Cars include many different electro-mechanical and electronic applications. Examples include braking systems, electronic security systems, radios, Compact Disc (CD) players, internal and external lighting systems, temperature control systems, locking systems, seat adjustment systems, speed control systems, mirror adjustment systems, directional indicators, etc. Generally the processors that control these different car systems do not talk to each other. For example, the car radio does not communicate with the car heating system or the car braking system. This means that each one of these car systems operate independently and do not talk to the other car systems. For example, separate processors and separate user interfaces are required for the car temperature control system and for the car audio system. Many of these different car processors may be underutilized since they are only used intermittently.
Even when multiple processors in the car do talk to each other, they are usually so tightly coupled together that it is impossible to change any one of these processors without disrupting all of the systems that are linked together. For example, some cars may have a dashboard interface that controls both internal car temperature and a car radio. The car radio cannot be replaced with a different model and still work with the dashboard interface and the car temperature controller.
Integration of new systems into a car is also limited. Car systems are designed and selected well before the car is ever built. A custom wiring harness is then designed to connect only those car systems selected for the car. A car owner cannot incorporate new systems into the existing car. For example, a car may not originally come with a navigation system. An after market navigation system from another manufacturer cannot be integrated into the existing car.
Because after market devices can not be integrated into car control and interface systems, it is often difficult for the driver to try and operate these after market devices. For example, the car driver has to operate the after market navigation system from a completely new interface, such as the keyboard and screen of a laptop computer. The driver then has to operate the laptop computer not from the front dashboard of the car, but from the passenger seat or the car. This makes many after market devices both difficult and dangerous to operate while driving.
The present invention addresses this and other problems associated with the prior art.
A multiprocessor system used in a car, home, or office environment includes multiple processors that nm different real-time applications. A dynamic configuration system runs on the multiple processors and includes a device manager, configuration manager, and data manager. The device manager automatically detects and adds new devices to the multiprocessor system, and the configuration manager automatically reconfigures which processors run the real-time applications. The data manager identifies the type of data generated by the new devices and identifies which devices in the multiprocessor system are able to process the data.
The processors 14, 16, 18 and 20 all include software that run a Dynamic Configuration (DC) system 10 that enables new processors or devices to be automatically added and removed from the car multiprocessor system 8. The DC system 10 also automatically reconfigures the applications running on different processors according to application failures and other system processing requirements.
For example, the processor 20 may currently be running a high priority brake control application. If the processor 20 fails, the DC system 10 can automatically download the braking application to another processor in car 12. The DC system 10 automatically identifies another processor with capacity to run the braking control application currently running in processor 20. The DC system 10 then automatically downloads a copy of the braking control application to the identified processor. If there is no extra reserve processing resources available, the DC system 10 may replace a non-critical application running on another processor. For example, the DC system 10 may cause the display processor 16 to terminate a current non-critical application and then download the brake control application along with any stored critical data.
The DC system 10 also automatically incorporates new processors or applications into the multiprocessor system 8. For example, a laptop computer 38 can communicate with the engine monitor processor 34 through a hardwired link 34 or communicate to the display processor 16 through a wireless link 36. The DC system 10 automatically integrates the laptop computer 38, or any other processor or device, into the multiprocessor system 8. After integrated into the multiprocessor system 8, not only can the laptop computer 38 transfer data with other processors, but the laptop computer may also run car applications normally run by other processors in car 12.
The DC system 10 allows the car driver to manage how different applications are processed in the car 12. As described above, a car operator may have to run an aftermarket navigation system through a GPS transceiver attached to the laptop computer 38. The car driver has to place the laptop computer 38 in the passengers seat and then operate the laptop computer 38 while driving.
The DC system 10 in the display computer 16 can automatically detect the navigation application running on the laptop computer 38. The display computer 16 notifies the car operator through the user interface 26 that the navigation application has been detected. The car operator can then control the navigation application through the user interface 26. Since the user interface 26 is located in the dashboard of car 12, the car operator no longer has to take his eyes off the road while operating the navigation application.
The description below gives only a few examples of the different processors, devices and applications that can be implemented using the DC system 10. Any single or multiprocessor system located either inside or outside of car 12 can communicate and exchange data using the OC system 10. It should also be understood that the DC system 10 can be used in any real-time environment such as between processors in different home or office appliances and different home and office computers.
In one example, sensors 52 feed sensor data to processor 40. The sensor data may include engine-monitoring data such as speed, oil temperature, water temperature, temperature inside the car cab, door open/shut conditions, etc. The sensors 52 are coupled to processor 40 through a link 54, such as a proprietary bus. A Compact Disc (CD) player 50 is coupled to the processor 40 through another link 48, such as a Universal Serial Bus (USB). Graphical User Interface (GUI) 56 displays the data associated with sensors 52 and CD player 50. The GUI 56 displays the outputs from sensors 52 using an icon 60 to identify temperature data and an icon 62 to identify car speed. The processor displays the CD player 50 as icon 62.
The processor 40 is located in car 12 (
The DC system 10 then automatically displays the newly detected DVD player 86 on GUI 56 as icon 96. If capable, the car operator by selecting the icon 96 can then display a video stream output from the DVD player 86 over GUI 56. The DVD player 86 can now be controlled from the GUI 56 on the car dashboard. This prevents the car driver from having to divert his eyes from the road while trying to operate the portable DVD player 86 from another location in the car, such as from the passenger seat.
Other processors or devices can also be incorporated into the multiprocessor system 8 in car 12. In another example, the car 12 drives up to a drive-in restaurant 90. The drive-in 90 includes a transmitter 92 that sends out a wireless Blue tooth signal 94. The processor 40 includes a Blue tooth transceiver that allows communication with transmitter 92. The DC system 10 recognizes the signals 94 from transmitter 92 and then incorporates the drive-in 90 into the multiprocessor system 8 (
Referring to
Processor A includes a memory 65 that stores the other recognized processors B, C and D. The data managers 46 also identify any applications that may be running on the identified processors. For example, memory 65 for processor A identifies an application #2 running on processor B, no applications running on processor C, and an application #4 running on processor D.
