This patent application is related to commonly owned co-pending U.S. patent application Ser. No. 10/718,964, filed Nov. 21, 2003, entitled “PUMP DESIGN FOR CIRCULATING SUPERCRITICAL CARBON DIOXIDE” which is hereby incorporated by reference in its entirety.
This invention relates to an improved pump assembly design for circulating supercritical fluids. More particularly, the invention relates to a system and method for cooling and/or lubricating the bearings of a supercritical fluid pump.
Traditional brushless canned motor pumps have a pump section and a motor section. The motor section drives the pump section. The pump section includes an impeller having blades that rotate inside a casing. The impeller pumps fluid from a pump inlet to a pump outlet. The impeller is normally of the closed type and is coupled to one end of a motor shaft that extends from the motor section into the pump section where it affixes to an end of the impeller.
The motor section includes an electric motor having a stator and a rotor. The rotor is unitarily formed with the motor shaft inside the stator. With brushless DC motors, the rotor is actuated by electromagnetic fields that are generated by current flowing through windings of the stator. A plurality of magnets is coupled to the rotor. During pump operation, the rotor shaft transmits torque, which is created by the generation of the electromagnetic fields with regard to the rotor's magnets, from the motor section to the pump section where the fluid is pumped.
Because the rotor and stator are immersed, they must be isolated to prevent corrosive attack and electrical failure. The rotor is submerged in the fluid being pumped and is therefore “canned” or sealed to isolate the motor parts from contact with the fluid. The stator is also “canned” or sealed to isolate it from the fluid being pumped. Mechanical contact bearings may be submerged in system fluid and are, therefore, continually lubricated. The bearings support the impeller and/or the motor shaft. A portion of the pumped fluid can be allowed to recirculate through the motor section to cool the motor parts and lubricate the bearings.
Seals and bearings are prone to failure due to continuous mechanical wear during operation of the pump. Mechanical rub between the stator and the rotor can generate particles. Interacting forces between the rotor and the stator in fluid seals and hydrodynamic behavior of journal bearings can lead to self-excited vibrations that may ultimately damage or even destroy rotating machinery. The bearings are also prone to failure. Lubricants can be rendered ineffective due to particulate contamination of the lubricant, which could adversely affect pump operation. Lubricants can also dissolve in the fluid being pumped and contaminate the fluid. Bearings operating in a contaminated lubricant exhibit a higher initial rate of wear than those not running in a contaminated lubricant. The bearings and the seals may be particularly susceptible to failure when in contact with certain chemistry. Alternatively, the bearings may damage the fluid being pumped.
What is needed is an improved brushless compact canned pump assembly design that substantially reduces particle generation and contamination, while rotating at high speeds and operating at supercritical temperatures and pressures.
In accordance with an embodiment of the present invention, a pump assembly for circulating a supercritical fluid is disclosed. The pump assembly for circulating a supercritical fluid can include an impeller for pumping supercritical process fluid between a pump inlet and a pump outlet; a rotatable pump shaft coupled to the impeller; a motor coupled to the rotatable pump shaft; a plurality of bearings coupled to the rotatable pump shaft; a plurality of flow passages coupled to the plurality of bearings; an injection means for delivering pressurized cooling fluid to the plurality of flow passages; a regulator, coupled to the injection means, for controlling the pressure of the pressurized cooling fluid; and a coolant outlet for venting the pressurized cooling fluid from the pump assembly.
Another embodiment discloses a system for cooling pump bearings in a pump assembly for circulating a supercritical fluid, and the system can include means for monitoring a temperature of a motor in the pump assembly that includes a pump and a motor connected by a rotatable pump shaft, and an impeller for pumping supercritical fluid between a pump inlet and a pump outlet; means for flowing a pressurized coolant fluid through the pump assembly until the temperature of the motor is stabilized, and the pressurized coolant fluid flows from a coolant inlet through a plurality of coolant passages to a coolant outlet; means for pumping supercritical process fluid from a pump inlet to a pump outlet; means for monitoring a pressure of the supercritical process fluid at the pump outlet; means for monitoring a pressure of the pressurized coolant fluid at the coolant outlet; and means for regulating the flow of the pressurized coolant fluid through the pump assembly based on a difference between the pressure of the supercritical process fluid at the pump outlet and the pressure of the pressurized coolant fluid at the coolant outlet, and the coolant fluid can include substantially pure CO2.
Another embodiment discloses a method of cooling pump bearings in a pump assembly for circulating a supercritical fluid, and the method can include: monitoring a temperature of a motor in the pump assembly, where the pump assembly comprises a pump and a motor connected by a rotatable pump shaft, and further wherein the pump has an impeller for pumping supercritical fluid between a pump inlet and a pump outlet; flowing a pressurized coolant fluid through the pump assembly until the temperature of the motor is stabilized, where the pressurized coolant fluid flows from a coolant inlet through a plurality of coolant passages to a coolant outlet; pumping supercritical process fluid from a pump inlet to a pump outlet; monitoring a pressure of the supercritical process fluid at the pump outlet; monitoring a pressure of the pressurized coolant fluid at the coolant outlet; and regulating the flow of the pressurized coolant fluid through the pump assembly based on a difference between the pressure of the supercritical process fluid at the pump outlet and the pressure of the pressurized coolant fluid at the coolant outlet, and the coolant fluid can include substantially pure CO2.
