This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2012-126438, filed on Jun. 1, 2012, the entire contents of which are incorporated herein by reference.
A certain aspect of embodiments described herein relates to a method and an apparatus for detecting an abnormal transition pattern.
Various methods have been conventionally studied to detect trajectory data different from the others from large quantities of trajectory data in traffic field, or to detect a trail pattern different from the others from a great deal of operation trail logs in BPM (Business Process Management) field.
The above described detection may be achieved by a method that represents trajectory data or tail log with sequential data that defines an order of items, and detects abnormal sequential data based on appearance frequencies of sequential patterns that are combinations of items appearing in the sequential data as disclosed in R. Agrawal and R. Srikant, Mining Sequential Patterns, IEEE '95 (Non-Patent Document 1).
According to an aspect of the present invention, there is provided a method for detecting an abnormal transition pattern from a transition pattern representing an order of items, the method including: first extracting an episode pattern with an appearance frequency greater than or equal to a first frequency from an episode pattern represented with a description form so as to include a first transition pattern and a second transition pattern, the second transition pattern differing in an order of a part of items from the first transition pattern to have a complementary relation to the first transition pattern; second extracting a third transition pattern with an appearance frequency greater than or equal to a second frequency from the transition pattern; and specifying a transition pattern other than the third transition pattern extracted in the second extracting from transition patterns included in the episode pattern extracted in the first extracting, and determining an abnormal transition pattern based on the specified transition pattern when the third transition pattern extracted in the second extracting includes a fourth transition pattern corresponding to the episode pattern extracted in the first extracting.
According to an aspect of the present invention, there is provided a computer readable medium storing a program causing a computer to execute a process for detecting an abnormal transition pattern from a transition pattern representing an order of items, the process including: extracting an episode pattern with an appearance frequency greater than or equal to a first frequency from an episode pattern represented with a description form so as to include a first transition pattern and a second transition pattern, the second transition pattern differing in an order of a part of items from the first transition pattern to have a complementary relation to the first transition pattern; extracting a third transition pattern with an appearance frequency greater than or equal to a second frequency from the transition pattern; and specifying a transition pattern other than the third transition pattern extracted in the second extracting from transition patterns included in the episode pattern extracted in the first extracting, and determining an abnormal transition pattern based on the specified transition pattern when the third transition pattern extracted in the second extracting includes a fourth transition pattern corresponding to the episode pattern extracted in the first extracting.
According to an aspect of the present invention, there is provided an apparatus for detecting an abnormal transition pattern from a transition pattern representing an order of items, the apparatus including: a first extracting unit that extracts an episode pattern with an appearance frequency greater than or equal to a first frequency from an episode pattern represented with a description form so as to include a first transition pattern and a second transition pattern, the second transition pattern differing in an order of a part of items from the first transition pattern to have a complementary relation to the first transition pattern; a second extracting unit that extracts a third transition pattern with an appearance frequency greater than or equal to a second frequency from the transition pattern; and a determination unit that specifies a transition pattern other than the third transition pattern extracted by the second extracting unit from transition patterns included in the episode pattern extracted by the first extracting unit and determines an abnormal transition pattern based on the specified transition pattern when the third transition pattern extracted by the second extracting unit includes a fourth transition pattern corresponding to the episode pattern extracted by the first extracting unit.
The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention, as claimed.
The method of Non-Patent Document 1 first detects a sequential pattern with a high appearance frequency, and checks appearance frequencies of sequential patterns having a different order of the items included in the sequential pattern with a high appearance frequency. Then, sequential data including a sequential pattern with a lower appearance frequency among the sequential patterns having the different order of the items is decided as abnormal data.
However, the method of Non-Patent Document 1 needs to check even a disinterested sequential pattern, and thus is inefficient because appearance frequencies of all sequential patterns having a different order of items in each sequential data are to be checked.
Hereinafter, a description will be given of an embodiment with reference to
As illustrated in
The in-vehicle device 10 is a device mounted in a vehicle such as a taxi and includes a GPS module and a communication device. The in-vehicle device 10 acquires positional data of the vehicle at predetermined time intervals with the GPS module, and transmits the acquired positional data to the user terminal 20 with the communication device. The positional data has four attributes (time, ID, latitude, longitude).
The user terminal 20 is a terminal such as a PC (Personal computer) placed in, for example, a taxi company, and collects positional data of vehicles transmitted from the in-vehicle devices 10. The user terminal 20 then organizes the positional data of the vehicles, creates a set T of trajectory data illustrated in
Back to
The data acquisition unit 32 acquires the set T of trajectory data transmitted from the user terminal 20, and transmits it to the sequential data generating unit 34.
