The invention relates to a method and apparatus for detecting multiple targets; in particular to a disposable detector having a plurality of detector sites each employing nano-structures as active elements, adapted to sense a selected target or a conditional concentration thereof. The nano-structures are manipulated and assembled by optical trapping techniques.
Sensors for detecting various chemical or biological targets are known. One such sensor as set forth in Asher, U.S. Pat. No. 6,544,800 discloses a sensor composed of a crystalline colloidal array polymerized in a hydrogel. The hydrogel shrinks and swells in response to specific stimuli. As the hydrogels shrink or swell, the lattice structure of the colloidal array embedded therein changes thereby changing the wavelength of light diffracted by the crystalline colloidal array. The arrangement in Asher is assembled using conventional chemical techniques and is not conveniently or particularly adapted for use with nano manipulation techniques. Asher employs a functionalized gel and is thus limited in its broad application.
Charych et al., U.S. Pat. No. 6,022,748 discloses methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. Charych et al. particularly discloses methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method. Charych is likewise limited to self-assembling monomers and functionalized gels and is generally limited to the collection of one species.
Grier et al. U.S. patent application Ser. No. 10/428,785 discloses a method and apparatus for detecting targets using functionalized colloidal beads encapsulated in the gel matrix secured to the end of the fiber optic. Although useful for its intended purposes, the device was constrained by bandwidth limitations.
The present invention is based on the discovery that a nano-sensor comprising at least one pair of nano-structures encapsulated in a surrounding sensible medium is operative to produce an output indicative of the presence of a particular target. A substrate having a plurality of sensor locations, one for each nano-structure pair is operative to produce an output in response to an input from the nano-sensor to thereby identify a target of interest. In a particular embodiment, the nano-structure comprises a pair of nanotubes. The interaction between nano-structures provides an indication of the presense or absence of a target material.
In one embodiment, the sensor locations comprise microcircuits disposed on the substrate. In particular, the microcircuits include an electronic switch responsive to the signal from corresponding pair of nano-structures.
In accordance with the present invention, the nano-sensor is assembled using optical trapping techniques whereby the nano structures and the sensible medium are positioned at corresponding sensor locations on a substrate.
In an exemplary embodiment, the nano-sensor is disposable and is adapted for one-time use in various commercial applications.
A sensor unit 16 is located in each sensor location 14. Each sensor unit 16 may be responsive to the presence of a particular target (inorganic, organic or biological target). Each sensor unit 16 comprises at least two nano-structures 18, i.e., particles in the known nano regime, supported in spaced relationship in a gel matrix 20 which surrounds and encapsulates the nano-structures. In accordance with an exemplary embodiment of the invention, and as illustrated herein, each nano-structure comprises a nanotube 18. It should be understood that other known nano-structures such as particles, beads, wire and various molecular structures may be used.
In accordance with the invention, the nano-structures or nanotubes 18, the gel 20 or both may be functionalized to be responsive to the presence of a particular target.
In an alternatiave embodiment, the sensor unit 16 may also employ bead elements 22 comprising beads uniformly dispersed in and suspended in the gel matrix 20. The bead elements 22 may likewise be functionalized if desired upon the application. In such an arrangement, the beads 22 provide pathways for communication between the pair of nano-structures.
It should be understood that a bundle of nanotubes 24
Nano-tubes are particularly useful as they have strong abrasion resistance, and as a sensor is swiped on a surface, the nano-tubes protect the gel matrix, particularly the gel between the tubes. Thus targets which are able to migrate to an area between the tubes are less likely to be abraded and lost.
One or more functionalized species 30 may be attached to each nanotube 18 by known techniques. In the presence of a target species 32, gel 20 may swell or shrink, and the relative position or proximity of the nanotubes 18 may change. For example, the nanotubes 18 may be in contact and move farther apart
It should be further understood that not only can the relative position of the tubes produce a sensible indication of a target, but also the functionalized elements may create a bridging effect to connect the tubes and thereby complete a circuit. Bridging includes antigen antibody reaction or DNA hybridization reaction. Also, the beads may clump as they do in a conventional blood test creating a bridge, or causing the relative positions of the tubes to change in a sensible way, i.e., any desired or measureable change in the position of the tubes can be exploited to provide a desired indication of a target.