A more complete appreciation of various embodiments of the invention and many of the attendant advantages thereof will become readily apparent with reference to the following detailed description, particularly when considered in conjunction with the accompanying drawings, in which:
The controller 180 can be coupled to the processing module 110, the recirculation system 120, the process chemistry supply system 130, the carbon dioxide supply system 140, the pressure control system 150, and the exhaust system 160. Alternately, controller 180 can be coupled to one or more additional controllers/computers (not shown), and controller 180 can obtain setup and/or configuration information from an additional controller/computer.
In
The controller 180 can be used to configure any number of processing elements (110, 120, 130, 140, 150, and 160), and the controller 180 can collect, provide, process, store, and display data from processing elements. The controller 180 can comprise a number of applications for controlling one or more of the processing elements. For example, controller 180 can include a GUI component (not shown) that can provide easy to use interfaces that enable a user to monitor and/or control one or more processing elements.
The processing module 110 can include an upper assembly 112, a frame 114, and a lower assembly 116. The upper assembly 112 can comprise a heater (not shown) for heating the process chamber, the substrate, or the processing fluid, or a combination of two or more thereof. Alternately, a heater is not required. The frame 114 can include means for flowing a processing fluid through the processing chamber 108. In one example, a circular flow pattern can be established, and in another example, a substantially linear flow pattern can be established. Alternately, the means for flowing can be configured differently. The lower assembly 116 can comprise one or more lifters (not shown) for moving the chuck 118 and/or the substrate 105. Alternately, a lifter is not required.
In one embodiment, the processing module 110 can include a holder or chuck 118 for supporting and holding the substrate 105 while processing the substrate 105. The stage or chuck 118 can also be configured to heat or cool the substrate 105 before, during, and/or after processing the substrate 105. Alternately, the processing module 110 can include a platen (not shown) for supporting and holding the substrate 105 while processing the substrate 105.
A transfer system (not shown) can be used to move a substrate into and out of the processing chamber 108 through a slot (not shown). In one example, the slot can be opened and closed by moving the chuck, and in another example, the slot can be controlled using a gate valve.
The substrate can include semiconductor material, metallic material, dielectric material, ceramic material, or polymer material, or a combination of two or more thereof. The semiconductor material can include Si, Ge, Si/Ge, or GaAs. The metallic material can include Cu, Al, Ni, Pb, Ti, Ta, or W, or combinations of two or more thereof. The dielectric material can include Si, O, N, or C, or combinations of two or more thereof. The ceramic material can include Al, N, Si, C, or O, or combinations of two or more thereof.
The recirculation system can be coupled to the process module 110 using one or more inlet lines 122 and one or more outlet lines 124. The recirculation system 120 can comprise one or more valves for regulating the flow of a supercritical processing solution through the recirculation system and through the processing module 110. The recirculation system 120 can comprise any number of back-flow valves, filters, pumps, and/or heaters (not shown) for maintaining a supercritical processing solution and flowing the supercritical process solution through the recirculation system 120 and through the processing chamber 108 in the processing module 110.
Processing system 100 can comprise a chemistry supply system 130. In the illustrated embodiment, the chemistry supply system is coupled to the recirculation system 120 using one or more lines 135, but this is not required for the invention. In alternate embodiments, the chemical supply system can be configured differently and can be coupled to different elements in the processing system. For example, the chemistry supply system 130 can be coupled to the process module 110.
The chemistry supply system 130 can comprise a cleaning chemistry assembly (not shown) for providing cleaning chemistry for generating supercritical cleaning solutions within the processing chamber. The cleaning chemistry can include peroxides and a fluoride source. Further details of fluoride sources and methods of generating supercritical processing solutions with fluoride sources are described in U.S. patent application Ser. No. 10/442,557, filed on May 10, 2003, and titled “TETRA-ORGANIC AMMONIUM FLUORIDE AND HF IN SUPERCRITICAL FLUID FOR PHOTORESIST AND RESIDUE REMOVAL”, and U.S. patent application Ser. No. 10/321,341, filed on Dec. 10, 2003, and titled “FLUORIDE IN SUPERCRITICAL FLUID FOR PHOTORESIST POLYMER AND RESIDUE REMOVAL,” both incorporated by reference herein.
In addition, the cleaning chemistry can include chelating agents, complexing agents, oxidants, organic acids, and inorganic acids that can be introduced into supercritical carbon dioxide with one or more carrier solvents, such as N,N-dimethylacetamide (DMAc), gamma-butyrolactone (BLO), dimethyl sulfoxide (DMSO), ethylene carbonate (EC), N-methylpyrrolidone (NMP), dimethylpiperidone, propylene carbonate, and alcohols (such a methanol, ethanol and 1-propanol).
The chemistry supply system 130 can comprise a rinsing chemistry assembly (not shown) for providing rinsing chemistry for generating supercritical rinsing solutions within the processing chamber. The rinsing chemistry can include one or more organic solvents including, but not limited to, alcohols and ketones. In one embodiment, the rinsing chemistry can comprise sulfolane, also known as thiocyclopenatne-1,1-dioxide, (Cyclo) tetramethylene sulphone and 1,3,4,5-tetrahydrothiophene-1,1-dioxide, which can be purchased from a number of venders, such as Degussa Stanlow Limited, Lake Court, Hursley Winchester SO21 1LD UK.
The chemistry supply system 130 can comprise a curing chemistry assembly (not shown) for providing curing chemistry for generating supercritical curing solutions within the processing chamber.