The sequential data generating unit 34 divides a region (region R to be analyzed) that includes the whole of the set T of trajectory data with a mesh granularity d as illustrated in
The frequency mining unit 36 performs frequent episode mining and frequent sequential pattern mining to the set S of sequential data. The frequent episode mining extracts an episode pattern with an appearance frequency greater than or equal to a given threshold value in the set S of sequential data from episode patterns (described as A→{B, C}) including a transition pattern (hereinafter, referred to as “sequential pattern”) having an order of items such as A→B→C (A, B, and C are exemplary items) and a sequential pattern having a complementary relationship thereto, which has a partly different order of the items, such as A→C→B, from the order A→B→C of the transition pattern. The frequent sequential pattern mining extracts a sequential pattern with an appearance frequency greater than or equal to a given threshold value in the set S of sequential data from sequential patterns having a given order such as A→B→C.
The low-frequency sequence extracting unit 38 extracts a low-frequency sequential pattern kc based on processing results of the frequency mining unit 36. The low-frequency sequential pattern kc means a sequential pattern (order of mesh IDs) included in abnormal sequential data. When the episode pattern (e.g. A→{B, C}) extracted by the frequent episode mining includes the sequential pattern (e.g. A→B→C) extracted by the frequent sequential pattern mining, the low-frequency sequence extracting unit 38 extracts a sequential pattern (e.g. A→C→B) that is other than the extracted sequential pattern and satisfies a given condition in sequential patterns included in the extracted episode pattern as the low-frequency sequential pattern kc.
The abnormal trajectory determination unit 40 extracts sequential data that matches the low-frequency sequential pattern kc extracted by the low-frequency sequence extracting unit 38, in other words, sequential data that includes the extracted low-frequency sequential pattern kc from the set S of sequential data, and decides it as the abnormal trajectory. In addition, the abnormal trajectory determination unit 40 extracts sequential data including a normal sequential pattern corresponding to the low-frequency sequential pattern kc from the set S of sequential data, and decides it as a normal trajectory.
The output unit 42 outputs the abnormal trajectory and the normal trajectory decided in the abnormal trajectory determination unit 40 to the user terminal 20.
A detail description will now be given of a process of the server 30 of the present embodiment with reference to
In the process illustrated in
A detail description will now be given of processes from steps S12 through S18.
(Step S12: Sequential Data Generating Process)
A description will first be given of the sequential data generating process (step S12) by the sequential data generating unit 34. At step S12, the process along the flowchart illustrated in
At step S32, the sequential data generating unit 34 then divides the region R to be analyzed with a mesh granularity d as illustrated in
At step S34, the sequential data generating unit 34 determines whether the set T of trajectory data is empty. When the determination is Y, i.e. all trajectory data included in the set T is processed, the sequential data generating unit 34 ends the entire process in
On the other hand, when the determination at step S34 is N, the process moves to step S36. At step S36, the sequential data generating unit 34 extracts one piece of trajectory data t from the set T of trajectory data. For example, the sequential data generating unit 34 extracts trajectory data t1 at the first line from the set T of trajectory data in
At step S38, the sequential data generating unit 34 initializes s and ppre. Here, s represents sequential data, and ppre means positional data previous to the focused positional data that is extracted at step S44.
Then, at step S40, the sequential data generating unit 34 determines whether the positional data Pos illustrated in
At step S44, the sequential data generating unit 34 extracts leading positional data p from the positional data Pos. For example, the sequential data generating unit 34 extracts leading positional data (36.25, 137.55) in the trajectory data t1 (p1 in
At step S46, the sequential data generating unit 34 then determines whether positional data is stored in ppre. Here, ppre is initialized at step S38, and thus the determination is N, and the process moves to step S48.
At step S48, the sequential data generating unit 34 stores the positional data (p1) in ppre. Then, the process goes back to step S40.
Back to step S40, the sequential data generating unit 34 determines whether the positional data Pos illustrated in
Then, at step S46, the sequential data generating unit 34 determines whether positional data is stored in ppre. Here, since the positional data p1 is stored in ppre at the previous step S48, the determination becomes Y, and the process moves to step S50.