One of the device managers 46 in the multiprocessor system 8 cheeks the signals from processor E checks to determine if the signals are encrypted in a recognizable protocol in block 76. The device manager in the processor receiving the signals from processor E then checks for any data codes from the new device signals in block 76. The data codes identify data types used in one or more applications by processor E. A device ID for processor E is then determined from the output signals in block 80.
If all these data parameters are verified, the device managers 46 in one or more of the processors A, B, C and D add the new processor E to their processor arrays in block 82. For example, processor A adds processor E to the processor array in memory 65. After being incorporated into the multiprocessor system 8, the processor E or the applications running on the processor E may be displayed on a graphical user interface in block 84.
The processor D displays an icon 120 on GUI 118 that represents the navigation system 110 running in processor A. An icon 124 represents the audio application running in processor B and an icon 122 represents the ABS application 114 running in processor C.
The memory 128 stores copies of the navigation application 110, audio application 112, ABS application 114 and display application 116. The memory 128 can also store data associated with the different applications. For example, navigation data 130 and audio data 132 are also stored in memory 128. The navigation data 130 may consist of the last several minutes of tracking data obtained by the navigation application 110. The audio data 132 may include the latest audio tracks played by the audio application 112.
The memory 128 can be any CD, hard disk, Read Only Memory (ROM), Dynamic Random Access (RAM) memory, etc. or any combination of different memory devices. The memory 128 can include a central memory that all or some of the processors can access and may also include different local memories that are accessed locally by specific processors.
One or more of the configuration managers 44 include a watchdog function that both monitors its own applications and the applications running on other processors. If an internal application fails, the configuration manager may store critical data for the failed application. The data for each application if stored in the memory 128 can selectively be encrypted so that only the car operator has the authority to download certain types of data.
The configuration manager detecting the failure initiates a reboot operation for that particular application. The application is downloaded again from memory 128 and, if applicable, any stored application data. If the application continues to lockup, the configuration manager may then initiate a reconfiguration sequence that moves the application to another processor.
Failures are identified by the watchdog functions in one example by periodically sending out heartbeat signals to the other processors. If the heartbeat from one of the processors is not detected for one of the processors, the configuration manager 44 for the processor that monitors that heartbeat attempts to communicate with the processor or application. If the application or processor with no heartbeat does not respond, the reconfiguration process is initiated.
In another example, certain processors may monitor different applications. For example, a sensor processor may constantly monitor the car speed when the car operator presses the brake pedal. If the car speed does not slow down when the brake is applied, the sensor processor may check for a failure in either the braking application or the speed sensing application. If a failure is detected, the configuration manager initiates the reconfiguration routine.
When reconfiguration is required, one of the reconfiguration managers 44 first tries to identify a processor that has extra processing capacity to run the failed application in block 136. For example, there may be a backup processor in the multiprocessor system where the ABS application 114 can be downloaded. If extra processing resources are available, the ABS application 114 is downloaded from the memory 128 (
There may also be data associated with the failed application that is stored in memory 128. For example, the brake commands for the ABS application 114 may have been previously identified for logging in memory 128 using a logging label described in co-pending application entitled: OPEN COMMUNICATION SYSTEM FOR REAL-TIME MULTIPROCESSOR APPLICATIONS, Ser. No. 09/841,753 filed Apr. 24, 2001 which is herein incorporated by reference. The logged brake commands are downloaded to the backup processor in block 142.
If no backup processing resources can be identified in block 136, the configuration manager 44 identifies one of the processors in the multiprocessor system that is running a non-critical application. For example, the configuration manager 44 may identify the navigation application 110 in processor A as a non-critical application. The configuration manager 44 in block 140 automatically replaces the non-critical navigation application 110 in processor A with the critical ABS application 114 in memory 128. The processor A then starts running the ABS application 114.
In block 154 the configuration manager 44 for one of the processors determines if there is extra capacity in one of the other processors for running the failed navigation application 110. If there is another processor with extra processing capacity, the navigation application is downloaded from memory 128 to that processor with extra capacity along with any necessary navigation data in block 156. This reconfiguration may be done automatically without any interaction with the car operator.
If there is no extra processing capacity for running the navigation application 110, the configuration manager 44 displays the failed processor or application to the user in block 158. For example, the GUI 118 in
The configuration manager in block 160 waits for the car operator to request reconfiguration of the failed navigation application to another processor. If there is no user request, the configuration managers return to monitoring for other failures. If the user requests reconfiguration, the configuration manager 44 in block 164 displays other non-critical applications to the user. For example, the GUI 118 only displays the audio application icon 124 in processor B and not the ABS application icon 122 (
If the car operator selects the audio icon 124 in block 166, the configuration manager in block 168 cancels the audio application 112 in processor B and downloads the navigation application 110 from memory 128 into processor B. A logging manager in processor A may have labeled certain navigation data for logging. That navigation data 130 may include the last few minutes of position data for the car while the navigation application 110 was running in processor A. The logged navigation data 130 is downloaded from memory 128 along with the navigation application 110 into processor B. The navigation icon 120 in GUI 118 then shows the navigation application 110 running on processor B. At the same time the audio application icon 124 is removed from GUI 118.
Referring back to
One or more of the data managers 42, identifies the device by its data and the data, if applicable, is displayed on the graphical user interface in block 172. The data manager then identifies any devices in the multiprocessor system that can output or transmit data to the new device in block 174. For example, a newly detected audio source may be output from a car speaker. The data manager monitors for any user selections in block 176. For example, the car operator may select the output from a portable CD player to be output from the car speakers. The data manager controlling the CD player and the data manager controlling the car speakers then direct the output from the CD player to the car speakers in block 178.