The processing system 100 can comprise a carbon dioxide supply system 140. As shown in
The carbon dioxide supply system 140 can comprise a carbon dioxide source (not shown) and a plurality of flow control elements (not shown) for generating a supercritical fluid. For example, the carbon dioxide source can include a CO2 feed system, and the flow control elements can include supply lines, valves, filters, pumps, and heaters. The carbon dioxide supply system 140 can comprise an inlet valve (not shown) that is configured to open and close to allow or prevent the stream of supercritical carbon dioxide from flowing into the processing chamber 108. For example, controller 180 can be used to determine fluid parameters such as pressure, temperature, process time, and flow rate.
The processing system 100 can also comprise a pressure control system 150. As shown in
Furthermore, the processing system 100 can comprise an exhaust control system 160. As shown in
Controller 180 can use pre-process data, process data, and post-process data. For example, pre-process data can be associated with an incoming substrate. This pre-process data can include lot data, batch data, run data, composition data, and history data. The pre-process data can be used to establish an input state for a wafer. Process data can include process parameters. Post processing data can be associated with a processed substrate.
The controller 180 can use the pre-process data to predict, select, or calculate a set of process parameters to use to process the substrate. For example, this predicted set of process parameters can be a first estimate of a process recipe. A process model can provide the relationship between one or more process recipe parameters or set points and one or more process results. A process recipe can include a multi-step process involving a set of process modules. Post-process data can be obtained at some point after the substrate has been processed. For example, post-process data can be obtained after a time delay that can vary from minutes to days. The controller can compute a predicted state for the substrate based on the pre-process data, the process characteristics, and a process model. For example, a cleaning rate model can be used along with a contaminant level to compute a predicted cleaning time. Alternately, a rinse rate model can be used along with a contaminant level to compute a processing time for a rinse process.
It will be appreciated that the controller 180 can perform other functions in addition to those discussed here. The controller 180 can monitor the pressure, temperature, flow, or other variables associated with the processing system 100 and take actions based on these values. For example, the controller 180 can process measured data, display data and/or results on a GUI screen, determine a fault condition, determine a response to a fault condition, and alert an operator. The controller 180 can comprise a database component (not shown) for storing input and output data.
In a supercritical cleaning/rinsing process, the desired process result can be a process result that is measurable using an optical measuring device. For example, the desired process result can be an amount of contaminant in a via or on the surface of a substrate. After each cleaning process run, the desired process result can be measured.
Now referring to both
From the initial time T0 through a first duration of time T1, the processing chamber 108 is pressurized. In one embodiment, when the processing chamber 108 exceeds a critical pressure Pc (1,070 psi), process chemistry can be injected into the processing chamber 108, using the process chemistry supply system 130. In alternate embodiments, process chemistry may be injected into the processing chamber 108 before the pressure exceeds the critical pressure Pc (1,070 psi) using the process chemistry supply system 130. For example, the injection(s) of the process chemistries can begin upon reaching about 1100–1200 psi. In other embodiments, process chemistry is not injected during the T1 period.
In one embodiment, process chemistry is injected in a linear fashion. In other embodiments, process chemistry may be injected in a non-linear fashion. For example, process chemistry can be injected in one or more steps.
The process chemistry preferably includes a pyridine-HF adduct species that is injected into the system. One or more injections of process chemistries can be performed over the duration of time T1 to generate a supercritical processing solution with the desired concentrations of chemicals. The process chemistry, in accordance with the embodiments of the invention, can also include one more or more carrier solvents, ammonium salts, hydrogen fluoride, and/or other sources of fluoride.
During a second time T2, the supercritical processing solution can be re-circulated over the substrate and through the processing chamber 108 using the recirculation system 120, such as described above. In one embodiment, process chemistry is not injected during the second time T2. Alternatively, process chemistry may be injected into the processing chamber 108 during the second time T2 or after the second time T2. The processing chamber 108 can operate at a pressure above 1,500 psi during the second time T2. For example, the pressure can range from approximately 2,500 psi to approximately 3,100 psi, but can be any value so long as the operating pressure is sufficient to maintain supercritical conditions. The supercritical processing solution is circulated over the substrate and through the processing chamber 108 using the recirculation system 120, such as described above. Then the pressure within the processing chamber 108 is increased and over the duration of time, the supercritical processing solution continues to be circulated over the substrate and through the processing chamber 108 using the recirculation system 120 and or the concentration of the supercritical processing solution within the processing chamber is adjusted by a push-through process, as described below.
Still referring to both
After the push-through process is complete, a decompression process can be performed. In an alternate embodiment, a decompression process is not required. During a fourth time T4, the processing chamber 108 can be cycled through a plurality of decompression and compression cycles. The pressure can be cycled between a first pressure P3 and a second pressure P4 one or more times. In alternate embodiments, the first pressure P3 and a second pressure P4 can vary. In one embodiment, the pressure can be lowered by venting through the exhaust control system 160. For example, this can be accomplished by lowering the pressure to below approximately 1,500 psi and raising the pressure to above approximately 2,500 psi. The pressure can be increased by adding high-pressure carbon dioxide.
During a fifth time T5, the processing chamber 108 can be returned to lower pressure. For example, after the decompression and compression cycles are complete, then the processing chamber can be vented or exhausted to atmospheric pressure. For substrate processing, the chamber pressure can be made substantially equal to the pressure inside of a transfer chamber (not shown) coupled to the processing chamber. In one embodiment, the substrate can be moved from the processing chamber into the transfer chamber, and moved to a second process apparatus or module to continue processing.
