Method and apparatus for detecting misapplied sensors

Information

  • Patent Grant
  • 7680522
  • Patent Number
    7,680,522
  • Date Filed
    Friday, September 29, 2006
    18 years ago
  • Date Issued
    Tuesday, March 16, 2010
    14 years ago
Abstract
A method and system are provided for determining whether a spectrophotometric sensor is misapplied. In one embodiment, a spectrophotometric sensor is provided with a strain sensor configures to provide a signal related to the curvature of the spectrophotometric sensor. In such an embodiment, the signal may be compared, such as by an associated monitor, with an expected signal value. Based upon this comparison, a determination may be made whether or not the spectrophotometric sensor is misapplied.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to medical devices and, more particularly, to sensors used for sensing physiological parameters of a patient.


2. Description of the Related Art


This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices have been developed for monitoring many such physiological characteristics. Such devices provide doctors and other healthcare personnel with the information they need to provide the best possible healthcare for their patients. As a result, such monitoring devices have become an indispensable part of modern medicine.


One technique for monitoring certain physiological characteristics of a patient is commonly referred to as pulse oximetry, and the devices built based upon pulse oximetry techniques are commonly referred to as pulse oximeters. Pulse oximetry may be used to measure various blood flow characteristics, such as the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient. In fact, the “pulse” in pulse oximetry refers to the time varying amount of arterial blood in the tissue during each cardiac cycle.


Pulse oximeters typically utilize a non-invasive sensor that transmits light through a patient's tissue and that photoelectrically detects the absorption and/or scattering of the transmitted light in such tissue. One or more of the above physiological characteristics may then be calculated based upon the amount of light absorbed or scattered. More specifically, the light passed through the tissue is typically selected to be of one or more wavelengths that may be absorbed or scattered by the blood in an amount correlative to the amount of the blood constituent present in the blood. The amount of light absorbed and/or scattered may then be used to estimate the amount of blood constituent in the tissue using various algorithms.


Sensors exist that are designed to be applied to different areas on a patient, such as the forehead, nose, or digits. To facilitate accurate and reliable measurements when monitoring physiological characteristics of a patient, a sensor should be properly applied to the area for which it was designed. That is, a digit sensor that is improperly applied to a patient's forehead, as is often observed in a clinical setting, may produce inaccurate results due to its improper placement.


SUMMARY

Certain aspects commensurate in scope with the claimed invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms that the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.


There is provided a spectrophotometric sensor including: a sensor body; an emitter and a detector disposed on the sensor body; and a strain sensor disposed on the sensor body, wherein the strain sensor is configured to provide a signal related to a curvature of the spectrophotometric sensor.


There is also provided a system including: a monitor; and a spectrophotometric sensor adapted to be operatively coupled to the monitor, where the sensor includes: a sensor body; an emitter and a detector disposed on the sensor body; and a strain sensor disposed on the sensor body, wherein the strain sensor is configured to provide a signal related to a curvature of the spectrophotometric sensor.


There is also provided a method of manufacturing a sensor, including: providing an optical package in which an emitter and a detector are disposed; combining the optical package and a strain sensor such that a signal related to a curvature of the optical package can be measured; and disposing the strain sensor and the optical package on a sensor body.


There is also provided a method for detecting a misapplied sensor, including: receiving a signal related to a curvature of a spectrophotometric sensor at a monitor; comparing the signal with a threshold signal value; and providing a notification if the comparison indicates that the spectrophotometric sensor is misapplied.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the invention may become apparent upon reading the following detailed description and upon reference to the drawings in which:



FIG. 1 illustrates a pulse oximetry system coupled to a multi-parameter patient monitor and a sensor according to aspects of the present technique;



FIG. 2A is a block diagram of one embodiment of a system that may be configured to implement embodiments of the present technique;



FIG. 2B is a block diagram of an alternative embodiment of a system that may be configured to implement other embodiments of the present technique;



FIG. 3A is a block diagram of one embodiment of a strain sensor in accordance with aspects of the present technique;



FIG. 3B is a block diagram of an alternative embodiment of a strain sensor in accordance with aspects of the present technique;



FIG. 4 is a flow chart of exemplary actions associated with determining whether a sensor is applied to the area for which it was designed in accordance with aspects of the present technique;



FIG. 5 is a cutaway view of a sensor assembly according to one embodiment of the present technique;



FIG. 6 is a plan view of a sensor assembly according to another embodiment of the present technique; and



FIG. 7 is a plan view of a sensor assembly according to a further embodiment of the present technique.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


In accordance with the present technique, medical sensors for pulse oximetry or other applications utilizing spectrophotometry are provided that may provide a signal related to the misapplication of the sensor. As provided herein, the spectrophotometric sensors may include one or more strain sensors in accordance with embodiments of the present technique. Such strain sensors may relay a signal to a downstream medical device in order to convey an incorrect application of the spectrophotometric sensor to a healthcare practitioner, for example when a digit sensor is placed on a patient's forehead. By providing information related to the correct placement of a spectrophotometric sensor, strain sensors as provided herein may reduce measurement errors that may result from a spectrophotometric sensor being applied improperly.



FIG. 1 illustrates a spectrophotometric sensor 10 used in conjunction with a downstream medical device, which may include a pulse oximetry monitor 22. Spectrophotometric sensor 10 may include a sensor body 12, a flexible optical package 13 and a strain sensor 14. It should be appreciated that the optical package 13 may include an emitter 16 and a detector 18. In addition, as discussed below with reference to FIG. 6, the optical package may also include the strain sensor 14 in certain embodiments. Alternatively, the strain sensor 14 may be a separate component from the optical package 13 on the spectrophotometric sensor 10.


The optical package 13 may be disposed on a sensor body 12, which may be made of any suitable material, such as plastic, foam, woven material, or paper. In the depicted embodiments, the spectrophotometric sensor 10 is coupled to a cable 20 that is responsible for transmitting electrical and/or optical signals to and from the strain sensor 14, the emitter 16 and the detector 18. The cable 20 may be permanently coupled to the spectrophotometric sensor 10, or it may be removably coupled to the spectrophotometric sensor 10, the latter alternative being more useful and cost efficient in situations where the spectrophotometric sensor 10 is disposable. It should be appreciated that the cable 20 of the spectrophotometric sensor 10 may be coupled to the monitor 22 or it may be coupled to a transmission device (not shown) to facilitate wireless transmission between the spectrophotometric sensor 10 and the monitor 22. In an exemplary embodiment, the monitor 22 may be any suitable pulse oximeter, such as those available from Nellcor Puritan Bennett Inc. Furthermore, to upgrade conventional pulse oximetry provided by the monitor 22 to provide additional functions, the monitor 22 may be coupled to a multi-parameter patient monitor 24 via a cable 26 connected to a sensor input port or via a cable 28 connected to a digital communication port.


The emitter 16 and the detector 18 may be of any suitable type. For example, the emitter 16 may be one or more light emitting diodes adapted to transmit one or more wavelengths of light, and the detector 18 may be one or more photodetectors selected to receive light in the range or ranges emitted from the emitter 16. Alternatively, the emitter 16 may also be a laser diode or a vertical cavity surface emitting laser (VCSEL). The emitter 16 and the detector 18 may also include optical fiber sensing elements. The emitter 16 may include a broadband or “white light” source, in which case the detector could include any of a variety of elements for selecting specific wavelengths, such as reflective or refractive elements or interferometers. These kinds of emitters and/or detectors would typically be coupled to the spectrophotometric sensor via fiber optics. Alternatively, a spectrophotometric sensor 10 may sense light detected from the tissue at a different wavelength from the light emitted into the tissue. Such sensors may be adapted to sense fluorescence, phosphorescence, Raman scattering, Rayleigh scattering and multi-photon events or photoacoustic effects. For pulse oximetry applications using either transmission or reflectance type spectrophotometric sensors the oxygen saturation of the patient's arterial blood may be determined using two or more wavelengths of light, most commonly red and near infrared wavelengths. Similarly, in other applications, a tissue water fraction (or other tissue constituent related metric) or a concentration of one or more biochemical components in an aqueous environment may be measured using two or more wavelengths of light. In certain embodiments, these wavelengths may be infrared wavelengths between about 1,000 nm and about 2,500 nm. It should be understood that, as used herein, the term “light” may refer to one or more of ultrasound, radio, microwave, millimeter wave, infrared, visible, ultraviolet, gamma ray or X-ray electromagnetic radiation, and may also include any wavelength within the radio, microwave, infrared, visible, ultraviolet, or X-ray spectra, and that any suitable wavelength of light may be appropriate for use with the present techniques.


