Cars include many different electromechanical and electronic applications. Examples include braking systems, electronic security systems, radios, Compact Disc (CD) players, internal and external lighting systems, temperature control systems, locking systems, seat adjustment systems, speed control systems, mirror adjustment systems, directional indicators, etc. Generally the processors that control these different car systems do not talk to each other. For example, the car radio does not communicate with the car heating system or the car braking system. This means that each one of these car systems operate independently and do not talk to the other car systems. For example, separate processors and separate user interfaces are required for the car temperature control system and for the car audio system. Many of these different car processors may be underutilized since they are only used intermittently.
Even when multiple processors in the car do talk to each other, they are usually so tightly coupled together that it is impossible to change any one of these processors without disrupting all of the systems that are linked together. For example, some cars may have a dashboard interface that controls both internal car temperature and a car radio. The car radio cannot be replaced with a different model and still work with the dashboard interface and the car temperature controller.
Integration of new systems into a car is also limited. Car systems are designed and selected well before the car is ever built. A custom wiring harness is then designed to connect only those car systems selected for the car. A car owner cannot incorporate new systems into the existing car. For example, a car may not originally come with a navigation system. An aftermarket navigation system from another manufacturer cannot be integrated into the existing car.
Because aftermarket devices cannot be integrated into car control and interface systems, it is often difficult for the driver to try and operate these aftermarket devices. For example, the car driver has to operate the aftermarket navigation system from a completely new interface, such as the keyboard and screen of a laptop computer. The driver then has to operate the laptop computer not from the front dashboard of the car, but from the passenger seat of the car. This makes many aftermarket devices both difficult and dangerous to operate while driving.
Cars include many different electro-mechanical and electronic systems. Examples include braking systems, electronic security systems, radios, Compact Disc (CD) players, internal and external lighting systems, temperature control systems, locking systems, seat adjustment systems, speed control systems, mirror adjustment systems, directional indicators, etc. Generally the processors that control these different car systems do not talk to each other. For example, the car radio does not communicate with the car heating system or the car braking system. This means that each one of these car systems has to provide a separate standalone operating system. For example, separate processors and separate user interfaces are required for the car temperature control system and for the car audio system. Many of these different car processors may be underutilized since they are only used intermittently.
Even when some processors in the car do talk to each other, they are usually so tightly coupled together that it is impossible to change any one of these processors without disrupting all of the systems that are linked together. For example, some cars may have an interface on the dashboard that controls both internal car temperature and a car radio. The car radio cannot be replaced with a different model and still work with the dashboard interface and the car temperature controller.
Integration of new systems into a car is also limited. Car systems are designed and selected well before the car is ever built. A custom wiring harness is then designed to connect all the car systems selected for the car. A car owner cannot later incorporate new systems into the existing car. For example, a car may not originally come with a car navigation system. An aftermarket navigation system from another manufacturer cannot be integrated into the car.
Because aftermarket devices cannot be integrated into car control and interface systems, it is often difficult for the driver to try and operate these aftermarket devices. For example, the car driver has to operate the aftermarket navigation system from a completely new interface, such as the keyboard and screen of a laptop computer. The driver then has to operate the laptop computer, not from the front dashboard of the car, but from the passenger seat of the car. This makes many aftermarket devices both difficult and dangerous to operate while driving.
The present invention addresses this and other problems associated with the prior art.
A multiprocessor system used in a car, home, or office environment includes multiple processors that run different real-time applications. A dynamic configuration system runs on the multiple processors and includes a device manager, configuration manager, and data manager. The device manager automatically detects and adds new devices to the multiprocessor system, and the configuration manager automatically reconfigures which processors run the real-time applications. The data manager identifies the type of data generated by the new devices and identifies which devices in the multiprocessor system are able to process the data.
A communication system for a mobile vehicle, home, or office environment includes multiple processors. The multiple processors each run an Open Communication system that controls how data is transferred between processors based on data content as opposed to the links that connect the processors together. The open communication system enables data or messages to be effectively transferred and processed for real-time applications or other server based applications that may be running on the multiple processors in a secure environment regardless of processors, locations, or data links.
The processors 6014, 6016, 6018 and 6020 all include software that run a Dynamic Configuration (DC) system 6010 that enables new processors or devices to be automatically added and removed from the car multiprocessor system 6008. The DC system 6010 also automatically reconfigures the applications running on different processors according to application failures and other system processing requirements.
For example, the processor 6020 may currently be running a high priority brake control application. If the processor 6020 fails, the DC system 6010 can automatically download the braking application to another processor in car 6012. The DC system 6010 automatically identifies another processor with capacity to run the braking control application currently running in processor 6020. The DC system 6010 then automatically downloads a copy of the braking control application to the identified processor. If there is no extra reserve processing resources available, the DC system 6010 may replace a non-critical application running on another processor. For example, the DC system 6010 may cause the display processor 6016 to terminate a current non-critical application and then download the brake control application along with any stored critical data.
The DC system 6010 also automatically incorporates new processors or applications into the multiprocessor system 6008. For example, a laptop computer 6038 can communicate with the engine monitor processor 6034 through a hardwired link 6034 or communicate to the display processor 6016 through a wireless link 6036. The DC system 6010 automatically integrates the laptop computer 6038, or any other processor or device, into the multiprocessor system 6008. After integrated into the multiprocessor system 6008, not only can the laptop computer 6038 transfer data with other processors, but the laptop computer may also run car applications normally run by other processors in car 6012.
The DC system 6010 allows the car driver to manage how different applications are processed in the car 6012. As described above, a car operator may have to run an aftermarket navigation system through a GPS transceiver attached to the laptop computer 6038. The car driver has to place the laptop computer 6038 in the passenger's seat and then operate the laptop computer 6038 while driving.
The DC system 6010 in the display computer 6016 can automatically detect the navigation application running on the laptop computer 6038. The display computer 6016 notifies the car operator through the user interface 6026 that the navigation application has been detected. The car operator can then control the navigation application through the user interface 6026. Since the user interface 6026 is located in the dashboard of car 6012, the car operator no longer has to take his eyes off the road while operating the navigation application.
The description below gives only a few examples of the different processors, devices and applications that can be implemented using the DC system 6010. Any single or multiprocessor system located either inside or outside of car 6012 can communicate and exchange data using the OC system 6010. It should also be understood that the DC system 6010 can be used in any real-time environment such as between processors in different home or office appliances and different home and office computers.
In one example, sensors 6052 feed sensor data to processor 6040. The sensor data may include engine-monitoring data such as speed, oil temperature, water temperature, temperature inside the car cab, door open/shut conditions, etc. The sensors 6052 are coupled to processor 6040 through a link 6054, such as a proprietary bus. A Compact Disc (CD) player 6050 is coupled to the processor 6040 through another link 6048, such as a Universal Serial Bus (USB). Graphical User Interface (GUI) 6056 displays the data associated with sensors 6052 and CD player 6050. The GUI 6056 displays the outputs from sensors 6052 using an icon 6060 to identify temperature data and an icon 6062 to identify car speed. The processor displays the CD player 6050 as icon 6062.
The processor 6040 is located in car 6012 (
The DC system 6010 then automatically displays the newly detected DVD player 6086 on GUI 6056 as icon 6096. If capable, the car operator by selecting the icon 6096 can then display a video stream output from the DVD player 6086 over GUI 6056. The DVD player 6086 can now be controlled from the GUI 6056 on the car dashboard. This prevents the car driver from having to divert his eyes from the road while trying to operate the portable DVD player 6086 from another location in the car, such as from the passenger seat.
Other processors or devices can also be incorporated into the multiprocessor system 6008 in car 6012. In another example, the car 6012 drives up to a drive-in restaurant 6090. The drive-in 6090 includes a transmitter 6092 that sends out a wireless Blue tooth signal 6094. The processor 6040 includes a Blue tooth transceiver that allows communication with transmitter 6092. The DC system 6010 recognizes the signals 6094 from transmitter 6092 and then incorporates the drive-in 6090 into the multiprocessor system 6008 (
Referring to
Processor A includes a memory 6065 that stores the other recognized processors B, C and D. The data managers 6046 also identify any applications that may be running on the identified processors. For example, memory 6065 for processor A identifies an application #2 running on processor B, no applications running on processor C, and an application #4 running on processor D.