The plot 200 is provided for exemplary purposes only. It will be understood by those skilled in the art that a supercritical processing step can have any number of different time/pressures or temperature profiles without departing from the scope of the invention. Further, any number of cleaning and rinse processing sequences with each step having any number of compression and decompression cycles are contemplated. In addition, as stated previously, concentrations of various chemicals and species within a supercritical processing solution can be readily tailored for the application at hand and altered at any time within a supercritical processing step.
In the illustrated embodiment shown in
The motor section 302 includes a motor housing 325 and an outer motor assembly 335. The motor housing 325 can be coupled to the inner pump housing 305 and the outer motor assembly 335. A first set of bearings 340 can be located within the inner pump housing 305 and a second set of bearings 345 can be located within the outer motor assembly 335.
The bearings can be full ceramic ball bearings, hybrid ceramic ball bearings, full complement bearings, foil, journal bearings, hydrostatic bearings, or magnetic bearings. The bearings can operate without oil or grease lubrication. For example, the bearings can be made of silicon nitride balls combined with bearing races made of Cronidur®. Cronidur® is a corrosion resistant metal alloy from Barden Bearings.
The outer motor assembly 335 has a coolant outlet 395 through which a cooling fluid, such as substantially pure supercritical CO2 can be vented. A regulator 397 can be located down stream of the coolant outlet 395 to control the venting of the cooling fluid. For example, the regulator 397 can comprise a valve and/or orifice. The regulator 397 can be coupled to the controller 375, and a flow through the regulator 397 can be controlled to stabilize the temperature of the motor 302. The outer motor assembly 335 can comprise one or more flow passages 385 coupled to the coolant outlet 395 and the second set of bearings 345.
The motor section 302 includes an electric motor having a stator 370 and a rotor 360 mounted within the motor housing 325. The electric motor can be a variable speed motor that is coupled to the controller 375 and provides for changing speed and/or load characteristics. Alternatively, the electric motor can be an induction motor. The rotor 360 is formed inside a non-magnetic stainless steel sleeve 380. A lower end cap 362 and an upper end cap 364 are coupled to the non-magnetic stainless steel sleeve 380. The lower end cap 362 can be coupled to the first set of bearings 340, and the upper end cap 364 can be coupled to the second set of bearings 345. The rotor 360 is canned to isolate it from contact with the cooling fluid. The rotor 360 preferably has a diameter between 1.5 inches and 2 inches.
The rotor 360 is also canned to isolate it from the fluid being pumped. A pump shaft 350 extends away from the motor section 302 to the pump section 301 where it is affixed to an end of the impeller 320. The pump shaft 350 can be coupled to the rotor 360 such that torque is transferred to the impeller 320. The impeller 320 can have a diameter that can vary between approximately 1 inch and approximately 2 inches, and impeller 320 can include rotating blades. This compact design makes the pump assembly 300 more lightweight, which also increases rotation speed of the electric motor.
The electric motor of the present invention can deliver more power from a smaller unit by rotating at higher speeds. The rotor 360 can have a maximum speed of 60,000 revolutions per minute (rpm). In alternate embodiments, different speeds and different impeller sizes may be used to achieve different flow rates. With brushless DC technology, the rotor 360 is actuated by electromagnetic fields that are generated by electric current flowing through windings of the stator 370. During operation, the pump shaft 350 transmits torque from the motor section 302 to the pump section 301 to pump the fluid.
The pump assembly 300 can include a controller 375 suitable for operating the pump assembly 300. The controller 375 can include a commutation controller (not shown) for sequentially firing or energizing the windings of the stator 370.
In one embodiment, the rotor 360 can be potted in epoxy and encased in the stainless steel sleeve 380 to isolate the rotor 360 from the fluid. Alternately, a different potting material may be used. The stainless steel sleeve 380 creates a high pressure and substantially hermetic seal. The stainless steel sleeve 380 has a high resistance to corrosion and maintains high strength at very high temperatures, which substantially eliminates the generation of particles. Chromium, nickel, titanium, and other elements can also be added to stainless steels in varying quantities to produce a range of stainless steel grades, each with different properties.
The stator 370 is also potted in epoxy and sealed from the fluid via a polymer sleeve 390. The polymer sleeve 390 is preferably a PEEK™ (Polyetheretherketone) sleeve. The PEEK™ sleeve forms a casing for the stator. Because the polymer sleeve 390 is an exceptionally strong highly crosslinked engineering thermoplastic, it resists chemical attack and permeation by CO2 even at supercritical conditions and substantially eliminates the generation of particles. Further, the PEEK™ material has a low coefficient of friction and is inherently flame retardant. Other high-temperature and corrosion resistant materials, including alloys, can be used to seal the stator 370 from the cooling fluid.
A fluid passage 385 is provided between the stainless steel sleeve 380 of the rotor 360 and the polymer sleeve 390 of the stator 370. A cooling fluid flowing through the fluid passage 385 can provide cooling for the motor.
The lower end cap 362 can be coupled to the first set of bearings 340, and the upper end cap 364 can be coupled to the second set of bearings 345. The bearings 340 and 345 can also constructed to reduce particle generation. For example, wear particles generated by abrasive wear can be reduced by using ceramic (silicon nitride) hybrids. The savings in reduced maintenance costs can be significant.