The A/V output devices in the car are shown in the lower portion of GUI 180. For example, icons 192, 194, 196, 200, and 204 show car audio speakers. An in-dash video display is represented by icon 190 and a portable monitor is represented by icon 198.
Currently, a car operator may be listening to the radio 186 over speakers 192, 194, 196, 200 and 204. However, a passenger may move into the backseat of the car carrying an MP3 player. The MP3 player runs the DC system 10 described in
One of the data managers 42 determines the MP3 player outputs a MP3 audio stream and accordingly generates the icon 182 on the GUI 180. The data manager 42 also identifies a speaker in the MP3 player as a new output source and displays the speaker as icon 202. The car operator sees the MP3 icon 182 now displayed on GUI 180. The car operator can move the MP3 icon 182 over any combination of the speaker icons 192, 194, 196, 200 and 204. The output from the MP3 player is then connected to the selected audio outputs.
Audio data can also be moved in the opposite direction. The speaker icon 202 represents the output of the portable. MP3 player that the passenger brought into the backseat of the car. The car operator also has the option of moving one or more of the other audio sources, such as the cellular telephone 184 or the radio 186 icons over the speaker icon 202. If the car operator, for example, moves the radio icon 186 over the MP3 player speaker icon 202 and the MP3 player can output the radio signals, the multiprocessor system redirects the radio broadcast out over the MP3 speaker.
It should be understood that the multiprocessor system described, above could be used in applications other than cars. For example,
The system described above can use dedicated processor systems, micro controllers, programmable logic devices, or microprocessors that perform some or all of the communication operations. Some of the operations described above may be implemented in software and other operations may be implemented in hardware.
For the sake of convenience, the operations are described as various interconnected functional blocks or distinct software modules. This is not necessary, however, and there may be cases where these functional blocks or modules are equivalently aggregated into a single logic device, program or operation with unclear boundaries. In any event, the functional blocks and software modules or described features can be implemented by themselves, or in combination with other operations in either hardware or software.
Having described and illustrated the principles of the invention in a preferred embodiment thereof, it should be apparent that the invention ay be modified in arrangement and detail without departing from such principles. Claim is made to all modifications and variation coming within the spirit and scope of the following claims.
This application is a continuation of U.S. patent application Ser. No. 12/258,234 filed Oct. 24, 2008, which is a continuation of U.S. patent application Ser. No. 11/462,958 filed Aug. 7, 2006, now issued U.S. Pat. No. 7,778,739 issued on Aug. 7, 2010, that is a continuation of U.S. patent application Ser. No. 09/841,915, filed Apr. 24, 2001, now U.S. Pat. No. 7,146,260 issued on Dec. 5, 2006, the disclosures of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2995318 | Cocharo | Aug 1961 | A |
3812468 | Wollum et al. | May 1974 | A |
4303978 | Shaw | Dec 1981 | A |
4528563 | Takeuchi | Jul 1985 | A |
4558460 | Tanaka | Dec 1985 | A |
4591976 | Webber | May 1986 | A |
4735274 | Good et al. | Apr 1988 | A |
4829434 | Karmel | May 1989 | A |
4835537 | Manion | May 1989 | A |
4907159 | Mauge | Mar 1990 | A |
4931930 | Shyu et al. | Jun 1990 | A |
5008678 | Herman | Apr 1991 | A |
5027432 | Skala | Jun 1991 | A |
5031330 | Stuart | Jul 1991 | A |
5045937 | Myrick | Sep 1991 | A |
5111401 | Everett, Jr. | May 1992 | A |
5115245 | Wen | May 1992 | A |
5243640 | Hadley et al. | Sep 1993 | A |
5245909 | Corrigan | Sep 1993 | A |
5287199 | Zoccolillo | Feb 1994 | A |
5303297 | Hillis | Apr 1994 | A |
5339086 | DeLuca | Aug 1994 | A |
5341301 | Shirai | Aug 1994 | A |
5438361 | Coleman | Aug 1995 | A |
5471214 | Faibish | Nov 1995 | A |
5485892 | Fujita | Jan 1996 | A |
5506963 | Ducateau | Apr 1996 | A |
5532706 | Reinhardt | Jul 1996 | A |
5552773 | Kuhnert | Sep 1996 | A |
5555503 | Kyrtsos et al. | Sep 1996 | A |
5572201 | Graham | Nov 1996 | A |
5579219 | Mori et al. | Nov 1996 | A |
5581462 | Rogers | Dec 1996 | A |
5585798 | Yoshioka | Dec 1996 | A |