The spectrophotometric sensor 10 may be either a transmission or reflectance type sensor. Transmission type spectrophotometric sensors include an emitter 16 and a detector 18 that are typically placed on opposing sides of the sensor site. If the sensor site is a fingertip, for example, the spectrophotometric sensor 10 is positioned over the patient's fingertip such that the emitter 16 and the detector 18 lie on either side of the patient's nail bed. In other words, the spectrophotometric sensor 10 is positioned so that the emitter 16 is located on the patient's fingernail and the detector 18 is located 180° opposite the emitter 16 on the patient's finger pad. During operation, the emitter 16 shines one or more wavelengths of light through the patient's fingertip and the light received by the detector 18 is processed to determine various physiological characteristics of the patient. In each of the embodiments discussed herein, it should be understood that the locations of the emitter 16 and the detector 18 may be exchanged. For example, the detector 18 may be located at the top of the finger and the emitter 16 may be located underneath the finger. In either arrangement, the spectrophotometric sensor 10 will perform in substantially the same manner.


Reflectance type spectrophotometric sensors also operate by emitting light into the tissue and detecting the light that is transmitted and scattered by the tissue. However, reflectance type sensors include an emitter 16 and a detector 18 that are typically placed on the same side of the sensor site. For example, a reflectance type sensor may be placed on a patient's forehead or foot such that the emitter 16 and detector 18 lie side-by-side. Reflectance type spectrophotometric sensors detect light photons that are scattered back to the detector 18. A spectrophotometric sensor 10 may also be a transflectance sensor, such as a sensor that may subtend a portion of a baby's heel.



FIGS. 2A and 2B are block diagrams of possible embodiments of the present invention. For simplicity, like reference numerals have been used to designate those features previously described in regard to FIG. 1. Turning now to FIG. 2A, a sensor assembly 30 is shown which may contain the strain sensor 14, the emitter 16, the detector 18 and one or more information providing components 32. The sensor assembly 30 may include the spectrophotometric sensor 10 alone or the spectrophotometric sensor 10 and the cable 20 together.


In one embodiment of the present invention, the information providing components 32 may provide signals to enable the monitor 22 to look up information needed for calculations and comparisons (such as information stored in the monitor 22). Information used in calculations may include, for example, coefficients needed to calculate blood-oxygen saturation, which could be looked up based on the wavelength of light from emitter 16. In addition, information about the expected strain sensor output for a given sensor assembly 30 may be looked up based on the type of spectrophotometric sensor 10 used. In another embodiment, the information providing components 32 may provide the monitor 22 with the necessary information directly. For instance, the expected strain sensor output for sensor assembly 30 may be provided to the monitor 22 by the information providing components 32 rather than being looked up from a table. The information providing components 32 may include resistors, memory chips or other memory media.


In one embodiment of the present technique, light from emitter 16 passes into blood perfused tissue of a patient 34 where it is scattered then detected by detector 18. The sensor assembly 30 may be configured to transmit signals from the detector 18 to the monitor 22. The monitor 22 may include a microprocessor 36 connected to an internal bus 38. Also connected to the bus are a read-only memory (ROM) 40, a random access memory (RAM) 42, a display 44 and one or more control inputs 46. A time processing unit (TPU) 48 provides timing control signals to light drive circuitry 50 which controls when the emitter 16 is illuminated, and if multiple light sources are used, the multiplexed timing for the different light sources. TPU 48 also controls the gating-in of signals from detector 18 through an amplifier 52 and a switching circuit 54. These signals are sampled at the proper time, depending upon which of multiple light sources is illuminated, if multiple light sources are used. Signals received from the detector 18 may be passed through an amplifier 56, a filter 58 and an analog-to-digital converter 60. The digital data is then stored in a queued serial module (QSM) 62, for later downloading to RAM 42 as QSM 62 fills up. In one embodiment, there may be multiple parallel paths of separate amplifier, filter and converter for multiple signals received.


Based on the value of the received signals corresponding to the light received by detector 18, microprocessor 36 may calculate the oxygen saturation using various algorithms. These algorithms require coefficients, which may be empirically determined corresponding to, for example, the wavelengths of light used. Information on the wavelengths used may be provided to the monitor 22 from the information providing components 32 or from separate information providing components from those shown. The signal from the information providing components 32 may pass to a detector/decoder 64, which may further process the signal, and/or may pass instructions to the microprocessor 36 to look up coefficient values. These values may be stored in a look up table in the ROM 40. In a two-wavelength system, the particular set of coefficients chosen for any pair of wavelength spectra is determined by the value indicated by the information providing components 32 corresponding to a particular light source in a particular sensor assembly 30. In one embodiment, multiple resistor values may be assigned to select different sets of coefficients. In another embodiment, the same resistors are used to select from among the coefficients appropriate for an infrared source paired with either a near red source or far red source. The selection between whether the near red or far red set will be chosen can be selected with a control input from control inputs 46. Control inputs 46 may be, for instance, a switch on the pulse oximeter, a keyboard, or a port providing instructions from a remote host computer. Furthermore, any number of methods or algorithms may be used to determine a patient's pulse rate, oxygen saturation or any other desired physiological parameter.


The monitor 22 may also be configured to receive signals from the sensor assembly 30 related to the strain sensor 14 that may be processed by the monitor 22 to determine when the spectrophotometric sensor 10 is misapplied. The strain sensor 14 may be made of any suitable material capable of providing an output indicative of the degree to which spectrophotometric sensor 10 is being bent. For example, strain sensor 14 may include a piezoresistive material, a piezoelectric material, a bonded metallic material or any other strain-sensitive material such that the resistance of the material changes based on the strain on the material. In the depicted exemplary embodiment, signals received from the strain sensor 14 are passed through an amplifier 65, a demodulator 66 and a low-pass filter 67. It should be appreciated by one skilled in the art that the amplifier 65 could be located in the sensor assembly 30 or in the monitor 22. For example, the amplifier 65 may be included in the sensor assembly 30 (e.g., integrated into the spectrophotometric sensor 10 or incorporated into the cable 20) as illustrated in FIG. 2A. Alternatively, the amplifier 65 may be located before the demodulator 66 in the monitor 22, as illustrated in FIG. 2B.


In an exemplary embodiment, the output waveform of excitation source 68 may be selected to reduce the noise in the output of amplifier 65 by minimizing the effects of thermoelectric potentials and of the 1/f noise and other noise characteristics of the amplifier 65. The excitation source 68 may be powered from any suitable source, such as a battery or wall outlet. To minimize coupling between the strain sensor 14 input and output and to minimize spurious radiation from the conductors carrying the excitation signal, a low-bandwidth excitation waveform may be used. Once again, it should be appreciated by one skilled in the art that this excitation source 68 could be located in the sensor assembly 30, as illustrated in FIG. 2A, or in the monitor 22, as illustrated in FIG. 2B. The combinations of amplifier 65 and excitation source 68 locations depicted are not the only possible combinations envisioned, but rather any combination may be possible. A demodulator 66 may convert the output signal from strain sensor 14 to a baseband signal. The demodulator 66 may be followed by a low-pass filter 67 to remove noise due to power-line frequency pickup, the amplifier, the operation of other apparatus applied to or in the vicinity of the patient, and all other sources of interfering signals. Bandpass filtering may also be employed in the amplifier 65 for the same purpose.


Further, the monitor 22 may be configured to receive information about the strain sensor 14 from a memory chip or other device, such as the information providing components 32. Such a device may include a code or other identification parameter that may allow the monitor 22 to select an appropriate software or hardware instruction for processing the signal. For example, the information providing components 32 may provide information regarding the strain sensor 14 and the spectrophotometric sensor 10 to the monitor 22 to allow the monitor 22 to determine if the observed strain sensor output is consistent with the proper usage of spectrophotometric sensor 10. In one embodiment, these information providing components 32 may be configured to notify the monitor 22 of the type of spectrophotometric sensor 10 being used (e.g., forehead or digit) so that an expected strain sensor output may be looked up from a table on the monitor. In another embodiment, the information providing components 32 may supply the expected strain sensor output to the monitor 22.


The signal from the information providing components 32 may pass to a detector/decoder 64, which may further process the signal, and/or may pass instructions to a microprocessor 36. Further, a monitor 22 may run an algorithm or code for processing the signal provided by the strain sensor 14. For example, in certain embodiments, the processing algorithm may receive information that compares the strain sensor output to that expected of a certain type of sensor, providing for a determination of misapplication of spectrophotometric sensor 10 depending on the parameters of the particular strain sensor 14. The monitor 22 may also be configured to provide an indication about the sensor condition, such as an audio alarm, visual alarm or a display message, such as “CHECK SENSOR.” One embodiment of this process is described below, in reference to FIG. 4.