In one embodiment, the bearing 340 and 345 are cooled with a cooling fluid such as substantially CO2, and lubricants such as oil or grease are not used in the bearing cage in order to prevent contamination of the process and/or cooling fluid. In alternate embodiments, sealed bearings may be used that include lubricants.
A high pressure cooling fluid, such as substantially pure CO2, can be injected into one or more flow passages 385 proximate the first set of pump bearings 340 through a coolant inlet 355. For example, the coolant inlet 355 can comprise a nozzle. A regulator 365 can be coupled to the coolant inlet 355 and can be used to control the pressure and/or flow of the injected cooling fluid. Controller 375 can be coupled to the regulator 365 for controlling pressure and/or flow. For example, a regulator capable of delivering the required flow rate while maintaining a constant delivery pressure may be used.
One or more flow passages 385 can be used to direct the cooling fluid to and around the first set of pump bearings 340, to direct the cooling fluid to and around the rotor 360, to direct the cooling fluid to and around the second set of pump bearings 345, and to direct the cooling fluid to and out the coolant outlet 395.
The operating pressure for the injected cooling fluid can be determined by the pressure of the supercritical process fluid exiting the pump outlet 330 when the process pressure is stabilized at a set pressure. For example, making the difference between the pressure of the injected cooling fluid and the pressure of the supercritical process fluid exiting the pump outlet 330 small can serve two purposes. First, it minimizes the leakage of the super critical process fluid from the pump 301 into the motor 302; this protects the sensitive pump bearings 340 and 345 from chemistry and particulates that are present in the supercritical process fluid. Second, it minimizes the leakage of the cooling fluid (substantially pure supercritical CO2) from the motor 302 to the pump 301 to prevent altering the supercritical process fluid. In alternate embodiments, the pressures can be different.
Because CO2 is a relatively poor lubricant, the cooling fluid provides a small amount of lubrication to the pump bearings 340 and 345. The cooling fluid is provided more for cooling the motor section 302 and the bearings 340 and 345 than for lubricating the bearings 340 and 345. As mentioned above, the bearings 340 and 345 are designed with materials that offer corrosion and wear resistance.
The cooling fluid can pass into the motor section 302 after having cooled the first set of bearings 340. Within the motor section 302, the cooling fluid flows through one or more flow passages 385 and cools the motor section 302, and the second set of bearings 345. In addition, the cooling fluid flows through one or more flow passages 385 in the outer motor assembly 335 and passes through a coolant outlet 395 in the outer motor assembly 335 and to a valve 397. The cooling fluid leaving the coolant outlet 395 may contain particles generated in the pump assembly 300. The cooling fluid can be passed through a filter and/or heat exchanger in the outer flow path (not shown) before being recycled.
In one embodiment, a filter can be coupled to the coolant inlet line 365 to reduce the contamination of the cooling fluid, such as substantially pure supercritical CO2. For example, the filter may include a Mott point of use filter.
Actively reducing the pressure difference between the pressure of the process fluid and the cooling fluid serves to prevent leakage of the process fluid to the motor and the cooling fluid to the pump. In addition, a non-contact seal 375 can be used between the pump 301 and the motor 302 to further reduce leakage and mixing of the cooling fluid and the process fluid. To prevent the generation of particles, the seal can be a non-contact type. For example, a labyrinth seal can be used in which a series of knives is used to minimize the flow path and restrict the flow.
In 410, the pump 301 and the motor 302 can be started. In 415, a high pressure cooling fluid can be injected into the pump portion 301 of the pump assembly. In one embodiment, the high pressure cooling fluid can be substantially pure supercritical CO2. Alternately, the high pressure cooling fluid can be substantially pure high pressure liquid CO2.
In one embodiment, the high pressure cooling fluid can be injected at the pump bearings 340 that support the pump shaft 350 and the high pressure cooling fluid lubricates and/or cools the pump bearings 340. Alternately, the high pressure cooling fluid can be injected at a plurality of locations around the pump bearings 340. In other embodiments, a high pressure cooling fluid may be injected at one or more locations around a second set of pump bearings 345.
In 420, the motor temperature can be monitored. In 425, a query can be performed to determine if the motor temperature has stabilized. When the temperature of the motor has stabilized, procedure 400 branches to step 435 and continues as shown in
In 430, the flow of cooling fluid can be adjusted. For example, the valve or orifice aperture 397 controlling the coolant outlet 395 can be adjusted to change the flow rate of the cooling fluid.
In 435, the pressure of the process fluid in the processing chamber (108
In 445, the flow of cooling fluid can be adjusted. For example, the regulator and/or orifice 365 controlling the inlet pressure can be adjusted to reduce pressure differences. Alternately, the regulator and/or orifice 397 can be adjusted to reduce pressure differences. The flow of the pressurized coolant fluid through the pump assembly can be regulated based on a difference between the pressure of the supercritical process fluid in a process chamber coupled to the pump assembly and the pressure of the pressurized coolant fluid at the coolant outlet. In an alternate embodiment, the flow of the pressurized coolant fluid through the pump assembly can be regulated based on a difference between the pressure of the supercritical process fluid at the pump outlet and the pressure of the pressurized coolant fluid at the coolant outlet. In other embodiments, the pressure at the coolant inlet and/or outlet can be measured and used. Alternately, the pressure at the pump inlet and/or outlet can be measured and used.