5617085 | Tsutsumi | Apr 1997 | A |
5646612 | Byon | Jul 1997 | A |
5661811 | Huemann et al. | Aug 1997 | A |
5742141 | Czekaj | Apr 1998 | A |
5749060 | Graf | May 1998 | A |
5751211 | Shirai | May 1998 | A |
5754123 | Nashif et al. | May 1998 | A |
5761320 | Farinelli | Jun 1998 | A |
5786998 | Neeson | Jul 1998 | A |
5787246 | Lichtman | Jul 1998 | A |
5794164 | Beckert | Aug 1998 | A |
5872508 | Taoka | Feb 1999 | A |
5898392 | Bambini | Apr 1999 | A |
5907293 | Tognazzini | May 1999 | A |
5915214 | Reece | Jun 1999 | A |
5943427 | Massie et al. | Aug 1999 | A |
5948040 | DeLorme | Sep 1999 | A |
5951620 | Ahrens | Sep 1999 | A |
5956016 | Kuenzner et al. | Sep 1999 | A |
5956250 | Gudat et al. | Sep 1999 | A |
5957985 | Wong et al. | Sep 1999 | A |
5959536 | Chambers | Sep 1999 | A |
5963092 | Van Zalinge | Oct 1999 | A |
5964822 | Alland | Oct 1999 | A |
5966658 | Kennedy, III | Oct 1999 | A |
5969598 | Kimura | Oct 1999 | A |
5974554 | Oh | Oct 1999 | A |
5977906 | Ameen | Nov 1999 | A |
5983092 | Whinnett | Nov 1999 | A |
5983161 | Lemelson | Nov 1999 | A |
6009330 | Kennedy, III | Dec 1999 | A |
6009403 | Sato | Dec 1999 | A |
6028537 | Suman | Feb 2000 | A |
6028548 | Farmer | Feb 2000 | A |
6032089 | Buckley | Feb 2000 | A |
6037860 | Zander et al. | Mar 2000 | A |
6052632 | Iihoshi | Apr 2000 | A |
6054950 | Fontana | Apr 2000 | A |
6060989 | Gehlot | May 2000 | A |
6061002 | Weber et al. | May 2000 | A |
6061709 | Bronte | May 2000 | A |
6075467 | Ninagawa | Jun 2000 | A |
6097285 | Curtin | Aug 2000 | A |
6097314 | Desens et al. | Aug 2000 | A |
6128608 | Barnhill | Oct 2000 | A |
6144336 | Preston et al. | Nov 2000 | A |
6148261 | Obradovich | Nov 2000 | A |
6150961 | Alewine | Nov 2000 | A |
6154123 | Kleinberg | Nov 2000 | A |
6161071 | Shuman | Dec 2000 | A |
6163711 | Juntunen | Dec 2000 | A |
6166627 | Reeley | Dec 2000 | A |
6167253 | Farris | Dec 2000 | A |
6169894 | McCormick | Jan 2001 | B1 |
6175728 | Mitama | Jan 2001 | B1 |
6175782 | Obradovich | Jan 2001 | B1 |
6181922 | Iwai | Jan 2001 | B1 |
6181994 | Colson | Jan 2001 | B1 |
6182006 | Meek | Jan 2001 | B1 |
6185491 | Gray | Feb 2001 | B1 |
6195760 | Chung et al. | Feb 2001 | B1 |
6202027 | Alland | Mar 2001 | B1 |
6203366 | Muller | Mar 2001 | B1 |
6204804 | Andersson | Mar 2001 | B1 |
6226389 | Lemelson, III | May 2001 | B1 |
6233468 | Chen | May 2001 | B1 |
6236652 | Preston | May 2001 | B1 |
6240365 | Bunn | May 2001 | B1 |
6243450 | Jansen | Jun 2001 | B1 |
6243645 | Moteki et al. | Jun 2001 | B1 |
6247079 | Papa et al. | Jun 2001 | B1 |
6252544 | Hoffberg | Jun 2001 | B1 |
6275231 | Obradovich | Aug 2001 | B1 |
D448366 | Youngers | Sep 2001 | S |
6292109 | Murano | Sep 2001 | B1 |
6292747 | Amro | Sep 2001 | B1 |
6294987 | Matsuda | Sep 2001 | B1 |
6297732 | Hsu | Oct 2001 | B2 |
6298302 | Walgers | Oct 2001 | B2 |
6314326 | Fuchu | Nov 2001 | B1 |
6321344 | Fenchel | Nov 2001 | B1 |
6326903 | Gross | Dec 2001 | B1 |
6327536 | Tsuji | Dec 2001 | B1 |
6362748 | Huang | Mar 2002 | B1 |
6370449 | Razavi et al. | Apr 2002 | B1 |
6374286 | Gee | Apr 2002 | B1 |
6377860 | Gray | Apr 2002 | B1 |
6382897 | Mattio | May 2002 | B2 |
6389340 | Rayner | May 2002 | B1 |
6401029 | Kubota | Jun 2002 | B1 |
6405132 | Breed | Jun 2002 | B1 |
6408174 | Steijer | Jun 2002 | B1 |
6417782 | Darnall | Jul 2002 | B1 |
6421429 | Merritt | Jul 2002 | B1 |
6429789 | Kiridena | Aug 2002 | B1 |
6429812 | Hoffberg | Aug 2002 | B1 |
6430164 | Jones et al. | Aug 2002 | B1 |
6433679 | Schmid | Aug 2002 | B1 |
6442485 | Evans | Aug 2002 | B2 |
6445308 | Koike | Sep 2002 | B1 |
6449541 | Goldberg et al. | Sep 2002 | B1 |
6452484 | Drori | Sep 2002 | B1 |
6463373 | Suganuma | Oct 2002 | B2 |
6484080 | Breed | Nov 2002 | B2 |
6493338 | Preston | Dec 2002 | B1 |
6496107 | Himmelstein | Dec 2002 | B1 |
6496117 | Gutta | Dec 2002 | B2 |
6496689 | Keller | Dec 2002 | B1 |
6505100 | Stuempfle | Jan 2003 | B1 |
6515595 | Obradovich | Feb 2003 | B1 |
6522875 | Dowling | Feb 2003 | B1 |
6526335 | Treyz et al. | Feb 2003 | B1 |
6542812 | Obradovich et al. | Apr 2003 | B1 |
6559773 | Berry | May 2003 | B1 |
6567069 | Bontrager et al. | May 2003 | B1 |
6571136 | Staiger | May 2003 | B1 |
6574734 | Colson et al. | Jun 2003 | B1 |
6584403 | Bunn | Jun 2003 | B2 |
D479228 | Sakaguchi | Sep 2003 | S |
6614349 | Proctor | Sep 2003 | B1 |
6615137 | Preston | Sep 2003 | B2 |
6616071 | Kitamura | Sep 2003 | B2 |
6622083 | Knockeart | Sep 2003 | B1 |
6629033 | Preston | Sep 2003 | B2 |
6641087 | Nelson | Nov 2003 | B1 |
6647270 | Himmelstein | Nov 2003 | B1 |
