The present disclosure relates to scanning apparatus and methods and to the detection of objects concealed by a living human or animal body, for example by imaging.
In correctional facilities and at national borders, there is a need to detect contraband such as weapons, narcotics, mobile telephones, and other objects. Objects may be concealed internally or externally, for example in clothing, in body cavities such as the mouth or anal canal, hidden in prosthetics such as artificial limbs, they may also be swallowed or even surgically implanted.
Detection of such contraband is necessary for law enforcement, and to maintain order in correctional facilities, and to control the transit of contraband across national borders. It has been proposed to use imaging techniques based on ionizing radiation, such as transmission X-ray, to identify contraband hidden in the human or animal body.
The ionising radiation has a radiation dose, which can be associated with a measure representative of the amount of ionizing radiation absorbed by an individual. Strict regulations limit the dose to which human subjects may be exposed.
Aspects of the present invention address some of the above issues.
Aspects and embodiments of the present disclosure, such as those set out in the appended claims, aim to address the above mentioned technical problem, and related technical problems.
Embodiments of the disclosure will now be described, by way of example only, with reference to the accompanying drawings, in which:
In the drawings, like elements are referred to by the same numerical references.
The radiation provider 3 may be configured to provide ionizing radiation 5 having a radiation dose to the body 2, for example for inspection of the body, for example by transmission. In some examples and as explained in greater detail below, the provider 3 may provide a radiation beam over a substantially two-dimensional cross-section through which the body 2 passes. The ionizing radiation 5 can be shaped using a collimator described in more detail below. In some examples, the radiation provider 3 may be arranged to provide the ionizing radiation to at least a torso of the body 2, such as a human subject.
The measurement device 4 illustrated in
The dimension λ may be the maximum width λ of the body 2 through which the ionizing radiation 5 may be transmitted. Depending on the body 2, the dimension λ may correspond to the width of a torso or waistline of a human subject 2.
In examples where the system 1 comprises a support structure 8 adapted to hold the radiation provider 3 in position for inspection the body 2 (such as e.g. an upright human subject), the property δ associated with the dimension λ of the body 2 to inspect may comprise the height and/or the width of the body 2 (e.g. such as a height δ1 of the human subject 2 and/or such as a width δ2 of the subject 2) and/or the weight (such as a weight δ3 of the subject 2 in
In some examples, the structure 8 may define an imaging region, which may be demarcated by a portal, sized to allow passage of an upright human adult. The structure 8 can be of any suitable shape, including for example, rectangular, square, circular, oval, or U-shaped. It is contemplated that the structure 8 can be configured to accommodate bodies 2 of varying heights, weights, and physical ability.
The system 1 illustrated in
Embodiments of the disclosure may therefore provide better quality inspection of human or animal body, for one or more of the reasons stated below.
In embodiments of the disclosure, scanning of the human or animal body, using e.g. transmission X-ray, may be obtained with variable radiation dose, depending on the human or animal body.
The ionizing radiation is absorbed or attenuated by the body (or a portion of the body). Different density tissues and materials absorb or attenuate the ionizing radiation differently. Bone, for example, is a relatively dense material within the body and can attenuate a large quantity of the ionizing radiation, which may impact on a quality of an image of the bone. In contrast, soft tissue is relatively less dense within the body and can attenuate a lesser quantity of the ionizing radiation.
It should be understood that a bigger body 2 with a greater dimension λ (such as a maximum thickness) through which the ionizing radiation needs to be transmitted will absorb or attenuate more the ionizing radiation compared to a smaller body 2 with a smaller dimension λ.
The system according to the disclosure enables adjustment of the radiation dose, depending on the human or animal body. The system according to the disclosure enables using an optimal radiation dose depending on the human or animal body. The system according to the disclosure enables optimal image quality. The system according to the disclosure may thus avoid obtaining a non-optimal image quality.
In embodiments of the disclosure, an operator of the system according to the disclosure does not need to manually choose a radiation dose. The system according to the disclosure may avoid using somewhat arbitrary, non-optimal, excessive or insufficient, radiation dose. The system according to the disclosure may avoid using a potentially higher dose than is necessary, and potentially higher dose may be harmful to the health of the human or animal body.
The system according to the disclosure enables using optimal dose, depending on the human or animal body, to optimise an image of a torso (e.g. an abdominal region) of the human or animal body. The system according to the disclosure may ensure that the minimum necessary dose for obtaining an optimal image quality is applied to the human or animal body.
In some examples of the disclosure, the determination of the optimal dose may be performed before exposure of the human or animal body to the ionizing radiation. In some examples of the disclosure, the human or animal body may thus only be exposed to the optimal dose determined before exposure to the ionizing radiation.
The system according to the disclosure may ensure consistent performance of the system, by ensuring the image quality is consistent as a function of a variability of dimensions of inspected human or animal bodies.
Advantages of the inspection system 1 as disclosed herein can include optimal and adjustable dose x-ray imaging.
As illustrated by
In some examples and as illustrated in
In some examples, the curtain 41 may comprise one or more pairs 410, each pair 410 comprising a transmitter 411 of the non-ionizing radiation 7 and a receiver 412 of the non-ionizing radiation 7. The curtain 41 may extend along a direction parallel to the direction of the property δ to be determined, e.g. such as the height δ1 of the human subject 2 in FIG. 1 and
Alternatively or additionally, in some examples and as illustrated in
In some examples, the range finder 42 may be configured to measure a distance Δ from the range finder 42 to the body 2, for example in a direction parallel to a direction of the property δ, e.g. such as the height δ1 of the human subject 2 in
It should be understood, as explained in more detail below, that the height δ1 may be associated with the maximum width λ of the body 2 and may be used to control the radiation dose provided to the body 2 by the radiation provider 3.