While the invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention, such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications may be made in the embodiments chosen for illustration without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2617719 | Stewart | Nov 1952 | A |
2625886 | Browne | Jan 1953 | A |
2873597 | Fahringer | Feb 1959 | A |
3521765 | Kauffman et al. | Jul 1970 | A |
3623627 | Bolton | Nov 1971 | A |
3689025 | Kiser | Sep 1972 | A |
3744660 | Gaines et al. | Jul 1973 | A |
3968885 | Hassan et al. | Jul 1976 | A |
4029517 | Rand | Jun 1977 | A |
4091643 | Zucchini | May 1978 | A |
4145161 | Skinner | Mar 1979 | A |
4245154 | Uehara et al. | Jan 1981 | A |
4341592 | Shortes et al. | Jul 1982 | A |
4355937 | Mack et al. | Oct 1982 | A |
4367140 | Wilson | Jan 1983 | A |
4391511 | Akiyama et al. | Jul 1983 | A |
4406596 | Budde | Sep 1983 | A |
4422651 | Platts | Dec 1983 | A |
4426358 | Johansson | Jan 1984 | A |
4474199 | Blaudszun | Oct 1984 | A |
4522788 | Sitek et al. | Jun 1985 | A |
4549467 | Wilden et al. | Oct 1985 | A |
4574184 | Wolf et al. | Mar 1986 | A |
4592306 | Gallego | Jun 1986 | A |
4601181 | Privat | Jul 1986 | A |
4626509 | Lyman | Dec 1986 | A |
4670126 | Messer et al. | Jun 1987 | A |
4682937 | Credle, Jr. | Jul 1987 | A |
4693777 | Hazano et al. | Sep 1987 | A |
4749440 | Blackwood et al. | Jun 1988 | A |
4778356 | Hicks | Oct 1988 | A |
4788043 | Kagiyama et al. | Nov 1988 | A |
4789077 | Noe | Dec 1988 | A |
4823976 | White, III et al. | Apr 1989 | A |
4825808 | Takahashi et al. | May 1989 | A |
4827867 | Takei et al. | May 1989 | A |
4838476 | Rahn | Jun 1989 | A |
4865061 | Fowler et al. | Sep 1989 | A |
4879431 | Bertoncini | Nov 1989 | A |
4917556 | Stark et al. | Apr 1990 | A |
4924892 | Kiba et al. | May 1990 | A |
4951601 | Maydan et al. | Aug 1990 | A |
4960140 | Ishijima et al. | Oct 1990 | A |
4983223 | Gessner | Jan 1991 | A |
5011542 | Weil | Apr 1991 | A |
5028219 | Schuetz et al. | Jul 1991 | A |
5044871 | Davis et al. | Sep 1991 | A |
5062770 | Story et al. | Nov 1991 | A |
5071485 | Matthews et al. | Dec 1991 | A |
5105556 | Kurokawa et al. | Apr 1992 | A |
5143103 | Basso et al. | Sep 1992 | A |
5167716 | Boitnott et al. | Dec 1992 | A |
5169296 | Wilden | Dec 1992 | A |
5169408 | Biggerstaff et al. | Dec 1992 | A |
5185296 | Morita et al. | Feb 1993 | A |
5186594 | Toshima et al. | Feb 1993 | A |
5186718 | Tepman et al. | Feb 1993 | A |
5188515 | Horn | Feb 1993 | A |
5190373 | Dickson et al. | Mar 1993 | A |
5191993 | Wanger et al. | Mar 1993 | A |
5193560 | Tanaka et al. | Mar 1993 | A |
5195878 | Sahiavo et al. | Mar 1993 | A |
5213485 | Wilden | May 1993 | A |
5217043 | Novakovi | Jun 1993 | A |
5221019 | Pechacek | Jun 1993 | A |
5222876 | Budde | Jun 1993 | A |
5224504 | Thompson et al. | Jul 1993 | A |
5236669 | Simmons et al. | Aug 1993 | A |
5237824 | Pawliszyn | Aug 1993 | A |
5240390 | Kvinge et al. | Aug 1993 | A |
5243821 | Schuck et al. | Sep 1993 | A |
5246500 | Samata et al. | Sep 1993 | A |
5251776 | Morgan, Jr. et al. | Oct 1993 | A |
5252041 | Schumack | Oct 1993 | A |
5259731 | Dhindsa et al. | Nov 1993 | A |
5267455 | Dewees et al. | Dec 1993 | A |
5280693 | Heudecker | Jan 1994 | A |
5285352 | Pastore et al. | Feb 1994 | A |
5288333 | Tanaka et al. | Feb 1994 | A |
5306350 | Hoy et al. | Apr 1994 | A |
5313965 | Palen | May 1994 | A |
5314574 | Takahashi | May 1994 | A |
5328722 | Ghanayem et al. | Jul 1994 | A |
5337446 | Smith et al. | Aug 1994 | A |
5339844 | Stanford, Jr. et al. | Aug 1994 | A |
5355901 | Mielnik et al. | Oct 1994 | A |
5368171 | Jackson | Nov 1994 | A |
5370741 | Bergman | Dec 1994 | A |
5374829 | Sakamoto et al. | Dec 1994 | A |