One of the device managers 6046 in the multiprocessor system 6008 checks the signals from processor E checks to determine if the signals are encrypted in a recognizable protocol in block 6076. The device manager in the processor receiving the signals from processor E then checks for any data codes from the new device signals in block 6076. The data codes identify data types used in one or more applications by processor E. A device ID for processor E is then determined from the output signals in block 6080.
If all these data parameters are verified, the device managers 6046 in one or more of the processors A, B, C and D add the new processor E to their processor arrays in block 6082. For example, processor A adds processor E to the processor array in memory 6065. After being incorporated into the multiprocessor system 6008, the processor E or the applications running on the processor E may be displayed on a graphical user interface in block 6084.
The processor D displays an icon 60120 on GUI 60118 that represents the navigation system 60110 running in processor A. An icon 60124 represents the audio application running in processor B and an icon 60122 represents the ABS application 60114 running in processor C.
The memory 60128 stores copies of the navigation application 60110, audio application 60112, ABS application 60114 and display application 60116. The memory 60128 can also store data associated with the different applications. For example, navigation data 60130 and audio data 60132 are also stored in memory 60128. The navigation data 60130 may consist of the last several minutes of tracking data obtained by the navigation application 60110. The audio data 60132 may include the latest audio tracks played by the audio application 60112.
The memory 60128 can be any CD, hard disk, Read Only Memory (ROM), Dynamic Random Access (RAM) memory, etc. or any combination of different memory devices. The memory 60128 can include a central memory that all or some of the processors can access and may also include different local memories that are accessed locally by specific processors.
One or more of the configuration managers 6044 include a watchdog function that both monitors its own applications and the applications running on other processors. If an internal application fails, the configuration manager may store critical data for the failed application. The data for each application if stored in the memory 60128 can selectively be encrypted so that only the car operator has the authority to download certain types of data. The configuration manager detecting the failure initiates a reboot operation for that particular application. The application is downloaded again from memory 60128 and, if applicable, any stored application data. If the application continues to lockup, the configuration manager may then initiate a reconfiguration sequence that moves the application to another processor.
Failures are identified by the watchdog functions in one example by periodically sending out heartbeat signals to the other processors. If the heartbeat from one of the processors is not detected for one of the processors, the configuration manager 6044 for the processor that monitors that heartbeat attempts to communicate with the processor or application. If the application or processor with no heartbeat does not respond, the reconfiguration process is initiated.
In another example, certain processors may monitor different applications. For example, a sensor processor may constantly monitor the car speed when the car operator presses the brake pedal. If the car speed does not slow down when the brake is applied, the sensor processor may check for a failure in either the braking application or the speed sensing application. If a failure is detected, the configuration manager initiates the reconfiguration routine.
When reconfiguration is required, one of the reconfiguration managers 6044 first tries to identify a processor that has extra processing capacity to run the failed application in block 60136. For example, there may be a backup processor in the multiprocessor system where the ABS application 60114 can be downloaded. If extra processing resources are available, the ABS application 60114 is downloaded from the memory 60128 (
There may also be data associated with the failed application that is stored in memory 60128. For example, the brake commands for the ABS application 60114 may have been previously identified for logging in memory 60128 using a logging label described in co-pending application entitled: OPEN COMMUNICATION SYSTEM FOR REAL-TIME MULTIPROCESSOR APPLICATIONS, Ser. No. 09/841,753, filed Apr. 24, 2001, which is herein incorporated by reference. The logged brake commands are downloaded to the backup processor in block 60142.
If no backup processing resources can be identified in block 60136, the configuration manager 6044 identifies one of the processors in the multiprocessor system that is running a non-critical application. For example, the configuration manager 6044 may identify the navigation application 60110 in processor A as a non-critical application. The configuration manager 6044 in block 60140 automatically replaces the non-critical navigation application 60110 in processor A with the critical ABS application 60114 in memory 60128. The processor A then starts running the ABS application 60114.
In block 60154 the configuration manager 6044 for one of the processors determines if there is extra capacity in one of the other processors for running the failed navigation application 60110. If there is another processor with extra processing capacity, the navigation application is downloaded from memory 60128 to that processor with extra capacity along with any necessary navigation data in block 60156. This reconfiguration may be done automatically without any interaction with the car operator.
If there is no extra processing capacity for running the navigation application 60110, the configuration manager 6044 displays the failed processor or application to the user in block 60158. For example, the GUI 60118 in
The configuration manager in block 60160 waits for the car operator to request reconfiguration of the failed navigation application to another processor. If there is no user request, the configuration managers return to monitoring for other failures. If the user requests reconfiguration, the configuration manager 6044 in block 60164 displays other non-critical applications to the user. For example, the GUI 60118 only displays the audio application icon 60124 in processor B and not the ABS application icon 60122 (
If the car operator selects the audio icon 60124 in block 60166, the configuration manager in block 60168 cancels the audio application 60112 in processor B and downloads the navigation application 60110 from memory 60128 into processor B. A logging manager in processor A may have labeled certain navigation data for logging. That navigation data 60130 may include the last few minutes of position data for the car while the navigation application 60110 was running in processor A. The logged navigation data 60130 is downloaded from memory 60128 along with the navigation application 60110 into processor B. The navigation icon 60120 in GUI 60118 then shows the navigation application 60110 running on processor B. At the same time the audio application icon 60124 is removed from GUI 60118.
Referring back to
One or more of the data managers 6042, identifies the device by its data and the data, if applicable, is displayed on the graphical user interface in block 60172. The data manager then identifies any devices in the multiprocessor system that can output or transmit data to the new device in block 60174. For example, a newly detected audio source may be output from a car speaker. The data manager monitors for any user selections in block 60176. For example, the car operator may select the output from a portable CD player to be output from the car speakers. The data manager controlling the CD player and the data manager controlling the car speakers then direct the output from the CD player to the car speakers in block 60178.
The A/V output devices in the car are shown in the lower portion of GUI 60180. For example, icons 60192, 60194, 60196, 60200, and 60204 show car audio speakers. An in-dash video display is represented by icon 60190 and a portable monitor is represented by icon 60198.
Currently, a car operator may be listening to the radio 60186 over speakers 60192, 60194, 60196, 60200 and 60204. However, a passenger may move into the backseat of the car carrying an MP3 player. The MP3 player runs the DC system 6010 described in
One of the data managers 6042 determines the MP3 player outputs a MP3 audio stream and accordingly generates the icon 60182 on the GUI 60180. The data manager 6042 also identifies a speaker in the MP3 player as a new output source and displays the speaker as icon 60202. The car operator sees the MP3 icon 60182 now displayed on GUI 60180. The car operator can move the MP3 icon 60182 over any combination of the speaker icons 60192, 60194, 60196, 60200 and 60204. The output from the MP3 player is then connected to the selected audio outputs.
Audio data can also be moved in the opposite direction. The speaker icon 60202 represents the output of the portable MP3 player that the passenger brought into the backseat of the car. The car operator also has the option of moving one or more of the other audio sources, such as the cellular telephone 60184 or the radio 60186 icons over the speaker icon 60202. If the car operator, for example, moves the radio icon 60186 over the MP3 player speaker icon 60202 and the MP3 player can output the radio signals, the multiprocessor system redirects the radio broadcast out over the MP3 speaker.
It should be understood that the multiprocessor system described above could be used in applications other than cars. For example,
Typical networks, such as in an office network environment, enable multiple computers to communicate with each other. Applications such as printing jobs can be launched from any one of the networked computers. If one of the networked computers crashes or is busy, a user must manually send the job to another computer. The other computer then handles the task like any other locally received task.
In a car environment, tasks must be processed with different priorities in real-time. For example, the braking tasks in the brake processor 3320 have to be processed with a high priority while a radio selection task performed in the display processor 16 can be processed with a relatively low priority. The processors 3314, 3316, 3318 and 3320 all include software that runs an Open Communication (OC) system 3310 that enables the multiple processors to transfer data and exchange messages for performing these real-time car applications.
If the processor 3320 currently running the high priority braking application fails, the OC system 3310 allows the braking tasks to be offloaded to another processor in car 3312, such as the display processor 3316. The OC system 3310 automatically assigns a high priority to the braking tasks that allow the braking tasks to override lower priority tasks, such as the radio application, that are currently being performed in display processor 3316.