FIGS. 3A and 3B are block diagrams of possible embodiments of the strain sensor 14 that may be configured to implement the present technique. The strain sensor 14 may consist of a bridge including one or more strain sensing elements 71 with impedance that varies as a function of the mechanical strain in the element. Any or all of the strain sensing elements 71 may incorporate components that reduce the output in the zero-strain condition to an acceptable level. The strain sensor 14 may also include one or more resistors 72 to complete the bridge, depending on the number of strain sensing elements 71 used. FIG. 3A illustrates a strain sensor 14 in which only one strain sensing element 71 is used, while FIG. 3B illustrates a strain sensor 14 in which four strain sensing element 71 are used. As one skilled in the art will appreciate, the possible combinations of strain sensing elements 71 and resistors 72 are not limited to those shown but could be any combination in which at least one strain sensing element 71 is included in the bridge.


An offset element 74 (one possible information providing component 32) may be included in the sensor assembly 30 to provide information about the zero-strain offset output to the monitor 22, which may use this information to null out or otherwise account for the offset. As will be appreciated by those of ordinary skill in the art, the offset element 74 may also be provided in the monitor 22, though, for simplicity, it is depicted in FIGS. 3A and 3B as being a separate component. The interconnect assembly or assemblies may be constructed to minimize the pickup of all signals not due to the strain-induced output of the strain sensor 14, including cross-coupling between the bridge excitation and output signals.



FIG. 4 is a flow chart of exemplary actions associated with determining whether the spectrophotometric sensor 10 is applied to the area for which it was designed. This determination may be made by comparing the strain sensor output 96 to an output threshold 98 for a spectrophotometric sensor of the type being used. A flag 99 indicates whether the output threshold 98 is a high or low threshold. The flag 99 indicates whether the strain sensor output 96 is expected to be above or below the threshold output 98 when the spectrophotometric sensor 10 is applied correctly. In one embodiment of the present invention, the output threshold 98 and flag 99 may be stored in the information providing components 32. In another embodiment of the present invention, information about the type of spectrophotometric sensor 10 and strain sensor 14 being used is provided by the information providing components 32 and the output threshold 98 and flag 99 are looked up from a table stored in the ROM 40.


The strain sensor output 96 and the output threshold 98 may then be compared (Block 102). For example, in one embodiment of the present technique the output threshold 98 may be determined by measuring the expected strain sensor output when a digit sensor is applied to a digit with the largest radius of curvature expected, and the flag 99 may be set to indicate that a strain sensor output 96 greater than the output threshold 98 is unacceptable. For example, in one implementation, the output threshold 98 may be set to 0.7 volts and the flag 99 may indicate that this is a high threshold. Therefore, if the strain sensor output 96 were 0.9 volts the threshold would be exceeded, and if the strain sensor output 96 were 0.6 volts the threshold would not be exceeded. As one skilled in the art will appreciate, the output threshold 98 and flag 99 may vary depending on the type of material used in the strain sensor 14. The threshold may be chosen to provide the desired degrees of correct identification of a misapplied sensor and incorrect identification of a properly applied sensor. If the strain sensor output 96 is not as expected, the monitor 22 may provide an indication (Block 104) about the sensor condition, such as an audible alarm, visual alarm or a display message, such as “CHECK SENSOR.” Alternatively, the monitor 22 may cease display of the patient's physiological characteristics as an indication of incorrect spectrophotometric sensor placement. If the strain sensor output 96 is as expected, the monitor 22 may not indicate a sensor problem (Block 106).



FIGS. 5-7 illustrate spectrophotometric sensors 10 with various combinations of embodiments of sensor body 12, optical package 13 and strain sensor 14. The present technique is not intended to be limited to the combinations illustrated, but rather may include any combination of these embodiments or any other modifications, equivalents, and alternatives falling within the spirit and scope of the invention. Turning now to FIG. 5, a cutaway view of a spectrophotometric sensor 10A is shown according to one embodiment of the present technique. As described above in reference to FIG. 1, an optical package 13A may include the emitter 16 and the detector 18, and may be coupled to the cable 20. The optical package 13A may be attached to the strain sensor 14A via an adhesive layer 108 such that any bending of the optical package 13A results in a corresponding bend in a strain sensor 14A. The strain sensor 14A may run substantially the length of the optical package 13A or less and may also be coupled to the cable 20. The optical package 13A and strain sensor 14A may be disposed on a sensor body 12A, which may be configured for application to a particular area of the body, such as the forehead or digit.



FIG. 6 is a plan view of a spectrophotometric sensor 10B according to another embodiment of the present technique. The strain sensor 14B may be incorporated into the optical package 13A rather than being adhered to the exterior, as denoted by the dashed line. It should be appreciated that the strain sensor 14B may be located anywhere within the optical package 13A that would be expected to bend upon proper application of the spectrophotometric sensor 10B to the body area for which the spectrophotometric sensor 10B was designed. The strain sensor 14B may be configured such that it is as small as possible but still able to accurately provide a measurement related to the curvature of the optical package 13A.



FIG. 7 is a plan view of a spectrophotometric sensor 10C according to another embodiment of the present technique. The strain sensor 14C may be configured such that it is substantially perpendicular to an optical package 13B. It should be appreciated by one skilled in the art that the strain sensor 14C may be disposed at any angle relative to the optical package 13B as long as the strain sensor 14C generates a signal representative of the extent to which the spectrophotometric sensor 10 is bent or curved. The strain sensor 14C may be positioned completely under the optical package 13B or it may protrude from beneath the optical package 13B. In addition, the strain sensor 14C may be placed anywhere on the sensor body 12B that is expected to bend upon application of the spectrophotometric sensor 10C to the area of the body for which it was designed.


While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Indeed, the present techniques may not only be applied to measurements of blood oxygen saturation, but these techniques may also be utilized for the measurement and/or analysis of other blood constituents. For example, using the same, different, or additional wavelengths, the present techniques may be utilized for the measurement and/or analysis of carboxyhemoglobin, met-hemoglobin, total hemoglobin, intravascular dyes, and/or water content. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.