At step S50, the sequential data generating unit 34 connects sequentially mesh IDs of the meshes intersecting with a straight line connecting ppre (=p1) and the positional data p (=p2) to s. However, the mesh ID that is the same as the mesh ID of the mesh intersecting with the right end of s (last connected ID) is not connected so that the same mesh ID is not continuously output. Here, the straight line connecting the positional data p1 and p2 intersects with the mesh having a mesh ID of A, and thus, “A” is connected to s.
Step S44, S46, and S50 are then repeated to convert the trajectory data t1 into t1=ADEHI. When one piece of trajectory data is converted, the determination at step S40 becomes Y, the process moves to step S42, the sequential data generating unit 34 stores the sequential data s in the set S of sequential data (see
Step S36 through S50 are repeated until the determination at step S34 becomes Y, and when the set T becomes empty, i.e. when the determination at step S34 becomes Y, the process illustrated in
(Step S14: Frequency Mining Process)
A description will now be given of the frequency mining process (step S14) by the frequency mining unit 36. As step S14, the process is executed along a flowchart illustrated in
In the process illustrated in
At step S62, the frequency mining unit 36 then sets a threshold value (first frequency) to γ=2α+β, specifies 3 as a pattern size (the number of items), specifies a sector or inverse thereof as a form, and executes the frequent episode mining. The frequency mining unit 36 stores the execution result in Jfreq.
Here, the episode pattern with a pattern size of 3 and a form of sector (or inverse thereof) is an episode pattern illustrated in
At step S62, the frequency mining unit 36 mines an episode pattern that can be represented with as A→{B, C} and has an appearance frequency greater than or equal to the threshold value γ (=2α+β) in the set T of sequential data illustrated in
Here, α represents the threshold value for an appearance frequency with which the sequential pattern is to be decided as an abnormal sequential pattern from sequential patterns represented with as A→B→C, A→C→B, or the like (pattern with a determined order). In addition, β represents the threshold value for a difference between appearance frequencies of a sequential pattern (e.g. A→B→C) to be decided as an abnormal sequential pattern and a sequential pattern (e.g. A→C→B) having a complementary relationship to the sequential pattern, i.e. a sequential pattern included in the same episode pattern. When α is set to 1 and β is set to 2, the threshold value γ used at step S62 is 4 (γ=2·1+2=4).
Back to
In this case, when α is 1 and β is 2, the threshold value δ becomes 3 (δ=1+2=3).
(Step S16: Low-frequency Sequence Extraction Process)
A description will now be given of the low-frequency sequence extraction process (step S16) by the low-frequency sequence extracting unit 38. At step S16, the process is executed along the flowchart illustrated in
In the process in
At step S74, the low-frequency sequence extracting unit 38 extracts one episode pattern j from the set Jfreq of the execution results of the frequent episode mining. Here, the episode pattern A→{E, I} with an appearance frequency greater than or equal to the threshold value γ=4, which is indicated with a solid line arrow in
At step S76, the low-frequency sequence extracting unit 38 then determines whether all sequential patterns in the set Kfreq, which is a set of execution results of the frequent sequential pattern mining, are processed. When the determination is N, the process moves to step S78.
At step S78, the low-frequency sequence extracting unit 38 extracts one sequential pattern k from the set Kfreq of the execution results of the frequent sequential pattern mining. For example, the low-frequency sequence extracting unit 38 extracts A→E→I indicated with a dashed line arrow in
At step S80, the low-frequency sequence extracting unit 38 determines whether the patterns kc and k obtained from j and k form a complementary sequential pattern pair. Here, the low-frequency sequence extracting unit 38 decides a sequential pattern other than the sequential pattern k as kc in the sequential patterns included in the episode pattern j based on the episode pattern j and the sequential pattern k. As described above, when the episode pattern j is A→{E, I} and the sequential pattern k is A→E→I, obtained as the sequential pattern kc is A→I→E. Then, the low-frequency sequence extracting unit 38 compares the sequential patterns k and kc, and determines whether the sequential pattern k: A→E→I and the sequential pattern kc: A→I→E form a complementary sequential pattern pair. In the above example, the sequential pattern k: A→E→I and the sequential pattern kc: A→I→E form a complementary sequential pattern pair, and thus the determination at step S80 becomes Y, and the process moves to step S82.
When A→F→I is extracted as the sequential pattern k at step S78 for example, the pattern kc can not be obtained from the episode pattern j and the sequential pattern k at step S80. In such a case, the determination at step S80 becomes N, and the process goes back to step S78.