The OC system 3310 also ensures that data in each processor is processed in a secure manner for the car environment. The security portion of the OC system 3310 prevents unauthorized devices from accessing the different car applications. The OC system 3310 also includes a logging portion that allows data in the car system to be automatically logged. This is important for accident reconstruction purposes. The OC system 3310 also allows different processors to communicate over different communication protocols and hardware interfaces. Any processor that includes an OC system 3310 can be integrated in the system shown in
The description below gives only a few examples of the different processors and different applications that can implemented using the OC system 3310. However, any single or multiprocessor system located either inside or outside of car 3312 can communicate and exchange data using the OC system 3310. It should also be understood that the OC system 3310 can be used in any real-time network environment such as between processors used in appliances and computers in the home.
A car interface manager 46 operates as an Application Programmers Interface (API) that can be implemented in any variety of different languages such as Java, C++, Extensible Markup Language (XML) or HyperText Markup Language (HTML), etc. The car interface manager 3346 enables applications 3348 to be written in any variety of different languages. This prevents the applications 3348 from having to be written specifically for the car environment or for a specific communication protocol. Thus, applications written for other systems can be reused in the car system described below. The car interface manager 3346 reads basic processing and data transfer commands needed to transfer data and messages between different processors and storage mediums inside or outside the car 3312.
For clarity the terms ‘message’ and ‘data’ are used interchangeably below. After a message passes through the car interface manager 3346, a priority manager 3344 determines a priority value for the message that determines how the message is processed both in the local processor 3350 and in other processors such as processor 3352. Referring to
In block 3364, the priority manager 3344 compares the priority value for the outgoing message with the priority values for other messages in the processor. The priority manager 3344 ranks the outgoing message with respect to the other messages and then sends the message to the logging manager 3342 in block 3366 (
In block 3368, the priority manager 3344 reads the priority labels for incoming messages. If the priority of the message is not high enough to run on the processor in block 3370, the data or message is rejected in block 3376. The priority manager 3344 may send out a message to the sending processor indicating the message has been rejected. In some situations, the message or data may have such a low priority that an acknowledge message does not have to be sent back to the sending processor. For example, inside temperature data from a temperature sensor may be sent to one or more processors with no requirement that the processor accept or acknowledge the data. In this case the temperature data is sent with a very low priority value that indicates to the priority manager 3344 that no message needs to be sent back to the temperature sensor even if the data is rejected.
The priority manager 3344 in block 3372 ranks the priority of the incoming message in relation to the priorities of all the other messages in the processor. The priority manager in block 3374 decides according to the ranking whether the message should be put in a queue or sent directly to the application for immediate processing. For example, a crash indication message may have a high enough priority to cause the priority manager 3344 to delay all data currently being processed by all other applications in the same processor. The priority manager 3344 directs all the applications to wait while the current high priority crash indication message is processed. The other data and messages are queued in the processor and processed after the crash indication message has been completed.
Referring to
The logging manager 3342 receives either an incoming message over a communications link for sending to a local application 3348 or receives an outgoing message from one of the local applications 3348 for sending out over the communications link to another processor in block 3380. The logging manager 3342 reads a logging label in the message in block 3382. If the logging label indicates that no logging is required, the message is sent on to the next communication manager in block 3388. If it is an outgoing message it is sent to the security manager 3340 (
The logging manager 3342 in each processor, provides the OC system 3310 with the unique ability to track when and where messages are sent and received at different processors in the multiprocessor car system. This is important in accident reconstruction allowing the logging managers 3342 to identify which processors and applications failed and also the sequence in which the different processors and associated applications failed.
The logging manager 3342 can also track unauthorized messages and data that may have caused any of the processors in the car to crash. For example, an audio processor that handles audio applications in the car may crash due to unauthorized downloading of MP3 music from a laptop computer. The logging manager 3342 can log the unauthorized data received from the laptop MP3 player. The logging manager 3342 logs any data that does not have a particular security or priority label value. A system administrator can then down load the MP3 data to identify what caused the audio processor to crash.
Referring to
The security manager 3340 in block 3390 reads a message either received from an application on the same processor or received over a communication link from another processor. The security manager 3340 determines if there is a security value associated with the message in block 3392. If there is no security value associated with the data, the security manager 3340 may drop the data in block 33100. However, some applications, such as a processor that plays audio data may not require a security label. In this case, the security manager in block 3394 allows the data to be passed on to the application in block 3398.
In other instances the data or message may have a security value, but that security value is not sufficient to allow processing on the present applications. For example, data for car security monitoring may be sent to a processor that controls air bag deployment and an automatic braking system. The two currently running applications may set a minimum security level for receiving data. If data received from other processors do not have that minimum security level in block 3396, the data is dropped in block 33100. Otherwise, the data or message is passed on to the next communication layer for further processing in block 3398. Thus the security manager 3340 prevents unauthorized data or messages from effecting critical car applications.
Referring back to
The hardware/link interface 3336 includes the software and hardware necessary for interfacing with different communication links 3354. For example, the two processors 3350 and 3352 may communicate over a Ethernet link, 802.11 wireless link, or hardwired Universal Serial Bus link, etc. The software necessary for the two processors to communicate over these different interfaces is known to those skilled in the art and is therefore not described in further detail.
The radar sensor 33104 in combination with the radar processor 33106 generates Radar Track Reports (RTRs) 33130 that are sent to the fusion processor 33114. The IR sensor 33110 in combination with the IR processor 33112 generate Infrared Track Reports (ITRs) 33128 that are sent to the fusion processor 33114.
Referring to
The track reports 33128 and 33130 include Open Communication (OC) labels 33133 for performing the OC operations described above. A security label 33134 is used by the security manager for preventing unauthorized data from being downloaded into one of the car processors and disrupting applications. A logging label 33136 is used by the logging manager to identify data that needs to be logged in a local memory. The priority label 33138 is used by the priority manager for scheduling messages or data to the applications run by the processors. The link headers 33132, security label 33134, logging label 33136 and priority label 33138 are all part of the data 33131 used by the open operating system 33131.
The radar processor 33106 and IR processor 33112 also send a time of measurement 33140 and other data 33142 from the radar sensor 33104 and IR sensor 33110, respectively. The data 33142 can include kinematic states of objects detected by the sensors. The time of measurement data 33140 and other sensor data 33142 is referred to as application data 33139 and is the actual data that is used by the application.
The applications described below are all performed by the OC system 3310 thus preventing the applications from having to handle the tasks. This allows the applications to be written in a completely portable fashion with no knowledge of the network hardware, security, priority and logging operations. This greatly reduces the cost of creating applications.
An image processing application in the processor 33106 identifies the object 33154 as a small far away object in block 33158. The image and kinematic data for the object is output by the OC system 3310 as a radar track report 33130. The security manager 3340 (
The OC system 3310 then formats the radar track report in block 33168 according to the particular link used to send the report 33130 to the fusion processor 33114. For example, the operating system 3338 and the hardware/link interface 3336 (
Referring next to
The OC system 3310 reads the security label in block 33186 to determine if the track report has authority to be processed by the fusion processor 33114. If the track report passes the security check performed by the security manager in block 33186, the logging manager in block 33188 checks to see if either the received radar data needs to be logged. In this example, the image processing application in the radar processor identified the object 33154 (
Because the image 33150 was identified as non-critical, the priority label 33138 (
Different applications in the fusion processor 33114 may or may not be performed depending on the track report. For example, the object 33154 may be sent to a video display in block 33194. However, the fusion processor 33114 will not send a brake command in block 33196 to the car braking system 33123. This is because the image has been identified as non-critical. Similarly, no audio warning is sent to the car audio system in block 33198 because the object has been identified as non-critical.
Referring back to
Because the IR track report 33128 has been identified as critical data, the priority manager 3344 in the IR processor 33112 assigns a high priority label value 33138. This high priority value is read by the operating system 3338 and interface hardware 3336 (
Referring again to
The security manager 3340 in the fusion processor 33114 confirms there is an acceptable value in the security label in block 33186 and then passes the IR track report 33128 to the logging manager in block 33188. The logging manager 3342 in the fusion processor 33114 reads the logging label and accordingly logs the image data in a local nonvolatile memory. This provides a history of the image 33156 that was detected by the IR sensor 33110.