Claims
  • 1. A spectrophotometric sensor comprising: a sensor body;an emitter and a detector disposed on the sensor body; anda strain sensor disposed on the sensor body and positioned entirely between the emitter and the detector, wherein the strain sensor is capable of providing a signal indicative of sensor misapplication on a patient.
  • 2. The spectrophotometric sensor of claim 1, wherein the spectrophotometric sensor comprises at least one of a pulse oximetry sensor or a tissue water sensor configured to measure a water fraction.
  • 3. The spectrophotometric sensor of claim 1, wherein the signal comprises a measure of one of a voltage or a resistance.
  • 4. The spectrophotometric sensor of claim 1, wherein the signal comprises a measure of an electrical property of the strain sensor.
  • 5. The spectrophotometric sensor of claim 1, wherein the strain sensor comprises at least one of a piezoresistive material, a piezoelectric material or a bonded metallic material.
  • 6. The spectrophotometric sensor of claim 1, wherein the strain sensor is adhered to an optical package containing the emitter and the detector.
  • 7. The spectrophotometric sensor of claim 1, wherein the strain sensor is disposed within an optical package containing the emitter and the detector.
  • 8. The spectrophotometric sensor of claim 1, comprising an information providing component comprising at least a threshold signal value for the strain sensor.
  • 9. The spectrophotometric sensor of claim 1, comprising an information providing component comprising at least identification information that may be utilized by a monitor to determine at least a threshold signal value for the strain sensor.
  • 10. A system comprising: a spectrophotometric sensor comprising: a sensor body;an emitter and a detector disposed on the sensor body; anda strain sensor disposed on the sensor body, wherein the strain sensor is configured to provide a signal related to a curvature of the spectrophotometric sensor; anda monitor adapted to be operatively coupled to the sensor, the monitor being capable of determining whether the spectrophotometric sensor is applied to a sensor site for which it is designed based on the signal from the strain sensor.
  • 11. The system of claim 10, wherein the monitor comprises a pulse oximetry monitor.
  • 12. The system of claim 10, wherein the monitor is configured to compare the signal with a threshold signal value.
  • 13. The system of claim 12, wherein the monitor is configured to determine whether the threshold signal value is a high threshold or a low threshold based on a signal flag.
  • 14. The system of claim 12, wherein the monitor is configured to provide a notification when the comparison of the signal with the threshold signal value indicates that the spectrophotometric sensor is not applied to the sensor site for which it is designed.
  • 15. The system of claim 10, wherein the monitor is configured to look up a threshold signal value based on information received from an information providing component of the spectrophotometric sensor.
  • 16. The system of claim 10, wherein the monitor is configured to receive a threshold signal value from an information providing component of the spectrophotometric sensor.
  • 17. A method of manufacturing a sensor, comprising: providing an optical package in which an emitter and a detector are disposed;combining the optical package and a strain sensor such that a signal related to a curvature of the optical package can be measured, wherein the strain sensor is positioned entirely between the emitter and the detector; anddisposing the strain sensor and the optical package on a sensor body.
  • 18. The method of claim 17, wherein combining the strain sensor and the optical package comprises adhering the strain sensor to the optical package.
  • 19. The method of claim 17, wherein combining the strain sensor and the optical package comprises integrating the strain sensor into the optical package.
  • 20. The method of claim 17, wherein the strain sensor comprises at least one of a piezoresistive material, a piezoelectric material or a bonded metallic material.
  • 21. A method for detecting a misapplied sensor, comprising: receiving a signal related to a curvature of a spectrophotometric sensor at a monitor;comparing the signal with a threshold signal value; andproviding a notification at or from the monitor if the comparison indicates that the spectrophotometric sensor is misapplied.
  • 22. The method of claim 21, wherein the threshold signal value depends on the body area to which the spectrophotometric sensor is configured to be applied.
  • 23. The method of claim 21, wherein providing a notification at or from the monitor comprises at least one of sounding an audible alarm, displaying a message, or ceasing display of one or more physiological characteristics measured by the spectrophotometric sensor.
US Referenced Citations (896)
Number Name Date Kind
3721813 Condon et al. Mar 1973 A
4586513 Hamaguri May 1986 A
4603700 Nichols et al. Aug 1986 A
4621643 New, Jr. et al. Nov 1986 A
4653498 New, Jr. et al. Mar 1987 A
4685464 Goldberger et al. Aug 1987 A
4694833 Hamaguri Sep 1987 A
4697593 Evans et al. Oct 1987 A
4700708 New, Jr. et al. Oct 1987 A
4714080 Edgar, Jr. et al. Dec 1987 A
4714341 Hamaguri et al. Dec 1987 A
4759369 Taylor Jul 1988 A
4770179 New, Jr. et al. Sep 1988 A
4773422 Isaacson et al. Sep 1988 A
4776339 Schreiber Oct 1988 A
4781195 Martin Nov 1988 A
4796636 Branstetter et al. Jan 1989 A
4800495 Smith Jan 1989 A
4800885 Johnson Jan 1989 A
4802486 Goodman et al. Feb 1989 A
4805623 Jöbsis Feb 1989 A
4807630 Malinouskas Feb 1989 A
4807631 Hersh et al. Feb 1989 A
4819646 Cheung et al. Apr 1989 A
4819752 Zelin Apr 1989 A
4824242 Frick et al. Apr 1989 A
4825872 Tan et al. May 1989 A
4825879 Tan et al. May 1989 A
4830014 Goodman et al. May 1989 A
4832484 Aoyagi et al. May 1989 A
4846183 Martin Jul 1989 A
4848901 Hood, Jr. Jul 1989 A
4854699 Edgar, Jr. Aug 1989 A
4859056 Prosser et al. Aug 1989 A
4859057 Taylor et al. Aug 1989 A
4863265 Flower et al. Sep 1989 A
4865038 Rich et al. Sep 1989 A
4867557 Takatani et al. Sep 1989 A
4869253 Craig, Jr. et al. Sep 1989 A
4869254 Stone et al. Sep 1989 A
4880304 Jaeb et al. Nov 1989 A
4883055 Merrick Nov 1989 A
4883353 Hansmann et al. Nov 1989 A
4890619 Hatschek Jan 1990 A
4892101 Cheung et al. Jan 1990 A
4901238 Suzuki et al. Feb 1990 A
4908762 Suzuki et al. Mar 1990 A
4911167 Corenman et al. Mar 1990 A
4913150 Cheung et al. Apr 1990 A
4926867 Kanda et al. May 1990 A
4927264 Shiga et al. May 1990 A
4928692 Goodman et al. May 1990 A
4934372 Corenman et al. Jun 1990 A
4938218 Goodman et al. Jul 1990 A
4942877 Sakai et al. Jul 1990 A
4948248 Lehman Aug 1990 A
4955379 Hall Sep 1990 A
4960126 Conlon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4971062 Hasebe et al. Nov 1990 A
4974591 Awazu et al. Dec 1990 A
5007423 Branstetter et al. Apr 1991 A