6647328 | Walker | Nov 2003 | B2 |
6670912 | Honda | Dec 2003 | B2 |
6675081 | Shuman | Jan 2004 | B2 |
6678892 | Lavelle et al. | Jan 2004 | B1 |
6681121 | Preston | Jan 2004 | B1 |
6690681 | Preston | Feb 2004 | B1 |
6707421 | Drury | Mar 2004 | B1 |
6708100 | Russell | Mar 2004 | B2 |
6714139 | Saito | Mar 2004 | B2 |
6718187 | Takagi et al. | Apr 2004 | B1 |
6725031 | Watler | Apr 2004 | B2 |
6734799 | Munch | May 2004 | B2 |
6738697 | Breed | May 2004 | B2 |
6748278 | Maymudes | Jun 2004 | B1 |
6765495 | Dunning et al. | Jul 2004 | B1 |
6771208 | Lutter | Aug 2004 | B2 |
6771629 | Preston | Aug 2004 | B1 |
6778073 | Lutter | Aug 2004 | B2 |
6778924 | Hanse | Aug 2004 | B2 |
6782315 | Lu | Aug 2004 | B2 |
6785551 | Richard | Aug 2004 | B1 |
6792351 | Lutter | Sep 2004 | B2 |
6799092 | Lu et al. | Sep 2004 | B2 |
6816458 | Kroon | Nov 2004 | B1 |
6876642 | Adams | Apr 2005 | B1 |
6892230 | Gu et al. | May 2005 | B1 |
6895238 | Newell | May 2005 | B2 |
6895240 | Laursen | May 2005 | B2 |
6901057 | Rune | May 2005 | B2 |
6906619 | Williams | Jun 2005 | B2 |
6920129 | Preston | Jul 2005 | B2 |
6925368 | Funkhouser | Aug 2005 | B2 |
6937732 | Ohmura | Aug 2005 | B2 |
6952155 | Himmelstein | Oct 2005 | B2 |
6972669 | Saito | Dec 2005 | B2 |
6973030 | Pecen | Dec 2005 | B2 |
6980092 | Turnbull | Dec 2005 | B2 |
6993511 | Himmelstein | Jan 2006 | B2 |
7000469 | Foxlin | Feb 2006 | B2 |
7006950 | Greiffenhagen | Feb 2006 | B1 |
7024363 | Comerford | Apr 2006 | B1 |
7079993 | Stephenson | Jul 2006 | B2 |
7085710 | Beckert et al. | Aug 2006 | B1 |
7089206 | Martin | Aug 2006 | B2 |
7092723 | Himmelstein | Aug 2006 | B2 |
7103646 | Suzuki | Sep 2006 | B1 |
7120129 | Ayyagari | Oct 2006 | B2 |
7123926 | Himmelstein | Oct 2006 | B2 |
7146260 | Preston | Dec 2006 | B2 |
7151768 | Preston | Dec 2006 | B2 |
7158842 | Ohmura et al. | Jan 2007 | B2 |
7158956 | Himmelstein | Jan 2007 | B1 |
7164662 | Preston | Jan 2007 | B2 |
7171189 | Bianconi | Jan 2007 | B2 |
7178049 | Lutter | Feb 2007 | B2 |
7187947 | White | Mar 2007 | B1 |
7206305 | Preston | Apr 2007 | B2 |
7207042 | Smith | Apr 2007 | B2 |
7215965 | Fournier | May 2007 | B2 |
7216347 | Harrison et al. | May 2007 | B1 |
7221669 | Preston | May 2007 | B2 |
7239949 | Lu | Jul 2007 | B2 |
7249266 | Margalit | Jul 2007 | B2 |
7257426 | Witkowski et al. | Aug 2007 | B1 |
7263332 | Nelson | Aug 2007 | B1 |
7269188 | Smith | Sep 2007 | B2 |
7272637 | Himmelstein | Sep 2007 | B1 |
7274988 | Mukaiyama | Sep 2007 | B2 |
7277693 | Chen | Oct 2007 | B2 |
7283567 | Preston | Oct 2007 | B2 |
7283904 | Benjamin | Oct 2007 | B2 |
7286522 | Preston | Oct 2007 | B2 |
7317696 | Preston | Jan 2008 | B2 |
7337650 | Preston | Mar 2008 | B1 |
7343160 | Morton | Mar 2008 | B2 |
7375728 | Donath | May 2008 | B2 |
7379707 | DiFonzo | May 2008 | B2 |
7411982 | Smith | Aug 2008 | B2 |
7418476 | Salesky | Aug 2008 | B2 |
7450955 | Himmelstein | Nov 2008 | B2 |
7484008 | Gelvin et al. | Jan 2009 | B1 |
7493645 | Tranchina | Feb 2009 | B1 |
7506020 | Ellis | Mar 2009 | B2 |
7508810 | Moinzadeh | Mar 2009 | B2 |
7509134 | Fournier | Mar 2009 | B2 |
7587370 | Himmelstein | Sep 2009 | B2 |
7594000 | Himmelstein | Sep 2009 | B2 |
7596391 | Himmelstein | Sep 2009 | B2 |
7599715 | Himmelstein | Oct 2009 | B2 |
7610331 | Genske | Oct 2009 | B1 |
7614055 | Buskens | Nov 2009 | B2 |
7664315 | Woodfill | Feb 2010 | B2 |
7681448 | Preston | Mar 2010 | B1 |
7733853 | Moinzadeh | Jun 2010 | B2 |
7747281 | Preston | Jun 2010 | B2 |
7778739 | Preston | Aug 2010 | B2 |
7793136 | Lutter | Sep 2010 | B2 |
7848763 | Fournier | Dec 2010 | B2 |
7924934 | Birmingham | Apr 2011 | B2 |
7966111 | Moinzadeh et al. | Jun 2011 | B2 |
7979095 | Birmingham | Jul 2011 | B2 |
7983310 | Hirano et al. | Jul 2011 | B2 |
8001860 | Preston | Aug 2011 | B1 |
8006117 | Lutter | Aug 2011 | B1 |
8006118 | Lutter | Aug 2011 | B1 |
8006119 | Lutter | Aug 2011 | B1 |
8014942 | Moinzadeh et al. | Sep 2011 | B2 |
8020028 | Lutter | Sep 2011 | B1 |
8027268 | Preston | Sep 2011 | B2 |
8036201 | Moinzadeh et al. | Oct 2011 | B2 |
8036600 | Garrett et al. | Oct 2011 | B2 |
8045729 | Preston | Oct 2011 | B2 |
8068792 | Preston | Nov 2011 | B2 |
8108092 | Philips et al. | Jan 2012 | B2 |
8165057 | Preston et al. | Apr 2012 | B2 |
20010009855 | L'Anson | Jul 2001 | A1 |
20020012329 | Atkinson | Jan 2002 | A1 |
20020022927 | Lemelson et al. | Feb 2002 | A1 |
20020070852 | Trauner | Jun 2002 | A1 |
20020085043 | Ribak | Jul 2002 | A1 |
20020095501 | Chiloyan et al. | Jul 2002 | A1 |