5377705 | Smith, Jr. et al. | Jan 1995 | A |
5401322 | Marshall | Mar 1995 | A |
5404894 | Shiraiwa | Apr 1995 | A |
5412958 | Iliff et al. | May 1995 | A |
5417768 | Smith, Jr. et al. | May 1995 | A |
5433334 | Reneau | Jul 1995 | A |
5447294 | Sakata et al. | Sep 1995 | A |
5474410 | Ozawa et al. | Dec 1995 | A |
5494526 | Paranjpe | Feb 1996 | A |
5503176 | Dunmire et al. | Apr 1996 | A |
5505219 | Lansberry et al. | Apr 1996 | A |
5509431 | Smith, Jr. et al. | Apr 1996 | A |
5526834 | Mielnik et al. | Jun 1996 | A |
5533538 | Marshall | Jul 1996 | A |
5540554 | Masuzawa | Jul 1996 | A |
5571330 | Kyogoku | Nov 1996 | A |
5589224 | Tepman et al. | Dec 1996 | A |
5621982 | Yamashita et al. | Apr 1997 | A |
5629918 | Ho et al. | May 1997 | A |
5644855 | McDermott et al. | Jul 1997 | A |
5649809 | Stapelfeldt | Jul 1997 | A |
5656097 | Olesen et al. | Aug 1997 | A |
5669251 | Townsend et al. | Sep 1997 | A |
5672204 | Habuka | Sep 1997 | A |
5679169 | Gonzales et al. | Oct 1997 | A |
5702228 | Tamai et al. | Dec 1997 | A |
5706319 | Holtz | Jan 1998 | A |
5746008 | Yamashita et al. | May 1998 | A |
5769588 | Toshima et al. | Jun 1998 | A |
5772783 | Stucker | Jun 1998 | A |
5797719 | James et al. | Aug 1998 | A |
5798126 | Fijikawa et al. | Aug 1998 | A |
5817178 | Mita et al. | Oct 1998 | A |
5850747 | Roberts et al. | Dec 1998 | A |
5858107 | Chao et al. | Jan 1999 | A |
5865602 | Nozari | Feb 1999 | A |
5879459 | Gadgil et al. | Mar 1999 | A |
5881577 | Sauer et al. | Mar 1999 | A |
5882165 | Maydan et al. | Mar 1999 | A |
5882182 | Kato et al. | Mar 1999 | A |
5888050 | Fitzgerald et al. | Mar 1999 | A |
5898727 | Fujikawa et al. | Apr 1999 | A |
5900107 | Murphy et al. | May 1999 | A |
5904737 | Preston et al. | May 1999 | A |
5906866 | Webb | May 1999 | A |
5928389 | Jevtic | Jul 1999 | A |
5932100 | Yager et al. | Aug 1999 | A |
5934856 | Asakawa et al. | Aug 1999 | A |
5934991 | Rush | Aug 1999 | A |
5943721 | Lerette et al. | Aug 1999 | A |
5946945 | Kegler et al. | Sep 1999 | A |
5970554 | Shore et al. | Oct 1999 | A |
5971714 | Schaffer et al. | Oct 1999 | A |
5975492 | Brenes | Nov 1999 | A |
5979306 | Fujikawa et al. | Nov 1999 | A |
5980648 | Adler | Nov 1999 | A |
5981399 | Kawamura et al. | Nov 1999 | A |
5989342 | Ikeda et al. | Nov 1999 | A |
6005226 | Aschner et al. | Dec 1999 | A |
6010315 | Kishimoto et al. | Jan 2000 | A |
6017820 | Ting et al. | Jan 2000 | A |
6021791 | Dryer et al. | Feb 2000 | A |
6029371 | Kamikawa et al. | Feb 2000 | A |
6041817 | Guertin | Mar 2000 | A |
6045331 | Gehm et al. | Apr 2000 | A |
6070440 | Malchow et al. | Jun 2000 | A |
6109296 | Austin | Aug 2000 | A |
6123510 | Greer et al. | Sep 2000 | A |
6190459 | Takeshita et al. | Feb 2001 | B1 |
6228563 | Starov et al. | May 2001 | B1 |
6235634 | White et al. | May 2001 | B1 |
6239038 | Wen | May 2001 | B1 |
6241825 | Wytman | Jun 2001 | B1 |
6244121 | Hunter | Jun 2001 | B1 |
6251250 | Keigler | Jun 2001 | B1 |
6264003 | Dong et al. | Jul 2001 | B1 |
6264752 | Curtis et al. | Jul 2001 | B1 |
6264753 | Chao et al. | Jul 2001 | B1 |
6277753 | Mullee et al. | Aug 2001 | B1 |
6286231 | Bergman et al. | Sep 2001 | B1 |
6305677 | Lenz | Oct 2001 | B1 |
6333268 | Starov et al. | Dec 2001 | B1 |
6334266 | Moritz et al. | Jan 2002 | B1 |
6344174 | Miller et al. | Feb 2002 | B1 |
6521466 | Castrucci | Feb 2002 | B1 |
6355072 | Racette et al. | Mar 2002 | B1 |
6363292 | McLoughlin | Mar 2002 | B1 |
6388317 | Reese | May 2002 | B1 |
6389677 | Lenz | May 2002 | B1 |
6406782 | Johnson et al. | Jun 2002 | B2 |
6418956 | Bloom | Jul 2002 | B1 |
6436824 | Chooi et al. | Aug 2002 | B1 |
6454519 | Toshima et al. | Sep 2002 | B1 |
6454945 | Weigl et al. | Sep 2002 | B1 |