The logged image data may then be used in subsequent accident analysis. For example, an accident reconstruction specialist can download the logged image data or message in both the IR processor 33112 and in the fusion processor 33114 to determine when the image data 33140 and 33142 was first detected. It can then be determined whether the image data was sent by the IR processor 33112 and received by the fusion processor 33114.
The priority manager reads the priority label 33138 in block 33190 and determines that the IR track report has a high priority. Accordingly, the track report is immediately sent to different applications in block 33192. The priority manager 3344 may first send the track report to the brake control application in block 33196. The brake control application immediately sends a brake command 33125 (
The logging manager 3342 in the fusion processor 33114 adds a logging label 33136 to the outgoing brake command 33125. Both the fusion processor 33114 and the brake control processor 33122 will then both log the brake command 33125. Thus, not only is the sequence of transmissions of the image data and messages logged in both the IR processor 33112 and fusion processor 33114 but also the sequence of the brake message 33125 from the fusion processor 33114 to the brake processor 33122. This further adds to any accident analysis data that may need to be obtained from the car if an accident occurs.
The IR data may also be sent to an audio application in block 33198 that immediately sends out an audio alarm over the car stereo system or out over a car horn. This automatically warns both the car driver and the object 33156 in front of car 33102 of a possible collision. In a third application, the fusion processor 33114 may send the IR image data to an image display 33118 in block 33194.
The OC system 33208 includes a control table 33212 that includes several parameters associated with a SENSOR REPORT 33210. For example, the SENSOR REPORT 33210 may need to include a priority label, a security label or a logging label. The security label also includes one or more locations where the SENSOR REPORT 33210 should be sent. The IR application 33202 includes a CONNECT TO SEND (SENSOR REPORT) command that the OC 3310 then uses to establish a slot in memory for the SENSOR REPORT. When IR data is received from the IR sensor 33200, the IR application 33202 generates sensor data (
The OC system 3310 attaches a security label 33134, logging label 33136 and priority label 33138 to the SENSOR REPORT 33210 as described previously in
The fusion application 33220 works in a similar manner and initiates a CONNECT TO RECEIVE (SENSOR REPORT) command to the OC system 3310 running in the same processor B. The OC system 3310 reserves a slot in local memory for any received SENSOR REPORTs 33210. The fusion application 33220 issues a WAIT ON (SENSOR REPORT) command that continuously waits for any SENSOR REPORTs 33210 sent by the IR application 33202. The OC system 3310 control table 33214 also identifies from the SENSOR REPORT data type the communication link 33211, hardware interface 33215 and other associated communication protocols used for receiving the SENSOR REPORT 33210.
Whenever a SENSOR REPORT 33210 is received, the OC system 3310 in processor B performs the security, logging and priority management operations described above based on the labels 33134, 33136 and 33138 in the sensor report 33210 (
The communication link between the fusion application 33220 and the brake application may be completely different than the link between the IR application 33202 and the fusion application 33220. However, the fusion application 33220 outputs the SENSOR REPORT and the BRAKE REPORT in the same manner. The OC system 3310 then uses stored link information in the control table 33214 to communicate to the IR application 33202 and the brake application over different links.
Thus, the IR application 33202 and the fusion application 33220 do not need to know anything about the physical links, address, or any of the other operations that are used to transmit data over different communication links.
The system described above can use dedicated processor systems, micro controllers, programmable logic devices, or microprocessors that perform some or all of the communication operations. Some of the operations described above may be implemented in software and other operations may be implemented in hardware.
For the sake of convenience, the operations are described as various interconnected functional blocks or distinct software modules. This is not necessary, however, and there may be cases where these functional blocks or modules are equivalently aggregated into a single logic device, program or operation with unclear boundaries. In any event, the functional blocks and software modules or described features can be implemented by themselves, or in combination with other operations in either hardware or software.
Having described and illustrated the principles of the invention in a preferred embodiment thereof, it should be apparent that the invention may be modified in arrangement and detail without departing from such principles. Claim is made to all modifications and variation coming within the spirit and scope of the following claims.
The system described above can use dedicated processor systems, micro controllers, programmable logic devices, or microprocessors that perform some or all of the communication operations. Some of the operations described above may be implemented in software and other operations may be implemented in hardware.
For the sake of convenience, the operations are described as various interconnected functional blocks or distinct software modules. This is not necessary, however, and there may be cases where these functional blocks or modules are equivalently aggregated into a single logic device, program or operation with unclear boundaries. In any event, the functional blocks and software modules or described features can be implemented by themselves, or in combination with other operations in either hardware or software.
Having described and illustrated the principles of the invention in a preferred embodiment thereof, it should be apparent that the invention may be modified in arrangement and detail without departing from such principles. Claim is made to all modifications and variation coming within the spirit and scope of the following claims.