5025791 Niwa Jun 1991 A
RE33643 Isaacson et al. Jul 1991 E
5028787 Rosenthal et al. Jul 1991 A
5035243 Muz Jul 1991 A
5040539 Schmitt et al. Aug 1991 A
5054488 Muz Oct 1991 A
5055671 Jones Oct 1991 A
5058588 Kaestle Oct 1991 A
5065749 Hasebe et al. Nov 1991 A
5066859 Karkar et al. Nov 1991 A
5069213 Polczynski Dec 1991 A
5078136 Stone et al. Jan 1992 A
5084327 Stengel Jan 1992 A
5088493 Giannini et al. Feb 1992 A
5090410 Saper et al. Feb 1992 A
5094239 Jaeb et al. Mar 1992 A
5094240 Muz Mar 1992 A
5099841 Heinonen et al. Mar 1992 A
5099842 Mannheimer et al. Mar 1992 A
H1039 Tripp et al. Apr 1992 H
5104623 Miller Apr 1992 A
5109849 Goodman et al. May 1992 A
5111817 Clark et al. May 1992 A
5113861 Rother May 1992 A
5125403 Culp Jun 1992 A
5127406 Yamaguchi Jul 1992 A
5131391 Sakai et al. Jul 1992 A
5140989 Lewis et al. Aug 1992 A
5152296 Simons Oct 1992 A
5154175 Gunther Oct 1992 A
5158082 Jones Oct 1992 A
5170786 Thomas et al. Dec 1992 A
5188108 Secker et al. Feb 1993 A
5190038 Polson et al. Mar 1993 A
5193542 Missanelli et al. Mar 1993 A
5193543 Yelderman Mar 1993 A
5203329 Takatani et al. Apr 1993 A
5209230 Swedlow et al. May 1993 A
5213099 Tripp et al. May 1993 A
5216598 Branstetter et al. Jun 1993 A
5217012 Young et al. Jun 1993 A
5217013 Lewis et al. Jun 1993 A
5218962 Mannheimer et al. Jun 1993 A
5224478 Sakai et al. Jul 1993 A
5226417 Swedlow et al. Jul 1993 A
5228440 Chung et al. Jul 1993 A
5237994 Goldberger Aug 1993 A
5239185 Ito et al. Aug 1993 A
5246002 Prosser Sep 1993 A
5246003 DeLonzor Sep 1993 A
5247931 Norwood Sep 1993 A
5247932 Chung et al. Sep 1993 A
5249576 Goldberger et al. Oct 1993 A
5253645 Friedman et al. Oct 1993 A
5253646 Delpy et al. Oct 1993 A
5259381 Cheung et al. Nov 1993 A
5259761 Schnettler et al. Nov 1993 A
5263244 Centa et al. Nov 1993 A
5267562 Ukawa et al. Dec 1993 A
5267563 Swedlow et al. Dec 1993 A
5273036 Kronberg et al. Dec 1993 A
5275159 Griebel Jan 1994 A
5279295 Martens et al. Jan 1994 A
5285783 Secker Feb 1994 A
5285784 Seeker Feb 1994 A
5287853 Vester et al. Feb 1994 A
5291884 Heinemann et al. Mar 1994 A
5297548 Pologe Mar 1994 A
5299120 Kaestle Mar 1994 A
5299570 Hatschek Apr 1994 A
5309908 Friedman et al. May 1994 A
5311865 Mayeux May 1994 A
5313940 Fuse et al. May 1994 A
5323776 Blakely et al. Jun 1994 A
5329922 Atlee, III Jul 1994 A
5337744 Branigan Aug 1994 A
5339810 Ivers et al. Aug 1994 A
5343818 McCarthy et al. Sep 1994 A
5343869 Pross et al. Sep 1994 A
5348003 Caro Sep 1994 A
5348004 Hollub et al. Sep 1994 A
5349519 Kaestle Sep 1994 A
5349952 McCarthy et al. Sep 1994 A
5349953 McCarthy et al. Sep 1994 A
5351685 Potratz Oct 1994 A
5353799 Chance Oct 1994 A
5355880 Thomas et al. Oct 1994 A
5355882 Ukawa et al. Oct 1994 A
5361758 Hall et al. Nov 1994 A
5365066 Krueger, Jr. et al. Nov 1994 A
5368025 Young et al. Nov 1994 A
5368026 Swedlow et al. Nov 1994 A
5368224 Richardson et al. Nov 1994 A
5372136 Steuer et al. Dec 1994 A
5377675 Ruskewicz et al. Jan 1995 A
5385143 Aoyagi Jan 1995 A
5387122 Goldberger et al. Feb 1995 A
5390670 Centa et al. Feb 1995 A
5392777 Swedlow et al. Feb 1995 A
5398680 Polson et al. Mar 1995 A
5402777 Warring et al. Apr 1995 A
5411023 Morris, Sr. et al. May 1995 A
5411024 Thomas et al. May 1995 A
5413099 Schmidt et al. May 1995 A
5413100 Barthelemy et al. May 1995 A
5413101 Sugiura May 1995 A
5413102 Schmidt et al. May 1995 A
5417207 Young et al. May 1995 A
5421329 Casciani et al. Jun 1995 A
5425360 Nelson Jun 1995 A
5425362 Siker et al. Jun 1995 A
5427093 Ogawa et al. Jun 1995 A
5429128 Cadell et al. Jul 1995 A
5429129 Lovejoy et al. Jul 1995 A
5431159 Baker et al. Jul 1995 A
5431170 Mathews Jul 1995 A
5437275 Amundsen et al. Aug 1995 A
5438986 Disch et al. Aug 1995 A
5448991 Polson et al. Sep 1995 A
5452717 Branigan et al. Sep 1995 A
5465714 Scheuing Nov 1995 A
5469845 DeLonzor et al. Nov 1995 A
RE35122 Corenman et al. Dec 1995 E
5474065 Meathrel et al. Dec 1995 A
5482034 Lewis et al. Jan 1996 A
5482036 Diab et al. Jan 1996 A
5483646 Uchikoga Jan 1996 A
5485847 Baker, Jr. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5490523 Isaacson et al. Feb 1996 A
5491299 Naylor et al. Feb 1996 A
5494032 Robinson et al. Feb 1996 A
5497771 Rosenheimer Mar 1996 A
5499627 Steuer et al. Mar 1996 A
5503148 Pologe et al. Apr 1996 A
5505199 Kim Apr 1996 A
5507286 Solenberger Apr 1996 A
5511546 Hon Apr 1996 A
5517988 Gerhard May 1996 A
5520177 Ogawa et al. May 1996 A
5521851 Wei et al. May 1996 A
5522388 Ishikawa et al. Jun 1996 A
5524617 Mannheimer Jun 1996 A
5529064 Rall et al. Jun 1996 A
5533507 Potratz et al. Jul 1996 A
5551423 Sugiura Sep 1996 A
5551424 Morrison et al. Sep 1996 A
5553614 Chance Sep 1996 A
5553615 Carim et al. Sep 1996 A
5555882 Richardson et al. Sep 1996 A
5558096 Palatnik Sep 1996 A
5560355 Merchant et al. Oct 1996 A
5564417 Chance Oct 1996 A
5575284 Athan et al. Nov 1996 A
5575285 Takanashi et al. Nov 1996 A
5577500 Potratz Nov 1996 A
5582169 Oda et al. Dec 1996 A
5584296 Cui et al. Dec 1996 A
5588425 Sackner et al. Dec 1996 A
5588427 Tien Dec 1996 A
5590652 Inai Jan 1997 A
5595176 Yamaura Jan 1997 A
5596986 Goldfarb Jan 1997 A
5611337 Bukta Mar 1997 A
5617852 MacGregor Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5626140 Feldman et al. May 1997 A
5630413 Thomas et al. May 1997 A
5632272 Diab et al. May 1997 A
5632273 Suzuki May 1997 A
5634459 Gardosi Jun 1997 A
5638593 Gerhardt et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645060 Yorkey et al. Jul 1997 A
5645440 Tobler et al. Jul 1997 A
5660567 Nierlich et al. Aug 1997 A
5662105 Tien Sep 1997 A
5662106 Swedlow et al. Sep 1997 A
5666952 Fuse et al. Sep 1997 A
5671529 Nelson Sep 1997 A
5673692 Schulze et al. Oct 1997 A
5673693 Solenberger Oct 1997 A
5676139 Goldberger et al. Oct 1997 A
5676141 Hollub Oct 1997 A
5678544 DeLonzor et al. Oct 1997 A
5680857 Pelikan et al. Oct 1997 A
5685299 Diab et al. Nov 1997 A
5685301 Klomhaus Nov 1997 A
5687719 Sato et al. Nov 1997 A
5687722 Tien et al. Nov 1997 A
5692503 Kuenstner Dec 1997 A
5692505 Fouts Dec 1997 A
5709205 Bukta Jan 1998 A
5713355 Richardson et al. Feb 1998 A
5724967 Venkatachalam Mar 1998 A
5727547 Levinson et al. Mar 1998 A
5731582 West Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743260 Chung et al. Apr 1998 A
5743263 Baker, Jr. Apr 1998 A
5746206 Mannheimer May 1998 A
5746697 Swedlow et al. May 1998 A
5752914 DeLonzor et al. May 1998 A
5755226 Carim et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5766125 Aoyagi et al. Jun 1998 A
5766127 Pologe et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5772587 Gratton et al. Jun 1998 A
5774213 Trebino et al. Jun 1998 A
5776058 Levinson et al. Jul 1998 A
5776059 Kaestle Jul 1998 A
5779630 Fein et al. Jul 1998 A
5779631 Chance Jul 1998 A
5782237 Casciani et al. Jul 1998 A
5782756 Mannheimer Jul 1998 A
5782757 Diab et al. Jul 1998 A
5782758 Ausec et al. Jul 1998 A
5786592 Hök Jul 1998 A
5790729 Pologe et al. Aug 1998 A
5792052 Isaacson et al. Aug 1998 A