When the determination at step S80 is Y and the process goes to step S82, the low-frequency sequence extracting unit 38 determines whether the frequency of the sequential pattern kc is greater than or equal to α (=1) and the difference between frequencies of k and kc is greater than or equal to β (=2). When the determination at step S82 is N, the process goes back to step S72, but when the determination is Y, the process goes to step S84. In a case of the sequential pattern kc: A→I→E, the determination becomes Y because the appearance frequency is 1 as illustrated in
At step S84, the low-frequency sequence extracting unit 38 stores the complementary sequential pattern pair (k, kc) in C (see
The process and determination after step S72 are repeated until the determination at step S72 becomes N, and the process in
(Step S18: Abnormal Trajectory Determination Process)
A description will now be given of the abnormal trajectory determination process (step S18) by the abnormal trajectory determination unit 40. At step S18, the process is executed along the flowchart illustrated in
In the process illustrated in
At step S106, the abnormal trajectory determination unit 40 extracts one complementary sequential pattern pair (k, kc) from C. Here, assume that the abnormal trajectory determination unit 40 extracts (k, kc)=(A→E→I, A→I→E) illustrated in
At step S108, the abnormal trajectory determination unit 40 determines whether all data in the set T of trajectory data (
At step S112, the abnormal trajectory determination unit 40 extracts one piece of trajectory data t from the set T. Here, the trajectory data t1 is extracted for example.
At step S114, the abnormal trajectory determination unit 40 then initializes IDnormal and IDabnormal. At step S116, the abnormal trajectory determination unit 40 determines whether the trajectory data t passes all the regions with the mesh IDs of the sequential pattern k included in the complementary sequential pattern pair (k, kc) in the order. When the determination is Y, the process goes to step S118, the abnormal trajectory determination unit 40 stores t in IDnormal, and the process moves to step S120. On the other hand, when the determination at step S116 is N, the process skips step S118, and moves to step S120.
At step S120, the abnormal trajectory determination unit 40 determines whether the trajectory data t passes all the regions with the mesh IDs of the sequential pattern kc included in the complementary sequential pattern pair (k, kc) in the order. When the determination is Y, the process moves to step S122, and the abnormal trajectory determination unit 40 stores t in IDabnormal, and goes back to step S108. On the other hand, when the determination at step S120 is N, the process skips step S122 and goes back to step S108.
In the present embodiment, the trajectory data t1 is t1=ADEHI and passes all the regions with the mesh IDs of the pattern pair k=A→E→I in the order thereof, and thus t1 is stored in IDnormal at step S118.
When the process goes back to step S108, the abnormal trajectory determination unit 40 determines whether all data in the set T of trajectory data (
Back to
The output unit 42 outputs the set A of pairs of a normal trajectory and an abnormal trajectory illustrated in
Here, a description will be given of the reason why the threshold value γ for the frequent episode mining is set to γ=2α+β and the threshold value δ for the frequent sequential pattern mining is set to δ=α+β.
When the complementary sequential pattern pair (k, kc) exists, both the sequential patterns k and kc have appearance frequencies greater than or equal to α. In addition, when k represents the sequential pattern with a higher appearance frequency between the sequential patterns k and kc, the difference between appearance frequencies of the sequential patterns k and kc is greater than or equal to β, and thus α+β is proper for the threshold value (δ).
In addition, when the number of trajectory data that matches the sequential pattern k is represented with |k|, the number of trajectory data that matches the sequential pattern kc is represented with |kc|, and the number of trajectory data that matches the episode pattern j corresponding to the sequential patterns k and kc is represented with |j|, |j|≧|k|+|kc| holds true when the complementary sequential pattern pair is formed. Moreover, the kc is a pattern with a frequency greater than or equal to α. Therefore, γ=2α+β is proper for the threshold value (γ) used for the frequent episode mining.
The threshold values γ and δ determined as described above allow the frequent episode mining and the frequent sequential pattern mining to be executed properly. That is to say, suppressed is a detection omission of (k, kc) caused by making the threshold values greater than the above described values and the occurrence of the extra process caused by making the threshold values less than the above described values. When the threshold values γ and δ are determined as described above, step S82 in
As described above, the present embodiment demonstrates that the frequency mining unit 36 extracts an episode pattern with an appearance frequency greater than or equal to the threshold value γ by the frequent episode mining and extracts a sequential pattern with an appearance frequency greater than or equal to the threshold value δ by the frequent sequential pattern mining in the set S of sequential data. The low-frequency sequence extracting unit 38 specifies, when a sequential pattern corresponding to the extracted episode pattern is extracted, a sequential pattern other the extracted sequential pattern from sequential patterns included in the episode pattern, and decides an abnormal sequential pattern from the specified sequential pattern. The above process allows the present embodiment to reduce the calculation amount and calculation time for deciding the abnormal sequential pattern because the use of the frequent episode mining and the frequent sequential pattern mining enables to narrow sequential patterns that may be the abnormal sequential pattern, i.e. to exclude the disinterested sequential pattern. Therefore, the present embodiment can improve the efficiency of the process.