This application is a divisional of U.S. patent application Ser. No. 12/483,214, filed Jun. 11, 2009, which is a continuation of U.S. patent application Ser. No. 11/462,958, filed Aug. 7, 2006, now U.S. Pat. No. 7,778,739, issued Aug. 17, 2010, which is a continuation of U.S. patent application Ser. No. 09/841,915, filed Apr. 24, 2001, now U.S. Pat. No. 7,146,260, issued Dec. 5, 2006, the disclosures of which are incorporated herein by reference in their entirety and this application incorporates by reference U.S. Pat. No. 6,629,033, issued Sep. 30, 2003, titled—OPEN COMMUNICATION SYSTEM FOR REAL-TIME MULTIPROCESSOR APPLICATIONS.
Number | Name | Date | Kind |
---|---|---|---|
2995318 | Cocharo | Aug 1961 | A |
3812468 | Wollum et al. | May 1974 | A |
4303978 | Shaw | Dec 1981 | A |
4528563 | Takeuchi | Jul 1985 | A |
4558460 | Tanaka | Dec 1985 | A |
4591976 | Webber | May 1986 | A |
4735274 | Good et al. | Apr 1988 | A |
4829434 | Karmel | May 1989 | A |
4835537 | Manion | May 1989 | A |
4907159 | Mauge | Mar 1990 | A |
4931930 | Shyu et al. | Jun 1990 | A |
5008678 | Herman | Apr 1991 | A |
5027432 | Skala | Jun 1991 | A |
5031330 | Stuart | Jul 1991 | A |
5045937 | Myrick | Sep 1991 | A |
5111401 | Everett, Jr. | May 1992 | A |
5115245 | Wen | May 1992 | A |
5243640 | Hadley et al. | Sep 1993 | A |
5245909 | Corrigan | Sep 1993 | A |
5287199 | Zoccolillo | Feb 1994 | A |
5303297 | Hillis | Apr 1994 | A |
5339086 | DeLuca | Aug 1994 | A |
5341301 | Shirai | Aug 1994 | A |
5438361 | Coleman | Aug 1995 | A |
5440726 | Fuchs et al. | Aug 1995 | A |
5471214 | Faibish | Nov 1995 | A |
5485892 | Fujita | Jan 1996 | A |
5500794 | Fujita et al. | Mar 1996 | A |
5506963 | Ducateau | Apr 1996 | A |
5532706 | Reinhardt | Jul 1996 | A |
5537539 | Narihiro | Jul 1996 | A |
5552773 | Kuhnert | Sep 1996 | A |
5555503 | Kyrtsos et al. | Sep 1996 | A |
5572201 | Graham | Nov 1996 | A |
5579219 | Mori et al. | Nov 1996 | A |
5581462 | Rogers | Dec 1996 | A |
5585798 | Yoshioka | Dec 1996 | A |
5617085 | Tsutsumi | Apr 1997 | A |
5646612 | Byon | Jul 1997 | A |
5661811 | Huemann et al. | Aug 1997 | A |
5742141 | Czekaj | Apr 1998 | A |
5749060 | Graf | May 1998 | A |
5751211 | Shirai | May 1998 | A |
5754123 | Nashif et al. | May 1998 | A |
5761320 | Farinelli | Jun 1998 | A |
5786998 | Neeson | Jul 1998 | A |
5787246 | Lichtman | Jul 1998 | A |
5793366 | Mano et al. | Aug 1998 | A |
5794164 | Beckert et al. | Aug 1998 | A |
5872508 | Taoka | Feb 1999 | A |
5898392 | Bambini | Apr 1999 | A |
5907293 | Tognazzini | May 1999 | A |
5909559 | So | Jun 1999 | A |
5915214 | Reece | Jun 1999 | A |
5943427 | Massie | Aug 1999 | A |
5948040 | DeLorme et al. | Sep 1999 | A |
5951620 | Ahrens et al. | Sep 1999 | A |
5956016 | Kuenzner et al. | Sep 1999 | A |
5956025 | Goulden et al. | Sep 1999 | A |
5956250 | Gudat et al. | Sep 1999 | A |
5957985 | Wong et al. | Sep 1999 | A |
5959536 | Chambers | Sep 1999 | A |
5963092 | VanZalinge | Oct 1999 | A |
5964822 | Alland | Oct 1999 | A |
5966658 | Kennedy, III | Oct 1999 | A |
5969598 | Kimura | Oct 1999 | A |
5974554 | Oh | Oct 1999 | A |
5977906 | Ameen | Nov 1999 | A |
5983092 | Whinnett | Nov 1999 | A |
5983161 | Lemelson | Nov 1999 | A |
6009330 | Kennedy, III | Dec 1999 | A |
6009403 | Sato | Dec 1999 | A |
6028537 | Suman | Feb 2000 | A |
6028548 | Farmer | Feb 2000 | A |
6032089 | Buckley | Feb 2000 | A |
6032202 | Lea et al. | Feb 2000 | A |
6037860 | Zander et al. | Mar 2000 | A |
6038625 | Ogino et al. | Mar 2000 | A |
6052632 | Iihoshi | Apr 2000 | A |
6054950 | Fontana | Apr 2000 | A |
6060989 | Gehlot | May 2000 | A |
6061002 | Weber et al. | May 2000 | A |
6061709 | Bronte | May 2000 | A |
6075467 | Ninagawa | Jun 2000 | A |
6097285 | Curtin | Aug 2000 | A |
6097314 | Desens et al. | Aug 2000 | A |
6105119 | Kerr et al. | Aug 2000 | A |
6128608 | Barnhill | Oct 2000 | A |
6144336 | Preston | Nov 2000 | A |
6148261 | Obradovich | Nov 2000 | A |
6150961 | Alewine | Nov 2000 | A |
6154123 | Kleinberg | Nov 2000 | A |
6161071 | Shuman | Dec 2000 | A |
6163711 | Juntunen | Dec 2000 | A |
6166627 | Reeley | Dec 2000 | A |
6167253 | Farris | Dec 2000 | A |
6169894 | McCormick | Jan 2001 | B1 |
6175728 | Mitama | Jan 2001 | B1 |
6175782 | Obradovich | Jan 2001 | B1 |
6179489 | So et al. | Jan 2001 | B1 |
6181922 | Iwai | Jan 2001 | B1 |
6181994 | Colson | Jan 2001 | B1 |
6182006 | Meek | Jan 2001 | B1 |
6185491 | Gray | Feb 2001 | B1 |
6195760 | Chung et al. | Feb 2001 | B1 |
6198996 | Berstis | Mar 2001 | B1 |
6199136 | Shteyn | Mar 2001 | B1 |
6202027 | Alland | Mar 2001 | B1 |
6203366 | Muller | Mar 2001 | B1 |
6204804 | Andersson | Mar 2001 | B1 |
6226389 | Lemelson et al. | May 2001 | B1 |
6233468 | Chen | May 2001 | B1 |
6236652 | Preston | May 2001 | B1 |
6240365 | Bunn | May 2001 | B1 |
6243450 | Jansen | Jun 2001 | B1 |
6243645 | Moteki et al. | Jun 2001 | B1 |
6243772 | Ghori et al. | Jun 2001 | B1 |
6247079 | Papa et al. | Jun 2001 | B1 |
6252544 | Hoffberg | Jun 2001 | B1 |
6275231 | Obradovich | Aug 2001 | B1 |
6282714 | Ghori et al. | Aug 2001 | B1 |
D448366 | Youngers | Sep 2001 | S |
6292109 | Murano | Sep 2001 | B1 |
6292747 | Amro | Sep 2001 | B1 |
6294987 | Matsuda | Sep 2001 | B1 |
6295541 | Bodnar et al. | Sep 2001 | B1 |
6297732 | Hsu | Oct 2001 | B2 |
6298302 | Walgers | Oct 2001 | B2 |
6298370 | Tang et al. | Oct 2001 | B1 |
6314326 | Fuchu | Nov 2001 | B1 |
6321344 | Fenchel | Nov 2001 | B1 |
6326903 | Gross | Dec 2001 | B1 |
6327536 | Tsuji | Dec 2001 | B1 |
6362748 | Huang | Mar 2002 | B1 |
6370449 | Razavi et al. | Apr 2002 | B1 |
6374286 | Gee | Apr 2002 | B1 |
6377860 | Gray | Apr 2002 | B1 |
6382897 | Mattio | May 2002 | B2 |
6389340 | Rayner | May 2002 | B1 |
6401029 | Kubota | Jun 2002 | B1 |
6405132 | Breed | Jun 2002 | B1 |
6408174 | Steijer | Jun 2002 | B1 |
6417782 | Darnall | Jul 2002 | B1 |
6421429 | Merritt | Jul 2002 | B1 |
6429789 | Kiridena | Aug 2002 | B1 |
6429812 | Hoffberg | Aug 2002 | B1 |
6430164 | Jones | Aug 2002 | B1 |
6433679 | Schmid | Aug 2002 | B1 |
6434447 | Shteyn | Aug 2002 | B1 |
6442485 | Evans | Aug 2002 | B2 |
6445308 | Koike | Sep 2002 | B1 |
6445983 | Dickson et al. | Sep 2002 | B1 |
6449541 | Goldberg et al. | Sep 2002 | B1 |
6452484 | Drori | Sep 2002 | B1 |
6463373 | Suganuma | Oct 2002 | B2 |
6484080 | Breed | Nov 2002 | B2 |
6487717 | Brunemann et al. | Nov 2002 | B1 |
6493338 | Preston | Dec 2002 | B1 |
6496107 | Himmelstein | Dec 2002 | B1 |
6496117 | Gutta | Dec 2002 | B2 |
6496689 | Keller | Dec 2002 | B1 |
6498939 | Thomas | Dec 2002 | B1 |
6505100 | Stuempfle | Jan 2003 | B1 |
6515595 | Obradovich | Feb 2003 | B1 |
6522875 | Dowling | Feb 2003 | B1 |
6523696 | Saito et al. | Feb 2003 | B1 |
6526335 | Treyz et al. | Feb 2003 | B1 |
6542812 | Obradovich et al. | Apr 2003 | B1 |
6559773 | Berry | May 2003 | B1 |