5795292 Lewis et al. Aug 1998 A
5797841 DeLonzor et al. Aug 1998 A
5800348 Kaestle Sep 1998 A
5800349 Isaacson et al. Sep 1998 A
5803910 Potratz Sep 1998 A
5807246 Sakaguchi et al. Sep 1998 A
5807247 Merchant et al. Sep 1998 A
5807248 Mills Sep 1998 A
5810723 Aldrich Sep 1998 A
5810724 Gronvall Sep 1998 A
5813980 Levinson et al. Sep 1998 A
5817008 Rafert et al. Oct 1998 A
5817009 Rosenheimer et al. Oct 1998 A
5817010 Hibl Oct 1998 A
5818985 Merchant et al. Oct 1998 A
5820550 Polson et al. Oct 1998 A
5823950 Diab et al. Oct 1998 A
5823952 Levinson et al. Oct 1998 A
5827182 Raley et al. Oct 1998 A
5830135 Bosque et al. Nov 1998 A
5830136 DeLonzor et al. Nov 1998 A
5830137 Scharf Nov 1998 A
5839439 Nierlich et al. Nov 1998 A
RE36000 Swedlow et al. Dec 1998 E
5842979 Jarman et al. Dec 1998 A
5842981 Larsen et al. Dec 1998 A
5842982 Mannheimer Dec 1998 A
5846190 Woehrle Dec 1998 A
5851178 Aronow Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5853364 Baker, Jr. et al. Dec 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5865736 Baker, Jr. et al. Feb 1999 A
5871442 Madarasz et al. Feb 1999 A
5879294 Anderson et al. Mar 1999 A
5885213 Richardson et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5891021 Dillon et al. Apr 1999 A
5891022 Pologe Apr 1999 A
5891024 Jarman et al. Apr 1999 A
5891025 Buschmann et al. Apr 1999 A
5891026 Wang et al. Apr 1999 A
5902235 Lewis et al. May 1999 A
5910108 Solenberger Jun 1999 A
5911690 Rall Jun 1999 A
5912656 Tham et al. Jun 1999 A
5913819 Taylor et al. Jun 1999 A
5916154 Hobbs et al. Jun 1999 A
5916155 Levinson et al. Jun 1999 A
5919133 Taylor et al. Jul 1999 A
5919134 Diab Jul 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5921921 Potratz et al. Jul 1999 A
5922607 Bernreuter Jul 1999 A
5924979 Swedlow et al. Jul 1999 A
5924980 Coetzee Jul 1999 A
5924982 Chin Jul 1999 A
5924985 Jones Jul 1999 A
5934277 Mortz Aug 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5954644 Dettling et al. Sep 1999 A
5960610 Levinson et al. Oct 1999 A
5961450 Merchant et al. Oct 1999 A
5961452 Chung et al. Oct 1999 A
5964701 Asada et al. Oct 1999 A
5971930 Elghazzawi Oct 1999 A
5978691 Mills Nov 1999 A
5978693 Hamilton et al. Nov 1999 A
5983122 Jarman et al. Nov 1999 A
5987343 Kinast Nov 1999 A
5991648 Levin Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995858 Kinast Nov 1999 A
5995859 Takahashi Nov 1999 A
5997343 Mills et al. Dec 1999 A
5999834 Wang et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6005658 Kaluza et al. Dec 1999 A
6006120 Levin Dec 1999 A
6011985 Athan et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6014576 Raley et al. Jan 2000 A
6018673 Chin et al. Jan 2000 A
6018674 Aronow Jan 2000 A
6022321 Amano et al. Feb 2000 A
6023541 Merchant et al. Feb 2000 A
6026312 Shemwell et al. Feb 2000 A
6026314 Amerov et al. Feb 2000 A
6031603 Fine et al. Feb 2000 A
6035223 Baker, Jr. Mar 2000 A
6036642 Diab et al. Mar 2000 A
6041247 Weckstrom et al. Mar 2000 A
6044283 Fein et al. Mar 2000 A
6047201 Jackson, III Apr 2000 A
6061584 Lovejoy et al. May 2000 A
6064898 Aldrich May 2000 A
6064899 Fein et al. May 2000 A
6067462 Diab et al. May 2000 A
6073038 Wang et al. Jun 2000 A
6078833 Hueber Jun 2000 A
6081735 Diab et al. Jun 2000 A
6081742 Amano et al. Jun 2000 A
6083157 Noller Jul 2000 A
6083172 Baker, Jr. et al. Jul 2000 A
6088607 Diab et al. Jul 2000 A
6094592 Yorkey et al. Jul 2000 A
6095974 Shemwell et al. Aug 2000 A
6104938 Huiku et al. Aug 2000 A
6112107 Hannula Aug 2000 A
6113541 Dias et al. Sep 2000 A
6115621 Chin Sep 2000 A
6122535 Kaestle et al. Sep 2000 A
6133994 Mathews et al. Oct 2000 A
6135952 Coetzee Oct 2000 A
6144444 Haworth et al. Nov 2000 A
6144867 Walker et al. Nov 2000 A
6144868 Parker Nov 2000 A
6149481 Wang et al. Nov 2000 A
6150951 Olejniczak Nov 2000 A
6151107 Schöllerman et al. Nov 2000 A
6151518 Hayashi Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6154667 Miura et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6163715 Larsen et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6173196 Delonzor et al. Jan 2001 B1
6178343 Bindszus et al. Jan 2001 B1
6181958 Steuer et al. Jan 2001 B1
6181959 Schöllerman et al. Jan 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6188470 Grace Feb 2001 B1
6192260 Chance Feb 2001 B1
6195575 Levinson Feb 2001 B1
6198951 Kosuda et al. Mar 2001 B1
6206830 Diab et al. Mar 2001 B1
6213952 Finarov et al. Apr 2001 B1
6217523 Amano et al. Apr 2001 B1
6222189 Misner et al. Apr 2001 B1
6226539 Potratz May 2001 B1
6226540 Bernreuter et al. May 2001 B1
6229856 Diab et al. May 2001 B1
6230035 Aoyagi et al. May 2001 B1
6233470 Tsuchiya May 2001 B1
6236871 Tsuchiya May 2001 B1
6236872 Diab et al. May 2001 B1
6240305 Tsuchiya May 2001 B1
6253097 Aronow et al. Jun 2001 B1
6253098 Walker et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6256524 Walker et al. Jul 2001 B1
6261236 Grimblatov Jul 2001 B1
6263221 Chance et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6263223 Shepherd et al. Jul 2001 B1
6266546 Steuer et al. Jul 2001 B1
6266547 Walker et al. Jul 2001 B1
6272363 Casciani et al. Aug 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285894 Oppelt et al. Sep 2001 B1
6285895 Ristolainen et al. Sep 2001 B1
6285896 Tobler et al. Sep 2001 B1
6298252 Kovach et al. Oct 2001 B1
6308089 Von der Ruhr et al. Oct 2001 B1
6321100 Parker Nov 2001 B1
6330468 Scharf Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6339715 Bahr et al. Jan 2002 B1
6343223 Chin et al. Jan 2002 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6351658 Middleman et al. Feb 2002 B1
6353750 Kimura et al. Mar 2002 B1
6356774 Bernstein et al. Mar 2002 B1
6360113 Dettling Mar 2002 B1
6360114 Diab et al. Mar 2002 B1
6361501 Amano et al. Mar 2002 B1
6363269 Hanna et al. Mar 2002 B1
6370408 Merchant et al. Apr 2002 B1
6370409 Chung et al. Apr 2002 B1
6374129 Chin et al. Apr 2002 B1
6377829 Al-Ali et al. Apr 2002 B1
6381479 Norris Apr 2002 B1
6381480 Stoddar et al. Apr 2002 B1
6385471 Mortz May 2002 B1
6385821 Modgil et al. May 2002 B1
6388240 Schulz et al. May 2002 B2
6393310 Kuenstner May 2002 B1
6397091 Diab et al. May 2002 B2
6397092 Norris et al. May 2002 B1
6397093 Aldrich May 2002 B1
6400971 Finarov et al. Jun 2002 B1
6400972 Fine Jun 2002 B1
6402690 Rhee et al. Jun 2002 B1
6408198 Hanna et al. Jun 2002 B1
6411832 Guthermann Jun 2002 B1
6411833 Baker, Jr. et al. Jun 2002 B1
6419671 Lemberg Jul 2002 B1
6421549 Jacques Jul 2002 B1
6430423 DeLonzor et al. Aug 2002 B2
6430513 Wang et al. Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6434408 Heckel et al. Aug 2002 B1
6438399 Kurth Aug 2002 B1
6449501 Reuss Sep 2002 B1
6453183 Walker Sep 2002 B1
6453184 Hyogo et al. Sep 2002 B1
6456862 Benni Sep 2002 B2
6461305 Schnall Oct 2002 B1
6463310 Swedlow et al. Oct 2002 B1
6463311 Diab Oct 2002 B1
6466808 Chin et al. Oct 2002 B1
6466809 Riley Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6470200 Walker et al. Oct 2002 B2
6480729 Stone Nov 2002 B2