20020098878 | Mooney et al. | Jul 2002 | A1 |
20020105423 | Rast | Aug 2002 | A1 |
20020123325 | Cooper | Sep 2002 | A1 |
20020140548 | Lutter | Oct 2002 | A1 |
20020144010 | Younis | Oct 2002 | A1 |
20020144079 | Willis et al. | Oct 2002 | A1 |
20020155823 | Preston | Oct 2002 | A1 |
20030060188 | Gidron | Mar 2003 | A1 |
20030158614 | Friel | Aug 2003 | A1 |
20030212480 | Lutter | Nov 2003 | A1 |
20030212996 | Wolzien | Nov 2003 | A1 |
20040162064 | Himmelstein | Aug 2004 | A1 |
20040164228 | Fogg | Aug 2004 | A1 |
20050009506 | Smolentzov | Jan 2005 | A1 |
20050070221 | Upton | Mar 2005 | A1 |
20050130656 | Chen | Jun 2005 | A1 |
20050153654 | Anderson | Jul 2005 | A1 |
20050251328 | Merwe et al. | Nov 2005 | A1 |
20050260984 | Karabinis | Nov 2005 | A1 |
20050275505 | Himmelstein | Dec 2005 | A1 |
20050278712 | Buskens et al. | Dec 2005 | A1 |
20060293829 | Cornwell et al. | Dec 2006 | A1 |
20070115868 | Chen | May 2007 | A1 |
20070115897 | Chen | May 2007 | A1 |
20070260372 | Langer et al. | Nov 2007 | A1 |
20070260373 | Langer et al. | Nov 2007 | A1 |
20080092140 | Doninger et al. | Apr 2008 | A1 |
20090090592 | Mordukhovich et al. | Apr 2009 | A1 |
20100017543 | Preston | Jan 2010 | A1 |
20100241312 | Preston | Sep 2010 | A1 |
20100312433 | Preston | Dec 2010 | A1 |
20100330357 | Preston | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
3125161 | Jan 1983 | DE |
4237987 | May 1994 | DE |
19647283 | May 1997 | DE |
19922608 | Nov 2000 | DE |
19931161 | Jan 2001 | DE |
0355490 | Feb 1990 | EP |
0 441 576 | Aug 1991 | EP |
0473866 | Mar 1992 | EP |
0 841 648 | May 1998 | EP |
0841648 | May 1998 | EP |
1 355 128 | Oct 2003 | EP |
10-076115 | Oct 1999 | JP |
2000207691 | Jul 2000 | JP |
1999-021740 | Mar 1999 | KR |
WO9624229 | Aug 1996 | WO |
WO9908436 | Feb 1999 | WO |
WO9957662 | Nov 1999 | WO |
WO9965183 | Dec 1999 | WO |
WO 0029948 | May 2000 | WO |
WO0040038 | Jul 2000 | WO |
WO0130061 | Apr 2001 | WO |
WO0158110 | Aug 2001 | WO |
WO03033092 | Apr 2003 | WO |
Entry |
---|
A. Das, R. Fierro, V. Kumar, J. Ostrowski, J. Spletzer, and C. Taylor, “A Framework for Vision Based Formation Control”, IEEE Transactions on Robotics and Automation, vol. 18, Nov. 5, 2001, pp. 1-13. |
Ada 95 Transition Support—Lessons Learned, Sections 3, 4, and 5, CACI, Inc.—Federal, Nov. 15, 1996, 14 pages. |
AMIC. Architecture specification release 1, 2001; 35 pages. |
Bluetooth Doc; Advance Audio Distribution Profile Specification; Adopted version 1.0; dated May 22, 2003; 75 pages. |
Bluetooth Doc; Audio/Video Remote Control Profile; Version 1.0 Adopted; dated May 22, 2003; 52 pages. |
Bluetooth Hands-free Profile 1.5 Nov. 25, 2005. |
Bluetooth Specification version 1.1; Feb. 22, 2001; 452 pages. |
Boeing News Release, “Boeing Demonstrates JSF Avionics Multi-Sensor Fusion”, Seattle, WA, May 9, 2000, pp. 1-2. |
Boeing Statement, “Chairman and CEO Phil Condit on the JSF Decision”, Washington, D.C., Oct. 26, 2001, pp. 1-2. |
Counterair: The Cutting Edge, Ch. 2 “The Evolutionary Trajectory the Fighter Pilot-Here to Stay?” AF2025 v3c8-2, Dec. 1996, pp. 1-7. |
Counterair: The Cutting Edge, Ch. 4 “The Virtual Trajectory Air Superiority without an “Air” Force?” AF2025 v3c8-4, Dec. 1996, pp. 1-12. |
Embedded Bluetooth Migrates to Lisbon and Seattle; 11 pages; Jan. 23, 2008. |
Green Hills Software, Inc., “The AdaMULTI 2000 Integrated Development Environment,” Copyright 2002, printed Jul. 9, 2002; 7 pages. |
H. Chung, L. Ojeda, and J. Borenstein, “Sensor Fusion for Mobile Robot Dead-reckoning with a Precision-calibrated Fiber Optic Gyroscope”, 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea, May 21-26, 2001, pp. 1-6. |
Hitachi Automated Highway System (AHS), Automotive Products, Hitachi, Ltd., Copyright 1994-2002, 8 pages. |
IEEE Standard for Information Technology—POSIX Based Supercomputing Application Environment Profile; Jun. 14, 1995, 72 pages. |
ISIS Project: Sensor Fusion, Linkoping University Division of Automatic Control and Communication Systems in cooperation with SAAB (Dynamics and Aircraft), 2001, 18 pages. |
J. Takezaki, N. Ueki, T. Minowa, H. Kondoh, “Support System for Safe Driving—A Step Toward ITS Autonomous Driving—”, Hitachi Review, vol. 49, Nov. 3, 2000, pp. 1-8. |
Joint Strike Fighter Terrain Database, ets-news.com “Simulator Solutions” 2002, 3 pages. |
Luttge, Karsten; “E-Charging API: Outsource Charging to a Payment Service Provider”; IEEE; 2001 (pp. 216-222). |
M. Chantler, G. Russel, and R. Dunbar, “Probabilistic Sensor Fusion for Reliable Workspace Sensing”, Fourth IARP workship on Underwater Robotics, Genoa, Nov. 1992, pp. 1-14. |