6567069 | Bontrager et al. | May 2003 | B1 |
6571136 | Staiger | May 2003 | B1 |
6574734 | Colson et al. | Jun 2003 | B1 |
6580973 | Leivian et al. | Jun 2003 | B2 |
6584403 | Bunn | Jun 2003 | B2 |
D479228 | Sakaguchi et al. | Sep 2003 | S |
6614349 | Proctor et al. | Sep 2003 | B1 |
6615137 | Lutter | Sep 2003 | B2 |
6616071 | Kitamura | Sep 2003 | B2 |
6622083 | Knockeart | Sep 2003 | B1 |
6629033 | Preston | Sep 2003 | B2 |
6641087 | Nelson | Nov 2003 | B1 |
6647270 | Himmelstein | Nov 2003 | B1 |
6647328 | Walker | Nov 2003 | B2 |
6670912 | Honda | Dec 2003 | B2 |
6675081 | Shuman | Jan 2004 | B2 |
6678892 | Lavelle et al. | Jan 2004 | B1 |
6681121 | Preston | Jan 2004 | B1 |
6690681 | Preston | Feb 2004 | B1 |
6707421 | Drury et al. | Mar 2004 | B1 |
6708100 | Russell | Mar 2004 | B2 |
6714139 | Saito | Mar 2004 | B2 |
6718187 | Takagi et al. | Apr 2004 | B1 |
6725031 | Watler | Apr 2004 | B2 |
6734799 | Munch | May 2004 | B2 |
6738697 | Breed | May 2004 | B2 |
6748278 | Maymudes et al. | Jun 2004 | B1 |
6754183 | Razavi et al. | Jun 2004 | B1 |
6756998 | Bilger | Jun 2004 | B1 |
6765495 | Dunning et al. | Jul 2004 | B1 |
6771208 | Lutter | Aug 2004 | B2 |
6771629 | Preston | Aug 2004 | B1 |
6778073 | Lutter | Aug 2004 | B2 |
6778924 | Hanse | Aug 2004 | B2 |
6782315 | Lu | Aug 2004 | B2 |
6785551 | Richard | Aug 2004 | B1 |
6792351 | Lutter | Sep 2004 | B2 |
6799092 | Lu et al. | Sep 2004 | B2 |
6806977 | Freeny et al. | Oct 2004 | B1 |
6816458 | Kroon | Nov 2004 | B1 |
6876642 | Adams | Apr 2005 | B1 |
6892230 | Gu et al. | May 2005 | B1 |
6895238 | Newell | May 2005 | B2 |
6895240 | Laursen | May 2005 | B2 |
6901057 | Rune | May 2005 | B2 |
6906619 | Williams | Jun 2005 | B2 |
6920129 | Preston | Jul 2005 | B2 |
6925368 | Funkhouser et al. | Aug 2005 | B2 |
6937732 | Ohmura | Aug 2005 | B2 |
6952155 | Himmelstein | Oct 2005 | B2 |
6972669 | Saito | Dec 2005 | B2 |
6973030 | Pecen | Dec 2005 | B2 |
6980092 | Turnbull | Dec 2005 | B2 |
6993511 | Himmelstein | Jan 2006 | B2 |
7000469 | Foxlin | Feb 2006 | B2 |
7006950 | Greiffenhagen | Feb 2006 | B1 |
7024363 | Comerford | Apr 2006 | B1 |
7039858 | Humpleman et al. | May 2006 | B2 |
7079993 | Stephenson | Jul 2006 | B2 |
7085710 | Beckert et al. | Aug 2006 | B1 |
7089206 | Martin | Aug 2006 | B2 |
7092723 | Himmelstein | Aug 2006 | B2 |
7103646 | Suzuki | Sep 2006 | B1 |
7103834 | Humpleman et al. | Sep 2006 | B1 |
7120129 | Ayyagari | Oct 2006 | B2 |
7123926 | Himmelstein | Oct 2006 | B2 |
7146260 | Preston | Dec 2006 | B2 |
7151768 | Preston | Dec 2006 | B2 |
7158842 | Ohmura et al. | Jan 2007 | B2 |
7158956 | Himmelstein | Jan 2007 | B1 |
7164662 | Preston | Jan 2007 | B2 |
7171189 | Bianconi | Jan 2007 | B2 |
7178049 | Lutter | Feb 2007 | B2 |
7187947 | White | Mar 2007 | B1 |
7206305 | Preston | Apr 2007 | B2 |
7207042 | Smith | Apr 2007 | B2 |
7215965 | Fournier | May 2007 | B2 |
7216347 | Harrison et al. | May 2007 | B1 |
7221669 | Preston | May 2007 | B2 |
7239949 | Lu | Jul 2007 | B2 |
7249266 | Margalit | Jul 2007 | B2 |
7257426 | Witkowski | Aug 2007 | B1 |
7263332 | Nelson | Aug 2007 | B1 |
7269188 | Smith | Sep 2007 | B2 |
7272637 | Himmelstein | Sep 2007 | B1 |
7274988 | Mukaiyama | Sep 2007 | B2 |
7277693 | Chen | Oct 2007 | B2 |
7283567 | Preston | Oct 2007 | B2 |
7283904 | Benjamin | Oct 2007 | B2 |
7286522 | Preston | Oct 2007 | B2 |
7317696 | Preston | Jan 2008 | B2 |
7343160 | Morton | Mar 2008 | B2 |
7375728 | Donath | May 2008 | B2 |
7379707 | DiFonzo | May 2008 | B2 |
7411982 | Smith | Aug 2008 | B2 |
7418476 | Salesky | Aug 2008 | B2 |
7450955 | Himmelstein | Nov 2008 | B2 |
7480501 | Petite | Jan 2009 | B2 |
7484008 | Gelvin et al. | Jan 2009 | B1 |
7493645 | Tranchina | Feb 2009 | B1 |
7506020 | Ellis | Mar 2009 | B2 |
7508810 | Moinzadeh | Mar 2009 | B2 |
7509134 | Fournier et al. | Mar 2009 | B2 |
7536277 | Pattipatti et al. | May 2009 | B2 |
7579942 | Kalik | Aug 2009 | B2 |
7587102 | Maris | Sep 2009 | B2 |
7587370 | Himmelstein | Sep 2009 | B2 |
7594000 | Himmelstein | Sep 2009 | B2 |
7596391 | Himmelstein | Sep 2009 | B2 |
7599715 | Himmelstein | Oct 2009 | B2 |
7610331 | Genske | Oct 2009 | B1 |
7614055 | Buskens et al. | Nov 2009 | B2 |
7664315 | Woodfill | Feb 2010 | B2 |
7689321 | Karlsson | Mar 2010 | B2 |
7733853 | Moinzadeh et al. | Jun 2010 | B2 |
7747281 | Preston | Jun 2010 | B2 |
7848763 | Fournier et al. | Dec 2010 | B2 |
7891004 | Gelvin et al. | Feb 2011 | B1 |
7924934 | Birmingham | Apr 2011 | B2 |
7928898 | Fraenken | Apr 2011 | B2 |
7966111 | Moinzadeh et al. | Jun 2011 | B2 |
7970500 | Parra Carque | Jun 2011 | B2 |
7979095 | Birmingham | Jul 2011 | B2 |
7983310 | Hirano et al. | Jul 2011 | B2 |
8014942 | Moinzadeh et al. | Sep 2011 | B2 |
8036201 | Moinzadeh et al. | Oct 2011 | B2 |
8036600 | Garrett et al. | Oct 2011 | B2 |
8068792 | Preston | Nov 2011 | B2 |
8108092 | Phillips et al. | Jan 2012 | B2 |
8204927 | Duong et al. | Jun 2012 | B1 |
8244408 | Lee et al. | Aug 2012 | B2 |
8260515 | Huang et al. | Sep 2012 | B2 |
8346186 | Preston et al. | Jan 2013 | B1 |
20010009855 | L'Anson | Jul 2001 | A1 |
20020012329 | Atkinson | Jan 2002 | A1 |
20020022927 | Lemelson et al. | Feb 2002 | A1 |
20020070852 | Trauner et al. | Jun 2002 | A1 |
20020083143 | Cheng | Jun 2002 | A1 |
20020085043 | Ribak | Jul 2002 | A1 |
20020095501 | Chiloyan et al. | Jul 2002 | A1 |
20020098878 | Mooney et al. | Jul 2002 | A1 |
20020105423 | Rast | Aug 2002 | A1 |
20020123325 | Cooper | Sep 2002 | A1 |
20020144010 | Younis | Oct 2002 | A1 |
20020144079 | Willis et al. | Oct 2002 | A1 |
20030060188 | Gidron | Mar 2003 | A1 |
20030078754 | Hamza | Apr 2003 | A1 |
20030158614 | Friel | Aug 2003 | A1 |
20030204382 | Julier et al. | Oct 2003 | A1 |
20030212996 | Wolzien | Nov 2003 | A1 |
20040162064 | Himmelstein | Aug 2004 | A1 |
20040164228 | Fogg | Aug 2004 | A1 |
20050009506 | Smolentzov | Jan 2005 | A1 |
20050070221 | Upton | Mar 2005 | A1 |
20050130656 | Chen | Jun 2005 | A1 |
20050153654 | Anderson | Jul 2005 | A1 |
20050251328 | Merwe et al. | Nov 2005 | A1 |
20050260984 | Karabinis | Nov 2005 | A1 |
20050275505 | Himmelstein | Dec 2005 | A1 |
20050278712 | Buskens et al. | Dec 2005 | A1 |
20060206576 | Obradovich et al. | Sep 2006 | A1 |
20060293829 | Cornwell et al. | Dec 2006 | A1 |
20070115868 | Chen | May 2007 | A1 |
20070115897 | Chen | May 2007 | A1 |
20070260372 | Langer et al. | Nov 2007 | A1 |
20070260373 | Langer et al. | Nov 2007 | A1 |
20080092140 | Doninger et al. | Apr 2008 | A1 |
20090090592 | Mordukhovich et al. | Apr 2009 | A1 |
20090240481 | Durrant-Whyte et al. | Sep 2009 | A1 |
20090268947 | Schaufler | Oct 2009 | A1 |
20090284378 | Ferren et al. | Nov 2009 | A1 |