6490466 Fein et al. Dec 2002 B1
6496711 Athan et al. Dec 2002 B1
6498942 Esenaliev et al. Dec 2002 B1
6501974 Huiku Dec 2002 B2
6501975 Diab et al. Dec 2002 B2
6505060 Norris Jan 2003 B1
6505061 Larson Jan 2003 B2
6505133 Hanna et al. Jan 2003 B1
6510329 Heckel Jan 2003 B2
6510331 Williams et al. Jan 2003 B1
6512937 Blank et al. Jan 2003 B2
6515273 Al-Ali Feb 2003 B2
6519484 Lovejoy et al. Feb 2003 B1
6519486 Edgar, Jr. et al. Feb 2003 B1
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6526301 Larsen et al. Feb 2003 B2
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6546267 Sugiura et al. Apr 2003 B1
6553241 Mannheimer et al. Apr 2003 B2
6553242 Sarussi Apr 2003 B1
6553243 Gurley Apr 2003 B2
6556852 Schulze et al. Apr 2003 B1
6560470 Pologe May 2003 B1
6564077 Mortara May 2003 B2
6564088 Soller et al. May 2003 B1
6571113 Fein et al. May 2003 B1
6571114 Koike et al. May 2003 B1
6574491 Elghazzawi Jun 2003 B2
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587703 Cheng et al. Jul 2003 B2
6587704 Fine et al. Jul 2003 B1
6589172 Williams et al. Jul 2003 B2
6591122 Schmitt Jul 2003 B2
6591123 Fein et al. Jul 2003 B2
6594511 Stone et al. Jul 2003 B2
6594512 Huang Jul 2003 B2
6594513 Jobsis et al. Jul 2003 B1
6597931 Cheng et al. Jul 2003 B1
6597933 Kiani et al. Jul 2003 B2
6600940 Fein et al. Jul 2003 B1
6606510 Swedlow et al. Aug 2003 B2
6606511 Ali et al. Aug 2003 B1
6606512 Muz et al. Aug 2003 B2
6615064 Aldrich Sep 2003 B1
6615065 Barrett et al. Sep 2003 B1
6618602 Levin et al. Sep 2003 B2
6622034 Gorski et al. Sep 2003 B1
6628975 Fein et al. Sep 2003 B1
6631281 Kästle Oct 2003 B1
6643530 Diab et al. Nov 2003 B2
6643531 Katarow Nov 2003 B1
6647279 Pologe Nov 2003 B2
6647280 Bahr et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6650918 Terry Nov 2003 B2
6654621 Palatnik et al. Nov 2003 B2
6654622 Eberhard et al. Nov 2003 B1
6654623 Kästle Nov 2003 B1
6654624 Diab et al. Nov 2003 B2
6658276 Kianl et al. Dec 2003 B2
6658277 Wasserman Dec 2003 B2
6662033 Casciani et al. Dec 2003 B2
6665551 Suzuki Dec 2003 B1
6668182 Hubelbank Dec 2003 B2
6668183 Hicks et al. Dec 2003 B2
6671526 Aoyagi et al. Dec 2003 B1
6671528 Steuer et al. Dec 2003 B2
6671530 Chung et al. Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6671532 Fudge et al. Dec 2003 B1
6675031 Porges et al. Jan 2004 B1
6678543 Diab et al. Jan 2004 B2
6681126 Solenberger Jan 2004 B2
6681128 Steuer et al. Jan 2004 B2
6681454 Modgil et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6694160 Chin Feb 2004 B2
6697653 Hanna Feb 2004 B2
6697655 Sueppel et al. Feb 2004 B2
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6699199 Asada et al. Mar 2004 B2
6701170 Stetson Mar 2004 B2
6702752 Dekker Mar 2004 B2
6707257 Norris Mar 2004 B2
6708049 Berson et al. Mar 2004 B1
6709402 Dekker Mar 2004 B2
6711424 Fine et al. Mar 2004 B1
6711425 Reuss Mar 2004 B1
6714803 Mortz Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
6714805 Jeon et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6719686 Coakley et al. Apr 2004 B2
6719705 Mills Apr 2004 B2
6720734 Norris Apr 2004 B2
6721584 Baker, Jr. et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725074 Kästle Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6731963 Finarov et al. May 2004 B2
6731967 Turcott May 2004 B1
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6745061 Hicks et al. Jun 2004 B1
6748253 Norris et al. Jun 2004 B2
6748254 O'Neil et al. Jun 2004 B2
6754515 Pologe Jun 2004 B1
6754516 Mannheimer Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6760609 Jacques Jul 2004 B2
6760610 Tscupp et al. Jul 2004 B2
6763255 DeLonzor et al. Jul 2004 B2
6763256 Kimball et al. Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6773397 Kelly Aug 2004 B2
6778923 Norris et al. Aug 2004 B2
6780158 Yarita Aug 2004 B2
6791689 Weckström Sep 2004 B1
6792300 Diab et al. Sep 2004 B1
6793654 Lemberg Sep 2004 B2
6801797 Mannheimer et al. Oct 2004 B2
6801798 Geddes et al. Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6801802 Sitzman et al. Oct 2004 B2
6802812 Walker et al. Oct 2004 B1
6805673 Dekker Oct 2004 B2
6810277 Edgar, Jr. et al. Oct 2004 B2
6811538 Westbrook et al. Nov 2004 B2
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6819950 Mills Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6825619 Norris Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6829496 Nagai et al. Dec 2004 B2
6830711 Mills et al. Dec 2004 B2
6836679 Baker, Jr. et al. Dec 2004 B2
6839579 Chin Jan 2005 B1
6839580 Zonios et al. Jan 2005 B2
6839582 Heckel Jan 2005 B2
6839659 Tarassenko et al. Jan 2005 B2
6842635 Parker Jan 2005 B1
6845256 Chin et al. Jan 2005 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6850789 Schweitzer, Jr. et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6863652 Huang et al. Mar 2005 B2
6865407 Kimball et al. Mar 2005 B2
6879850 Kimball Apr 2005 B2
6882874 Huiku Apr 2005 B2
6889153 Dietiker May 2005 B2
6898452 Al-Ali et al. May 2005 B2
6909912 Melker et al. Jun 2005 B2
6912413 Rantala et al. Jun 2005 B2
6916289 Schnall Jul 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931269 Terry Aug 2005 B2
6934570 Kiani et al. Aug 2005 B2
6939307 Dunlop Sep 2005 B1
6941162 Fudge et al. Sep 2005 B2
6947781 Asada et al. Sep 2005 B2
6950687 Al-Ali Sep 2005 B2
6963767 Rantala et al. Nov 2005 B2
6971580 Zhu et al. Dec 2005 B2
6983178 Fine et al. Jan 2006 B2
6985763 Boas et al. Jan 2006 B2
6985764 Mason et al. Jan 2006 B2
6990426 Yoon et al. Jan 2006 B2
6992751 Okita et al. Jan 2006 B2
6992772 Block et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6993372 Fine et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7006855 Sarussi Feb 2006 B1
7006856 Baker, Jr. et al. Feb 2006 B2
7016715 Stetson Mar 2006 B2
7020507 Scharf et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7024235 Melker et al. Apr 2006 B2
7025728 Ito et al. Apr 2006 B2
7027849 Al-Ali et al. Apr 2006 B2
7027850 Wasserman Apr 2006 B2
7035697 Brown Apr 2006 B1
7039449 Al-Ali May 2006 B2
7039538 Baker, Jr. May 2006 B2
7043289 Fine et al. May 2006 B2
7047055 Boaz et al. May 2006 B2
7047056 Hannula et al. May 2006 B2
7060035 Wasserman et al. Jun 2006 B2
7062307 Norris et al. Jun 2006 B2
7067893 Mills et al. Jun 2006 B2
7072701 Chen et al. Jul 2006 B2
7072702 Edgar, Jr. et al. Jul 2006 B2
7072703 Zhang et al. Jul 2006 B2
7079880 Stetson Jul 2006 B2
7085597 Fein et al. Aug 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7107088 Aceti Sep 2006 B2
7113815 O'Neil et al. Sep 2006 B2
7123950 Mannheimer Oct 2006 B2
7127278 Melker et al. Oct 2006 B2
7130671 Baker, Jr. et al. Oct 2006 B2
7132641 Schulz et al. Nov 2006 B2
7133711 Chernoguz et al. Nov 2006 B2
7139599 Terry Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7162288 Nordstrom Jan 2007 B2
7190987 Lindekugel et al. Mar 2007 B2
7194293 Baker, Jr. Mar 2007 B2
7198778 Achilefu et al. Apr 2007 B2
7209774 Baker, Jr. Apr 2007 B2
7209775 Bae et al. Apr 2007 B2
7215984 Diab et al. May 2007 B2