MSRC Redacted Proposal, 3.0 Architecture Development, Aug. 29, 2002; pp. 1-43. |
MyGig User Guide, Mar. 11, 2008. |
Powerpoint Presentation by Robert Allen—Boeing Phantom Works entitled “Real-Time Embedded Avionics System Security and COTS Operating Systems”, Open Group Real-Time Forum, Jul. 18, 2001, 16 pages. |
Product description of Raytheon Electronic Systems (ES), Copyright 2002, pp. 1-2. |
Product description of Raytheon RT Secure, “Development Environment”, Copyright 2001, pp. 1-2. |
Product description of Raytheon RT Secure, “Embedded Hard Real-Time Secure Operating System”, Copyright 2000, pp. 1-2. |
Product description of Raytheon RT Secure, Copyright 2001, pp. 1-2. |
S.G. Goodridge, “Multimedia Sensor Fusion for Intelligent Camera Control and Human-Computer Interaction”, Dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering, Raleigh, NC, 1997, pp. 1-5. |
Specification of the Bluetooth System v1.0.B; Dec. 1, 1999. |
Specification of the Bluetooth System v1.1; Feb. 22, 2001. |
TNO FEL Annual Review 1998: Quality works, Observation Systems Division; “The Whole is More Than the Sum of its Parts”; 16 pages. |
Vehicle Dynamics Lab, University of California, Berkeley, funded by BMW, current members: D. Caveney and B. Feldman, “Adaptive Cruise Control”, at least as early as 2002, printed Jul. 2, 2002; 17 pages. |
Stirling A: “Mobile Multimedia platforms” Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (CAT. No. 00CH37152). |
Nusser R. et al.: “Bluetooth-based wireless connectivity in an automotive environment” Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000 52nd Vehicular Technology Conference (Cat. No. 00CH37152). |
Martins e f v et al. “design of an OS9 operating system extension for a message-passing multiprocessor” Microprocessors and Microsystems, IPC Business Press Lt. London, BG, vol. 21, No. 9, 1 Apr. 1998, pp. 533-543. |
Gutierrez Garcia JJ et al. “Minimizing the effects of jitter in distributed hard real-time systems” Journal of Systems Architecture, Elsevier Science Publishers BV., Amsterdam, NL, vol. 41, No. 6/7. Dec. 15, 1996, pp. 431-447. |
International Search Report for PCT/US02/020402; Mailing date Apr. 3, 2003. |
International Search Report for PCT/US02/020403; Mailing date Jan. 27, 2003. |
International Search Report for PCT/US02/016364; Mailing date Feb. 14, 2003. |
International Search Report for PCT/US02/016371; Mailing date Aug. 18, 2003. |
Stolowitz Ford Cowger LLP Listing of Related Cases Oct. 18, 2011. |
U.S. Appl. No. 11/326,708, filed Jan. 5, 2006, Wireless Communication System Using Dynamic Mobile Cells, Preston. |
U.S. Appl. No. 10/224,306, filed Aug. 19, 2002, Wireless Communication System Using Dynamic Mobile Cells, Preston. |
U.S. Appl. No. 11/327,246, filed Jan. 5, 2006, Method of Incorporating a Vehicle Operator into a Vehicular Multisensor Environment, Preston. |
U.S. Appl. No. 10/224,307, filed Aug. 19, 2002, Method of Incorporating the Driver into a Vehicular Multisensor Environment, Lutter. |
U.S. Appl. No. 10/426,244, filed Apr. 29, 2003, Method and Apparatus for Transferring Information Between Vehicles, Lutter. |
U.S. Appl. No. 12/979,186, filed Dec. 27, 2010, Method and Apparatus for Dynamic Configuration of Multiprocessor System, Preston. |
U.S. Appl. No. 12/979,198, filed Dec. 27, 2010, Method and Apparatus for Dynamic Configuration of Multiprocessor System, Preston. |
Robert Bosch GmbH, “CAN Specification, Version 2.0,” Sep. 1991. |
Wang, Z. et al. “A Message Priority Assignment Algorithm for CAN-based Networks,” in CSC '92 Proceedings of the 1992 ACM Annual Conference on Communications, Mar. 1992. |
Fay-Wolfe, et al., “Real-Time CORBA,” IEEE Transactions on Parallel and Distributed Systems, vol. 11, Issue 10 (Oct. 2000). |
Rene Nusser and Rodolfo Mann Pelz, “Bluetooth-based Wireless Connectivity in an Automotive Environment,” IEEE pp. 1935-1942, Vehicular Technology Conference, 2000. |
Husein et al., “A Priority Based Service Algorithm for Use in Time-Critical and Integrated Services Networks,” Proceedings of IEEE Singapore International Conference, vol. 1, pp. 93-97, 1993. |
Release 1 Specification Set from the Automotive Multimedia Interface Collaboration (AMI-C), Jan. 2001. |
Open Services Gateway Initiative (OSGi) Service Gateway Specification Release 1.0, May 2000. |
Ellis, S. M. , “Dynamic Software Reconfiguration for Fault-Tolerant Real-Time Avionic Systems,” Microprocessor and Microsystems, Proceedings of the 1996 Avionics Conference and Exhibition, vol. 21, issue 1, pp. 29-39, Jul. 1997. |