20110212700 | Petite | Sep 2011 | A1 |
20120083971 | Preston | Apr 2012 | A1 |
20120115418 | Preston | May 2012 | A1 |
20120144402 | Preston | Jun 2012 | A1 |
20120183153 | Preston | Jul 2012 | A1 |
20120185134 | Preston | Jul 2012 | A1 |
20120185689 | Preston | Jul 2012 | A1 |
20120191810 | Preston | Jul 2012 | A1 |
20120204059 | Preston | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
3125161 | Jan 1983 | DE |
4237987 | May 1994 | DE |
19647283 | May 1997 | DE |
19922608 | Nov 2000 | DE |
19931161 | Jan 2001 | DE |
0355490 | Feb 1990 | EP |
0 441 576 | Aug 1991 | EP |
0473866 | Mar 1992 | EP |
0 841 648 | May 1998 | EP |
0841648 | May 1998 | EP |
1 355 128 | Oct 2003 | EP |
10-076115 | Oct 1999 | JP |
2000207691 | Jul 2000 | JP |
1995-0017619 | Mar 1999 | KR |
1999-021740 | Mar 1999 | KR |
WO9624229 | Aug 1996 | WO |
WO9908436 | Feb 1999 | WO |
WO9957662 | Nov 1999 | WO |
WO9965183 | Dec 1999 | WO |
WO 0029948 | May 2000 | WO |
WO0040038 | Jul 2000 | WO |
WO0130061 | Apr 2001 | WO |
WO0158110 | Aug 2001 | WO |
WO03033092 | Apr 2003 | WO |
Entry |
---|
U.S. Appl. No. 13/250,799, filed Sep. 29, 2011, Method and Apparatus for a Priority Based Processing System. |
U.S. Appl. No. 12/777,608, filed May 11, 2010, System and Method for the Configuration of an Automotive Vehicle With Modeled Sensors, Dan A. Preston. |
U.S. Appl. No. 12/776,137, filed May 7, 2010, System and Method for Modeling Advanced Automotive Safety Systems, Dan A. Preston. |
U.S. Appl. No. 13/010,675, filed Jan. 20, 2011, Method and Apparatus for The Alignment of Multi-Aperture Systems, Dan A. Preston. |
U.S. Appl. No. 13/188,856, filed Jul. 22, 2011, Failure Determination System, Robert Lutter. |
U.S. Appl. No. 13/188,959, filed Jul. 22, 2011, Method and Apparatus for Dynamic Configuration Multiprocessor System, Dan A. Preston. |
U.S. Appl. No. 13/196,654, filed Aug. 2, 2011, Method and Apparatus to Dynamically Configure a Vehicle Audio System, Dan A. Preston. |
U.S. Appl. No. 13/430,368, filed Mar. 26, 2012, Dynamic Configuration of a Home Multiprocessor System, Dan A. Preston. |
Longbin, Xiaoquain, Vizu Kang, Bar-Shalom: Unbiased converted measurements for tracking; IEEE Transactions on Aerospace and Electronic Systems vol. 34(4), Jul. 1998, pp. 1023-1027. |
Miller, Drummond: Comparison of methodologies for mitigating coordinate transformation basis in target tracking; Proceedings SPIE Conference on Signal and Data Processing of Small Targets 2000, vol. 4048, Jul. 2002, pp. 414-426. |
Duan, Han, Rong Li: Comments on “Unbiased (debiased) converted measurements for tracking” IEEE Transactions on Aerospace and Electronic Systems, vol. 40(4), Oct. 2004, pp. 1374-1377. |
A. Das, R. Fierro, V. Kumar, J. Ostrowski, J. Spletzer, and C. Taylor, “A Framework for Vision Based Formation Control”, IEEE Transactions on Robotics and Automation, vol. 18, Nov. 5, 2001, pp. 1-13. |
Ada 95 Transition Support—Lessons Learned, Sections 3, 4, and 5, CACI, Inc.—Federal, Nov. 15, 1996, 14 pages. |
AMIC. Architecture specification release 1, 2001; 35 pages. |
Bluetooth Doc; Advance Audio Distribution Profile Specification; Adopted version 1.0; dated May 22, 2003; 75 pages. |
Bluetooth Doc; Audio/Video Remote Control Profile; Version 1.0 Adopted; dated May 22, 2003; 52 pages. |
Bluetooth Hands-free Profile 1.5 Nov. 25, 2005. |
Bluetooth Specification version 1.1; Feb. 22, 2001; 452 pages. |
Boeing News Release, “Boeing Demonstrates JSF Avionics Multi-Sensor Fusion”, Seattle, WA, May 9, 2000, pp. 1-2. |
Boeing Statement, “Chairman and CEO Phil Condit on the JSF Decision”, Washington, D.C., Oct. 26, 2001, pp. 1-2. |
Counterair: The Cutting Edge, Ch. 2 “The Evolutionary Trajectory The Fighter Pilot—Here to Stay?” AF2025 v3c8-2, Dec. 1996, pp. 1-7. |
Counterair: The Cutting Edge, Ch. 4 “The Virtual Trajectory Air Superiority without an “Air” Force?” AF2025 v3c8-4, Dec. 1996, pp. 1-12. |
Embedded Bluetooth Migrates to Lisbon and Seattle; 11 pages; Jan. 23, 2008. |
Green Hills Software, Inc., “The AdaMULTI 2000 Integrated Development Environment,” Copyright 2002, printed Jul. 9, 2002; 7 pages. |
H. Chung, L. Ojeda, and J. Borenstein, “Sensor Fusion for Mobile Robot Dead-reckoning with a Precision-calibrated Fiber Optic Gyroscope”, 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea, May 21-26, 2001, pp. 1-6. |
Hitachi Automated Highway System (AHS), Automotive Products, Hitachi, Ltd., Copyright 1994-2002, 8 pages. |
IEEE Standard for Information Technology—POSIX Based Supercomputing Application Environment Profile; Jun. 14, 1995, 72 pages. |
ISIS Project: Sensor Fusion, Linkoping University Division of Automatic Control and Communication Systems in cooperation with SAAB (Dynamics and Aircraft), 2001, 18 pages. |
J. Takezaki, N. Ueki, T. Minowa, H. Kondoh, “Support System for Safe Driving—A Step Toward ITS Autonomous Driving—”, Hitachi Review, vol. 49, Nov. 3, 2000, pp. 1-8. |
Joint Strike Fighter Terrain Database, ets-news.com “Simulator Solutions” 2002, 3 pages. |
Luttge, Karsten; “E-Charging API: Outsource Charging to a Payment Service Provider”; IEEE; 2001 (pp. 216-222). |
M. Chantler, G. Russel, and R. Dunbar, “Probabilistic Sensor Fusion for Reliable Workspace Sensing”, Fourth IARP workship on Underwater Robotics, Genoa, Nov. 1992, pp. 1-14. |
MSRC Redacted Proposal, 3.0 Architecture Development, Aug. 29, 2002; pp. 1-43. |
MyGig User Guide. |
Powerpoint Presentation by Robert Allen—Boeing Phantom Works entitled “Real-Time Embedded Avionics System Security and COTS Operating Systems”, Open Group Real-Time Forum, Jul. 18, 2001, 16 pages. |
Product description of Raytheon Electronic Systems (ES), Copyright 2002, pp. 1-2. |
Product description of Raytheon RT Secure, “Development Environment”, Copyright 2001, pp. 1-2. |
Product description of Raytheon RT Secure, “Embedded Hard Real-Time Secure Operating System”, Copyright 2000, pp. 1-2. |
Product description of Raytheon RT Secure, Copyright 2001, pp. 1-2. |
S.G. Goodridge, “Multimedia Sensor Fusion for Intelligent Camera Control and Human-Computer Interaction”, Dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering, Raleigh, NC, 1997, pp. 1-5. |
Specification of the Bluetooth System v1.0.B; Dec. 1, 1999. |
Specification of the Bluetooth System v1.1; Feb. 22, 2001. |
TNO FEL Annual Review 1998: Quality works, Observation Systems Division; “The Whole is More Than the Sum of its Parts”; 16 pages. |
Vehicle Dynamics Lab, University of California, Berkeley, funded by BMW, current members: D. Caveney and B. Feldman, “Adaptive Cruise Control”, at least as early as 2002, printed Jul. 2, 2002; 17 pages. |