6464790 | Shertinsky et al. | Oct 2002 | B1 |
6465403 | Skee | Oct 2002 | B1 |
6508259 | Tseronis et al. | Jan 2003 | B1 |
6509141 | Mullee | Jan 2003 | B2 |
6541278 | Morita et al. | Apr 2003 | B2 |
6546946 | Dunmire | Apr 2003 | B2 |
6550484 | Gopinath et al. | Apr 2003 | B1 |
6558475 | Jur et al. | May 2003 | B1 |
6561213 | Wang et al. | May 2003 | B2 |
6561220 | McCullough et al. | May 2003 | B2 |
6561481 | Filonczuk | May 2003 | B1 |
6561797 | Biberger et al. | May 2003 | B1 |
6564826 | Shen | May 2003 | B2 |
6596093 | DeYoung et al. | Jul 2003 | B2 |
6612317 | Costantini et al. | Sep 2003 | B2 |
6616414 | Yoo et al. | Sep 2003 | B2 |
6635565 | Wu et al. | Oct 2003 | B2 |
6641678 | DeYoung et al. | Nov 2003 | B2 |
6722642 | Sutton et al. | Apr 2004 | B1 |
6736149 | Biberger et al. | May 2004 | B2 |
6764212 | Nitta et al. | Jul 2004 | B1 |
6764552 | Joyce et al. | Jul 2004 | B1 |
6805801 | Humayun et al. | Oct 2004 | B1 |
6815922 | Yoo et al. | Nov 2004 | B2 |
6851148 | Preston et al. | Feb 2005 | B2 |
6874513 | Yamagata et al. | Apr 2005 | B2 |
6921456 | Biberger et al. | Jul 2005 | B2 |
6966967 | Curry et al. | Nov 2005 | B2 |
20010050096 | Costantini et al. | Dec 2001 | A1 |
20020001929 | Biberger et al. | Jan 2002 | A1 |
20020046707 | Biberger et al. | Apr 2002 | A1 |
20020189543 | Biberger et al. | Dec 2002 | A1 |
20030036023 | Moreau et al. | Feb 2003 | A1 |
20030051741 | DeSimone et al. | Mar 2003 | A1 |
20030161734 | Kim | Aug 2003 | A1 |
20030196679 | Cotte et al. | Oct 2003 | A1 |
20030205510 | Jackson | Nov 2003 | A1 |
20040020518 | DeYoung et al. | Feb 2004 | A1 |
20040134515 | Castrucci | Jul 2004 | A1 |
20040157463 | Jones | Aug 2004 | A1 |
20040213676 | Phillips et al. | Oct 2004 | A1 |
20050014370 | Jones | Jan 2005 | A1 |
20050026547 | Moore et al. | Feb 2005 | A1 |
20050111987 | Yoo et al. | May 2005 | A1 |
20050141998 | Yoo et al. | Jun 2005 | A1 |
20050158178 | Yoo et al. | Jul 2005 | A1 |
20050191184 | Vinson, Jr. | Sep 2005 | A1 |
20060130966 | Babic et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
SE 251213 | Aug 1948 | CH |
1399790 | Feb 2003 | CN |
36 08 783 | Sep 1987 | DE |
198 60 084 | Jul 2000 | DE |
0 244 951 | Nov 1987 | EP |
0 272 141 | Jun 1988 | EP |
0 453 867 | Oct 1991 | EP |
0 572 913 | Dec 1993 | EP |
0 587 168 | Mar 1994 | EP |
0 679 753 | Nov 1995 | EP |
0 726 099 | Aug 1996 | EP |
0 743 379 | Nov 1996 | EP |
0 903 775 | Mar 1999 | EP |
1.499.491 | Sep 1967 | FR |
2 003 975 | Mar 1979 | GB |
2 193 482 | Feb 1988 | GB |
56-142629 | Nov 1981 | JP |
60-238479 | Nov 1985 | JP |
60-246635 | Dec 1985 | JP |
61-017151 | Jan 1986 | JP |
61-231166 | Oct 1986 | JP |
62-111442 | May 1987 | JP |
62-125619 | Jun 1987 | JP |
2001106358 | Apr 1988 | JP |
63-179530 | Jul 1988 | JP |
63-256326 | Oct 1988 | JP |
63-303059 | Dec 1988 | JP |
2-148841 | Jun 1990 | JP |
2-209729 | Aug 1990 | JP |
4-17333 | Jan 1992 | JP |
4-284648 | Oct 1992 | JP |
7-283104 | Oct 1995 | JP |
8-186140 | Jul 1996 | JP |
8-252549 | Oct 1996 | JP |
9-43857 | Feb 1997 | JP |
10-144757 | May 1998 | JP |
10-260537 | Sep 1998 | JP |
10-335408 | Dec 1998 | JP |
11-200035 | Jul 1999 | JP |
11-274132 | Oct 1999 | JP |
WO 8707309 | Dec 1987 | WO |
WO 9112629 | Aug 1991 | WO |
WO 9918603 | Apr 1999 | WO |
WO 0036635 | Jun 2000 | WO |
WO 0110733 | Feb 2001 | WO |
WO 0122016 | Mar 2001 | WO |
WO 0133615 | May 2001 | WO |
WO 0155628 | Aug 2001 | WO |
WO 0168279 | Sep 2001 | WO |
WO 0174538 | Oct 2001 | WO |
WO 0178911 | Oct 2001 | WO |
WO 0185391 | Nov 2001 | WO |
WO 0194782 | Dec 2001 | WO |
WO 0209147 | Jan 2002 | WO |
WO 0216051 | Feb 2002 | WO |
WO 03030219 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060073041 A1 | Apr 2006 | US |