Each sensor unit 16 is disposed over a corresponding sensor location 14. Each sensor location includes a microcircuit 40 adapted to be responsive to a corresponding nano-sensor unit 16. The nanotubes 18 may be physically attached at a proximate end 42 to corresponding contact 44 on the microcircuit. Alternatively, the end of the nanotube may be in spaced relation with the contact 44.
When, as illustrated in
It should be understood that as the constituent particle size decreases, the ratio of surface area to volume S/V increases for the same volume of particles, thereby increasing the sensitivity of the sensor. For a sensor with a desired surface area for detection, building the sensor from nanotubes rather than microparticles gives you a factor of 1000 or more decrease in sensor size. It is possible to achieve a relatively large surface area in a small detector volume. At the same time, it is possible to thereby increase the number of detector units on a single substrate.
In another embodiment (
In yet another embodiment (
The nanotubes are also functionalized by species 46 (
The sensor or microcircuit 40 may comprise an electronic switch 50 shown schematically in
The relative spacing of the nanotubes may produce a corresponding change in the condition of the sensor unit. For example, the nanotubes may come into contact creating a short circuit. Such a short circuit may be detected at the input of a switch 50 causing it to conduct. Alternatively the switch may become open circuit, or the capacitance may change in any event, the condition of the switch is an indication of the presence or absence of the target species. It is also possible that the relative positionment of the nanotubes may provide an indication of the relative concentration of the target species in the medium. In such a case, the current through the switch would vary in accordance with the concentration.
In an alternative embodiment (
As shown in
High density (e.g. 10,000 sensor/in2) of sensor units 16 and 60 may be assembled and secured to respective substrates 12 and 62 using optical trapping techniques as set forth in the above-identified application Ser. No. 10/974,976. An apparatus implementing optical trapping may be a BioRyx® system manufactured by Arryx, Inc. In such an arrangement, the gel may be formulated with or without functional elements and the nanotubes may be selectively positioned in pairs at each sensor location. If desired functionalized or non-functionalized colloidal beads may be dispersed in the gel material as well.
In accordance with the invention, the optical trapping system may be employed to position each pair of nanotubes in spaced relationship and positioned proximate to a corresponding sensor location on the substrate. The gel may be thereafter deposited on the substrate. Alternatively, a sensor unit may be formed by positioning the nanotubes within the gel matrix and then using optical trapping to surround and sever individual sensor units for disposition on the substrate.
Various mechanisms may be employed to produce an output from the sensor units for each sensor location. The various mechanisms include forming a molecular or physical contact between the nanotubes, bridging the space between the nanotubes with clumpped or bridging bead elements which trap the target species and which form a bridge between the nano-structures.
In addition, the gel may swell or shrink causing the nanotubes to separate or move into closer proximity respectively. If the gel material is conductive or semi-conductive, the spacing of the nanotubes will provide an indication of the relative concentration of the target materials. Alternatively, the spacing may establish a capacative response of the nanotubes which may be sensed by the microcircuit. At least one of the nanotubes, the gel medium, and the colloidal beads are functionalized to attract target species. If more than one of these elements is functionalized, the response may be amplified or improved for greater sensitivity.
An optical element such as a photodiode 80 (
Alternatively, target species attracted to the space between the nanotubes may be responsive to the light from the photodiode causing a fluorescence response which may be sensed by the photo detector. The intensity and duration of the response may also provide an indication of the concentration of the target species. Nano-particles 92 may also be located in the space between the nanotubes to amplify the light reflected by the target species.
In another embodiment, the disposable sensor support with disposable sensor units disposed thereon may be in the form of a roll 100 having perforated lines 102 of such supports 66. The supports 66 may be separated by a pull force to tear the perforated line as shown in
In yet another embodiment, shown in
It should also be understood one of the advantages of using bundles of tubes, as shown in
This application is related to U.S. patent application Ser. No. 10/974,976, filed Oct. 28, 2004, entitled System and Method for Manipulating and Processing Nano Materials using Holographic Optical Trapping, and U.S. patent application Ser. No. 10/428,785, filed May 5, 2003, entitled Broad Spectrum Optically Addressed Sensor, the teachings of the above-identified applications are incorporated herein by reference.