Peter Walzer, and Hans-Wilhelm Grove, “Integrated Research Volkswagen (IRVW) Futura,” Passenger Car Meeting and Exposition, Dearborn, Michigan, Sep. 17-20, 1990. |
Specification vol. 1, Specification of the Bluetooth System, Version 1.1, Feb. 22, 2001. |
Bluetooth ESDP for UPnP, prepared by Arun Ayyagan, Jan. 31, 2001. |
Nace, W. & Koopman, P., “A Product Family Based Approach to Graceful Degradation,” Proceedings of DIPES 2000, International IFIP WG 10.3/WG 10.4/WG 10.5 Workshop on, Distributed and Parallel Embedded Systems, Paderborn University, Germany, Oct. 18-19, 2000. |
Meredith Beveridge, “M.S. Project Report, Jini on the Control Area Network (CAN): A Case Study in Portability Failure”, Department of Electrical and Computer Engineering, Carnegie Mellon University, Phil Koopman—advisor, Mar. 2001. |
Universal Serial Bus Specification, Revision 1.1, Compaq, Intel, Microsoft and NEC, Sep. 23, 1998. |
Universal Serial Bus Specification , Revision 2.0, Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC and Philips, Apr. 27, 2000. |
Tindell, Ken, et al, “A CAN Communications Concept with Guaranteed Message Latencies”, Oct. 1998. |
Robinson, Ralph L., “An Open Versus Closed Architecture for Multimedia Systems,” Proceedings of the 2000 International Congress on Transportation Electronics, pp. 445-450, Oct. 2000. |
Y. Chubachi and H. Okagaki, “The Development of Traffic Information System Using AutoPC,” Proceedings of the 2000 International Congress on Transportation Electronics, pp. 81-88, Oct. 2000. |
M. Tchorowski and J. Mate, “Avionics and Automotive bandwagon flying together on the infotronics Highway,” Proceedings of the 1998 International Congress on Transportation Electronics, pp. 351-354, Oct. 1998. |
Fout, Tom, “Universal Plug and Play in Windows XP,” Jul. 1, 2001. |
Yen, H.W., et al., “Information Security and Integrity in Network Vehicle,” Proceedings of the 1998 International Congress on Transportation Electronics, pp. 319-323, Oct. 1998. |
Minagawa, Shoichi, et al, “Open Architectural Car Multimedia Platform,” Proceedings of the 1998 International Congress on Transportation Electronics, pp. 198-194 Oct. 1998. |
Kanemitsu, Dean et al. “Productivitys Next Dimension—The Mobile Office Computing Platform,” Proceedings of the 2000 International Congress on Transportation Electronics, pp. 159-165, Oct. 2000. |
Bhaskaran, Parvathy, “Reinventing the Car Radio for the Internet—the iRadio™,” Proceedings of the 2000, International Congress on Transportation Electronics, pp. 147-153, Oct. 2000. |
Buckley, Stephen, et al., “The Car as a Peripheral—Adapting a Portable Computer to a Vehicle Intranet,” Proceedings of the 1998 International Congress on Transportation Electronics, pp. 211-217, Oct. 1998. |
Arnold, Ken, et al., “The Jini Specification,” Publisher Addison-Wesley, 1999. |
Powers, Chuck, et al., Today's Electronics in Todays Vehicles, Proceedings of the 1998 International Congress on Transportation Electronics, pp. 195-200, Oct. 1998. |
Vaught, Mark A., “Phone-Activated Auto-Muting Circuit,” Jan. 1990. |
Clarion Co. Ltd., “Clarion AutoPC 310C Owner's Manual,” 1998. |
Clarion, “2002 Clarion Product Catalog Car Audio, Multimedia, Marine, and Security Retail Products,” 2002. |
Clarion Co., Ltd., “Joyride Quick Reference Guide,” 2000-2001. |
Joyride, Windows CE System Software User's Manual , 1999-2001. |
Lind, R., et al., “The Network Vehicle—A Glimpse into the Future of Mobile Multi-Media,” IEEE AES Systems Magazine, Sep. 1999. |
First Amended Complaint and Answer from Eagle Harbor Holdings, LLC, and Mediustech, LLC, v. Ford Motor Company, Washington Western District Court, Case No. 3:11-CV-05503-BHS, Case filed: Jun. 30, 2011. |
Exhibits and Modules from Eagle Harbor Holdings, LLC, and Mediustech, LLC, v. Ford Motor Company, Washington Western District Court, Case No. 3:11-CV-05503-BHS, Case filed: Jun. 30, 2011. |
Stolowitz Ford Cowger LLP, Listing of Related Cases, Jun. 14, 2012. |
U.S. Appl. No. 13/188,856, filed Jul. 22, 2011, Failure Determination System, Lutter. |
U.S. Appl. No. 13/196,654, filed Aug. 2, 2011, Method and Apparatus to Dynamically Configure a Vehicle Audio System, Preston. |
U.S. Appl. No. 13/430,368, filed Mar. 26, 2012, Dynamic Configuration of a Home Multiprocessor System, Preston. |
Number | Date | Country | |
---|---|---|---|
Parent | 12258234 | Oct 2008 | US |
Child | 13188959 | US | |
Parent | 11462958 | Aug 2006 | US |
Child | 12258234 | US | |
Parent | 09841915 | Apr 2001 | US |
Child | 11462958 | US |