7215991 Besson et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7236811 Schmitt Jun 2007 B2
7248910 Li et al. Jul 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7263395 Chan et al. Aug 2007 B2
7272426 Schmid Sep 2007 B2
7277741 Debreczeny et al. Oct 2007 B2
7280858 Al-Ali et al. Oct 2007 B2
7289837 Mannheimer et al. Oct 2007 B2
7295866 Al-Ali et al. Nov 2007 B2
7297119 Westbrook et al. Nov 2007 B2
7302284 Baker, Jr. et al. Nov 2007 B2
7305262 Brodnick et al. Dec 2007 B2
7315753 Baker, Jr. et al. Jan 2008 B2
20010021803 Blank et al. Sep 2001 A1
20010051767 Williams et al. Dec 2001 A1
20020026109 Diab et al. Feb 2002 A1
20020028990 Sheperd et al. Mar 2002 A1
20020038078 Ito Mar 2002 A1
20020042558 Mendelson Apr 2002 A1
20020068859 Knopp Jun 2002 A1
20020128544 Diab et al. Sep 2002 A1
20020133067 Jackson, III Sep 2002 A1
20020156354 Larson Oct 2002 A1
20020173706 Takatani Nov 2002 A1
20020173709 Fine et al. Nov 2002 A1
20020190863 Lynn Dec 2002 A1
20020198442 Rantala et al. Dec 2002 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030036690 Geddes et al. Feb 2003 A1
20030045785 Diab et al. Mar 2003 A1
20030073889 Keilbach et al. Apr 2003 A1
20030073890 Hanna Apr 2003 A1
20030100840 Sugiura et al. May 2003 A1
20030132495 Mills et al. Jul 2003 A1
20030135099 Al-Ali Jul 2003 A1
20030162414 Schulz et al. Aug 2003 A1
20030171662 O'Connor et al. Sep 2003 A1
20030176776 Huiku Sep 2003 A1
20030181799 Lindekugel et al. Sep 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030195402 Fein et al. Oct 2003 A1
20030197679 Ali et al. Oct 2003 A1
20030212316 Leiden et al. Nov 2003 A1
20030225323 Kiani et al. Dec 2003 A1
20030225337 Scharf et al. Dec 2003 A1
20030236452 Melker et al. Dec 2003 A1
20030236647 Yoon et al. Dec 2003 A1
20040006261 Swedlow et al. Jan 2004 A1
20040010188 Wasserman et al. Jan 2004 A1
20040024297 Chen et al. Feb 2004 A1
20040024326 Yeo et al. Feb 2004 A1
20040034293 Kimball Feb 2004 A1
20040039272 Abdul-Hafiz et al. Feb 2004 A1
20040039273 Terry Feb 2004 A1
20040054269 Rantala et al. Mar 2004 A1
20040054291 Schulz et al. Mar 2004 A1
20040059209 Al-Ali et al. Mar 2004 A1
20040059210 Stetson Mar 2004 A1
20040064020 Diab et al. Apr 2004 A1
20040068164 Diab et al. Apr 2004 A1
20040087846 Wasserman May 2004 A1
20040092805 Yarita May 2004 A1
20040097797 Porges et al. May 2004 A1
20040098009 Boecker et al. May 2004 A1
20040107065 Al-Ali et al. Jun 2004 A1
20040116788 Chernoguz et al. Jun 2004 A1
20040116789 Boaz et al. Jun 2004 A1
20040117891 Hannula et al. Jun 2004 A1
20040122300 Boas et al. Jun 2004 A1
20040122302 Mason et al. Jun 2004 A1
20040133087 Ali et al. Jul 2004 A1
20040133088 Al-Ali et al. Jul 2004 A1
20040138538 Stetson Jul 2004 A1
20040138540 Baker, Jr. et al. Jul 2004 A1
20040143172 Fudge et al. Jul 2004 A1
20040147821 Al-Ali et al. Jul 2004 A1
20040147822 Al-Ali et al. Jul 2004 A1
20040147823 Kiani et al. Jul 2004 A1
20040147824 Diab et al. Jul 2004 A1
20040152965 Diab et al. Aug 2004 A1
20040158134 Diab et al. Aug 2004 A1
20040158135 Baker, Jr. et al. Aug 2004 A1
20040162472 Berson et al. Aug 2004 A1
20040171920 Mannheimer et al. Sep 2004 A1
20040171948 Terry Sep 2004 A1
20040176671 Fine et al. Sep 2004 A1
20040181133 Al-Ali et al. Sep 2004 A1
20040181134 Baker, Jr. et al. Sep 2004 A1
20040186358 Chernow et al. Sep 2004 A1
20040199063 O'Neil et al. Oct 2004 A1
20040204636 Diab et al. Oct 2004 A1
20040204637 Diab et al. Oct 2004 A1
20040204638 Diab et al. Oct 2004 A1
20040204639 Casciani et al. Oct 2004 A1
20040204865 Lee et al. Oct 2004 A1
20040210146 Diab et al. Oct 2004 A1
20040215069 Mannheimer Oct 2004 A1
20040230107 Asada et al. Nov 2004 A1
20040230108 Melker et al. Nov 2004 A1
20040236196 Diab et al. Nov 2004 A1
20040242980 Kiani et al. Dec 2004 A1
20040249252 Fine et al. Dec 2004 A1
20040257557 Block et al. Dec 2004 A1
20040260161 Melker et al. Dec 2004 A1
20040267103 Li et al. Dec 2004 A1
20040267104 Hannula et al. Dec 2004 A1
20040267140 Ito et al. Dec 2004 A1
20050004479 Townsend et al. Jan 2005 A1
20050010092 Weber et al. Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050020894 Norris et al. Jan 2005 A1
20050027207 Westbrook et al. Feb 2005 A1
20050033128 Ali et al. Feb 2005 A1
20050033129 Edgar, Jr. et al. Feb 2005 A1
20050043599 O'Mara Feb 2005 A1
20050043600 Diab et al. Feb 2005 A1
20050049470 Terry Mar 2005 A1
20050049471 Aceti Mar 2005 A1
20050075550 Lindekugel Apr 2005 A1
20050085735 Baker, Jr. et al. Apr 2005 A1
20050113651 Wood et al. May 2005 A1
20050143634 Baker, Jr. et al. Jun 2005 A1
20050177034 Beaumont Aug 2005 A1
20050197548 Dietiker Sep 2005 A1
20050197552 Baker, Jr. Sep 2005 A1
20050197579 Baker, Jr. Sep 2005 A1
20050197793 Baker, Jr. Sep 2005 A1
20050228248 Dietiker Oct 2005 A1
20050277819 Kiani et al. Dec 2005 A1
20050283059 Iyer et al. Dec 2005 A1
20060030764 Porges et al. Feb 2006 A1
20060058594 Ishizuka et al. Mar 2006 A1
20060084852 Mason et al. Apr 2006 A1
20060089547 Sarussi Apr 2006 A1
20060106294 Maser et al. May 2006 A1
20060135860 Baker, Jr. et al. Jun 2006 A1
20060183988 Baker, Jr. et al. Aug 2006 A1
20060195028 Hannula et al. Aug 2006 A1
20060200015 Baker, Jr. Sep 2006 A1
20060224058 Mannheimer Oct 2006 A1
20060247501 Ali Nov 2006 A1
20060253016 Baker, Jr. et al. Nov 2006 A1
20060258921 Addison et al. Nov 2006 A1
20060264726 Mannheimer et al. Nov 2006 A1
20060264727 Mannheimer et al. Nov 2006 A1
20060276700 O'Neil Dec 2006 A1
20060281984 Mannheimer et al. Dec 2006 A1
20070032710 Raridan et al. Feb 2007 A1
20070032712 Raridan et al. Feb 2007 A1
20070032715 Eghbal et al. Feb 2007 A1
20070068527 Baker, Jr. Mar 2007 A1
20070073121 Hoarau et al. Mar 2007 A1
20070073125 Hoarau et al. Mar 2007 A1
20070073126 Raridan, Jr. Mar 2007 A1
20070073128 Hoarau et al. Mar 2007 A1
20070077200 Baker, Jr. Apr 2007 A1
20070078316 Hoarau et al. Apr 2007 A1
20070100220 Baker, Jr. May 2007 A1
20070106137 Baker, Jr. et al. May 2007 A1
20070118027 Baker, Jr. et al. May 2007 A1
20070179369 Baker, Jr. Aug 2007 A1
20070208235 Besson et al. Sep 2007 A1
20070208242 Baker, Jr. Sep 2007 A1
Foreign Referenced Citations (36)
Number Date Country
3516338 Nov 1986 DE
3703458 Aug 1988 DE
19632361 Feb 1997 DE
0127947 Dec 1984 EP
0204259 Dec 1986 EP
0531631 Mar 1993 EP
0724860 Aug 1996 EP
2685865 Jul 1993 FR
2111343 Apr 1990 JP
3116259 Dec 1991 JP
3116260 Dec 1991 JP
5049625 Mar 1993 JP
6014906 Jan 1994 JP
6269430 Sep 1994 JP
7001273 Jan 1995 JP
7236625 Sep 1995 JP
2000237170 Sep 2000 JP
2003275192 Sep 2003 JP
2004089546 Mar 2004 JP
2004159810 Jun 2004 JP
2004329406 Nov 2004 JP
2004337605 Dec 2004 JP
2004344367 Dec 2004 JP
2004351107 Dec 2004 JP
WO8909566 Oct 1989 WO
WO9001293 Feb 1990 WO
WO9111137 Aug 1991 WO
WO9502358 Jan 1995 WO
WO9639927 Dec 1996 WO
WO9736536 Oct 1997 WO
WO9857577 Dec 1998 WO
WO9947039 Sep 1999 WO
WO0059374 Oct 2000 WO
WO2005010567 Feb 2005 WO
WO2005010568 Feb 2005 WO
WO2007141121 Dec 2007 WO
Related Publications (1)
Number Date Country
20080081967 A1 Apr 2008 US