Stirling A: “Mobile Multimedia platforms” Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No. 00CH37152). |
Nusser R. et al.: “Bluetooth-based wireless connectivity in an automotive environment” Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000 52nd Vehicular Technology Conference (Cat. No. 00CH37152). |
Martins e f v et al. “Design of an OS9 operating system extension for a message-passing multiprocessor” Microprocessors and Microsystems, IPC Business Press LT. London, BG, vol. 21, No. 9, Apr. 1, 1998, pp. 533-543. |
Gutierrez Garcia JJ et al. “Minimizing the effects of jitter in distributed hard real-time systems” Journal of Systems Architecture, Elsevier Science Publishers BV., Amsterdam, NL, vol. 41, No. 6/7. Dec. 15, 1996, pp. 431-447. |
International Search Report for PCT/US02/020402; Mailing date Apr. 3, 2003. |
International Search Report for PCT/US02/020403; Mailing date Jan. 27, 2003. |
International Search Report for PCT/US02/016364; Mailing date Feb. 14, 2003. |
International Search Report for PCT/US02/016371; Mailing date Aug. 18, 2003. |
Stolowitz Ford Cowger LLP Listing of Related Cases Mar. 15, 2011. |
Stolowitz Ford Cowger LLP Listing of Related Cases Oct. 12, 2011. |
MyGig User Guide; Mar. 11, 2008. |
Robert Bosch GmbH, “CAN Specification, Version 2.0,” Sep. 1991. |
Wang, Z. et al. “A Message Priority Assignment Algorithm for CAN-based Networks,” in CSC '92 Proceedings of the 1992 ACM Annual Conference on Communications, Mar. 1992. |
Fay-Wolfe, et al., “Real-Time CORBA,” IEEE Transactions on Parallel and Distributed Systems, vol. 11, Issue 10 (Oct. 2000). |
Rene Nusser and Rodolfo Mann Pelz, “Bluetooth-based Wireless Connectivity in an Automotive Environment,” IEEE pp. 1935-1942, Vehicular Technology Conference, 2000. |
Husein et al., “A Priority Based Service Algorithm for Use in Time-Critical and Integrated Services Networks,” Proceedings of IEEE Singapore International Conference, vol. 1, pp. 93-97, 1993. |
Release 1 Specification Set from the Automotive Multimedia Interface Collaboration (AMI-C), Jan. 2001. |
Open Services Gateway Initiative (OSGi) Service Gateway Specification Release 1.0, May 2000. |
Ellis, S. M. , “Dynamic Software Reconfiguration for Fault-Tolerant Real-Time Avionic Systems,” Microprocessor and Microsystems, Proceedings of the 1996 Avionics Conference and Exhibition, vol. 21, issue 1, pp. 29-39, Jul. 1997. |
Peter Walzer, and Hans-Wilhelm Grove, “Integrated Research Volkswagen (IRVW) Futura,” Passenger Car Meeting and Exposition, Dearborn, Michigan, Sep. 17-20, 1990. |
Specification vol. 1, Specification of the Bluetooth System, Version 1.1, Feb. 22, 2001. |
Bluetooth ESDP for UPnP, prepared by Arun Ayyagan, Jan. 31, 2001. |
Nace, W. & Koopman, P., “A Product Family Based Approach to Graceful Degradation,” Proceedings of DIPES 2000, International IFIP WG 10.3/WG 10.4/ WG 10.5 Workshop on, Distributed and Parallel Embedded Systems, Paderborn University, Germany, Oct. 18-19, 2000. |
Meredith Beveridge, “M.S. Project Report, Jini on the Control Area Network (CAN): A Case Study in Portability Failure”, Department of Electrical and Computer Engineering, Carnegie Mellon University, Phil Koopman—advisor, Mar. 2001. |
Universal Serial Bus Specification, Revision 1.1, Compaq, Intel, Microsoft and NEC, Sep. 23, 1998. |
Universal Serial Bus Specification , Revision 2.0, Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC and Philips, Apr. 27, 2000. |
Tindell, Ken, et al, “A CAN Communications Concept with Guaranteed Message Latencies”, Oct. 1998. |
Robinson, Ralph L., “An Open Versus Closed Architecture for Multimedia Systems,” Proceedings of the 2000 International Congress on Transportation Electronics, pp. 445-450, Oct. 2000. |
Y. Chubachi and H. Okagaki , “The Development of Traffic Information System Using AutoPC,” Proceedings of the 2000 International Congress on Transportation Electronics, pp. 81-88, Oct. 2000. |
USBlyzer, “Brief Overview of USB History”. |
M. Tchorowski and J. Mate, “Avionics and Automotive bandwagon flying together on the infotronics Highway,” Proceedings of the 1998 International Congress on Transportation Electronics, pp. 351-354, Oct. 1998. |
Fout, Tom, “Universal Plug and Play in Windows XP,” Jul. 1, 2001. |
Yen, H.W., et al., “Information Security and Integrity in Network Vehicle,” Proceedings of the 1998 International Congress on Transportation Electronics, pp. 319-323, Oct. 1998. |
Minagawa, Shoichi, et al, “Open Architectural Car Multimedia Platform,” Proceedings of the 1998 International Congress on Transportation Electronics, pp. 198-194 Oct. 1998. |
Kanemitsu, Dean et al. “Productivitys Next Dimension—The Mobile Office Computing Platform,” Proceedings of the 2000 International Congress on Transportation Electronics, pp. 159-165, Oct. 2000. |
Bhaskaran, Parvathy, “Reinventing the Car Radio for the Internet—the iRadio™,” Proceedings of the 2000, International Congress on Transportation Electronics, pp. 147-153, Oct. 2000. |
Buckley, Stephen, et al., “The Car as a Peripheral—Adapting a Portable Computer to a Vehicle Intranet,” Proceedings of the 1998 International Congress on Transportation Electronics, pp. 211-217, Oct. 1998. |
Arnold, Ken, et al., “The Jini Specification,” Publisher Addison-Wesley, 1999. |
Powers, Chuck, et al., Today's Electronics in Todays Vehicles, Proceedings of the 1998 International Congress on Transportation Electronics, pp. 195-200, Oct. 1998. |
Vaught, Mark A., “Phone-Activated Auto-Muting Circuit,” Jan. 1990. |
Clarion Co. Ltd., “Clarion AutoPC 310C Owner's Manual,” 1998. |
Clarion, “2002 Clarion Product Catalog Car Audio, Multimedia, Marine, and Security Retail Products,” 2002. |
Clarion Co., Ltd., “Joyride Quick Reference Guide,” 2000-2001. |
Joyride, Windows CE System Software User's Manual, 1999-2001. |
Lind, R., et al., “The Network Vehicle—A Glimpse into the Future of Mobile Multi-Media,” IEEE AES Systems Magazine, Sep. 1999. |
First Amended Complaint and Answer from Eagle Harbor Holdings, LLC, and Mediustech, LLC, v. Ford Motor Company, Washington Western District Court, Case No. 3:11-CV-05503-BHS, Case filed: Jun. 30, 2011. |
Exhibits and Modules from Eagle Harbor Holdings, LLC, and Mediustech, LLC, v. Ford Motor Company, Washington Western District Court, Case No. 3:11-CV-05503-BHS, Case filed: Jun. 30, 2011. |
Stolowitz Ford Cowger LLP Listing of Related Cases Sep. 17, 2012. |
Number | Date | Country | |
---|---|---|---|
Parent | 12483214 | Jun 2009 | US |
Child | 12979198 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11462958 | Aug 2006 | US |
Child | 12483214 | US | |
Parent | 09841915 | Apr 2001 | US |
Child | 11462958 | US |