 | Jan 2000 | JP |
2002-200552 | Jul 2002 | JP |
2005-125444 | May 2005 | JP |
2008-284645 | Nov 2008 | JP |
2009-291942 | Dec 2009 | JP |
2010-76049 | Apr 2010 | JP |
200613092 | May 2006 | TW |
200800491 | Jan 2008 | TW |
2006022452 | Mar 2006 | WO |
Entry |
---|
Extended European Search Report issued Jul. 17, 2014 in corresponding European Patent Application No. 12004310.4. |
Number | Date | Country | |
---|---|---|---|
20120315829 A1 | Dec 2012 | US |