Here, a description will be given of a case where only the frequent sequential pattern mining is used (comparison example: Patent Document 1). In the comparison example, assume that the frequent sequential pattern mining extracts a sequential pattern of A→E→I as a high-frequency sequential pattern (see
In addition, the present embodiment does not process an episode pattern with an appearance frequency less than or equal to the threshold value 3 illustrated in
In addition, the present embodiment determines the episode pattern extracted by the frequent episode mining to have an appearance frequency greater than or equal to γ (=2α+β), and determines the episode pattern extracted by the frequent sequential pattern mining to have an appearance frequency of greater than or equal to δ (=α+β). This enables to properly narrow sequential patterns that may be an abnormal sequential pattern.
The above described embodiment describes a sectorial episode pattern illustrated in
The above described embodiment demonstrates that the output unit 42 outputs a pair of the normal trajectory and the abnormal trajectory to the user terminal 20, but does not intend to suggest any limitation, and the output unit 42 may output only the information about the abnormal trajectory to the user terminal 20.
The above embodiment adopts the information processing system 100 to traffic field, but does not intend to suggest any limitation, and the information processing system 100 may be adopted to detect abnormal trail data in BPM (Business Process Management) field. For example, when the business process usually flows as “issue→check→approval by department chief→approval by manager→order”, the information processing system of the above described embodiment can be used to detect a trail pattern that has a flow of “issue→check→approval by manager→approval by department chief→order”.
The above described embodiment demonstrates that the server 30 executes the process in
The above described processing function can be achieved by a computer. In that case, a program in which the process of the function that the processing device is to have is written is provided. The execution of the program by the computer allows the above described processing function to be achieved on the computer. The program in which the process is written may be stored in a computer readable storage medium (however, transitory storage medium, e.g. carrier, is excluded).
The program is distributed by selling a portable storage medium such as a DVD (Digital Versatile Disc) and a CD-ROM (Compact Disc Read Only Memory) in which the program is stored. In addition, the program may be stored in a storage medium in a server computer, and transferred to other computers from the server computer through the network.
The computer executing the program stores the program stored in a portable storage medium or the program transferred from the server computer in the storage device thereof. The computer then reads out the program from the storage device thereof and executes the process following the program. The computer may directly read out the program from the portable storage medium, and execute the process following the program. The computer may execute the process following the program every time when the program is transferred from the server computer.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although the embodiments of the present invention have been described in detail, it should be understood that the various change, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2012-126438 | Jun 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8429165 | Jung et al. | Apr 2013 | B1 |
20030117279 | Ueno et al. | Jun 2003 | A1 |
20060053219 | Kutsumi et al. | Mar 2006 | A1 |
20070011722 | Hoffman et al. | Jan 2007 | A1 |
20100211192 | Stluka et al. | Aug 2010 | A1 |
20140201133 | Kawabata | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
2001-516107 | Sep 2001 | JP |
2007-48277 | Feb 2007 | JP |
2010-9112 | Jan 2010 | JP |
WO 9913427 | Mar 1999 | WO |
Entry |
---|
Lee, W. et al. “Adaptive intrusion detection: A data mining approach.” Artificial Intelligence Review 14.6 (2000): pp. 533-567. |
Luo, J. et al. “Fuzzy Frequent Episodes for Real-time Intrusion Detection.” FUZZ-IEEE. (2001): 4 pages. |
Blanchard, J. et al. “Assessing the interestingness of temporal rules with Sequential Intensity”, Studies in Computational Intelligence (SCI) 127, pp. 55-71. (2008). |
Heikki Mannila et al., “Discovery of Frequent Episodes in Event Sequences”, Data Mining and Knowledge Discovery 1, (1997), pp. 259-289. |
Rakesh Agrawal et al., “Mining Sequential Patterns”, IEEE, (1995), pp. 3-14. |
Number | Date | Country | |
---|---|---|---|
20130325761 A1 | Dec 2013 | US |