In some examples, alternatively or additionally, the height measurement 61 may be used separately to adjust and/or scale the image data in order to present a standardised presentation to the system operator.
In the example of
Alternatively or additionally, in some examples and as illustrated in
In some examples, the scanner 43 may be arranged to use the non-ionizing radiation 7 and/or the high frequency acoustic signals 7 to detect hidden objects concealed by a subject's clothing. It may also be operable to scan soft tissue surfaces, such as skin, hidden beneath the subject's clothing.
The scanner 43 of
In
The parts 431 and 432 of the scanner 43 are arranged to detect the radiation 7 and/or the high frequency acoustic signals 7 after it has interacted with, for example been reflected, by the subject's body 2. It will be appreciated in the context of the present disclosure that the spatial and/or temporal distribution of signal intensity of this scattered radiation 7 and/or high frequency acoustic signals 7 can be used to scan the subject's body 2. The scan data need not be reconstructed into an image in the conventional sense that a human operator might recognise—for example features of the scan data (for example signal intensity or Fourier domain features) may be used instead without the need to reconstruct a complete image. The scan data may of course however be used to assemble an image of the subject's body. Such images may be three dimensional. One way to achieve this is to use synthetic aperture reconstruction. Other image reconstruction techniques will be apparent to the skilled person in the context of the present disclosure.
The measurement device 4 may determine the property δ, such as the width δ2 of a human subject 2 from the scan data and/or image described above.
Alternatively or additionally, the measurement device 4 may comprise a camera, such as a video camera to record the scan, or simply to capture a picture of the body 2 being scanned. The measurement device 4 may determine the property δ, such as the width δ2 of a human subject 2 from the captured picture.
Alternatively or additionally, in some examples and as illustrated in
In some examples, additionally or alternatively, the weight measurement δ3 may be used to calibrate the drive requirements for the conveyance apparatus 9.
Alternatively or additionally, in some examples, the determined height δ1 (expressed in meters) and the determined weight δ3 (expressed in kg) may be used to determine the body mass index (BMI) δ4 of the body 2, e.g. by using:
It should be understood that the BMI δ4 may be associated with the maximum width λ of the body 2 and may be used to control the radiation dose provided to the body 2 by the radiation provider 3.
As illustrated in
In some examples, as illustrated in
It should be understood that the energy output of the power supply may be associated with the radiation dose provided by the ionizing radiation 5 to the body 2.
In some examples, the controller 6 may be configured to control the power supply of the generator 31 to control the radiation dose provided by the generator 31. In some examples, the controller 6 may be configured to control a current and/or a voltage provided to the generator 31. The current and/or the voltage may be increased to increase the radiation dose, and the current and/or the voltage may be decreased to decrease the radiation dose.
Alternatively or additionally, in some examples, as illustrated in
It should be understood that the width of the inspection beam in the direction of the section for irradiation of the body may be associated with the radiation dose provided by the ionizing radiation 5 to the body 2.
In some examples, the controller 6 may be configured to control the collimator 32 to cause the inspection beam to be controlled based on the at least one property determined by the measurement device 4. The width of the collimator 32 may be increased to increase the radiation dose, and the width of the collimator 32 may be decreased to decrease the radiation dose.
Alternatively or additionally, in some examples, as illustrated in
It should be understood that the thickness and/or material of the filter 33 placed in the ionizing radiation beam may be associated with the radiation dose provided by the ionizing radiation 5 to the body 2, as the filter 33 may be configured to attenuate the radiation dose depending on the thickness and/or material of the filter 33 intersecting the beam.
In some examples, the controller 6 may be configured to control the filter 33 to cause the filter to interact with the ionizing radiation 5, based on the at least one property determined by the measurement device.
The attenuation by the filter 33 may be decreased to increase the radiation dose, and the attenuation by the filter 33 may be increased to decrease the radiation dose.
As illustrated in
It should be understood that the speed imparted by the conveyance apparatus 9 may be associated with the radiation dose provided by the ionizing radiation 5 to the body 2.
In some examples, the controller 6 may be configured to control the conveyance apparatus 9 to cause the radiation dose provided to the body 2 by the radiation provider 3 to be controlled based on the at least one property determined by the measurement device. In some examples, the conveyance apparatus 9 can be configured to vary the direction, speed, and acceleration of the motor and associated belt in accordance with control instructions received from the controller 6. For example, the speed imparted by the conveyance apparatus 9 may be decreased to increase the radiation dose, and the speed imparted by the conveyance apparatus 9 may be increased to decrease the radiation dose.
As illustrated in
The object of interest can include, for example, contraband items, weapons, incendiaries, illicit drugs, radioactive materials, or explosives, such as, but not limited to an improvised explosive device, liquid explosive material, plastic explosives, and the like.
The apparatus 10 can be employed at a security check point at a detention center for screening inmates. Alternatively or additionally, the apparatus 10 can be used at an airport or other transportation terminal where it can be necessary to detect objects of interest or materials concealed on bodies.
The apparatus 10 can include a radiation scanner 11 and a data processor 12 coupled to the radiation scanner 11.
The radiation scanner 11 may include a sensing apparatus for sensing the ionizing radiation from the system 1. In some examples, the radiation scanner 11 may comprise an imager such as a transmission X-ray imager.
The data processor 12 may be configured to obtain an image of the body 2 from data obtained by the radiation scanner 11.
In some examples, the property may be the property δ described above and/or the ionizing radiation may be the ionizing radiation 5 described above.
It should be understood that the method of
The provider 3 can be configured to provide e.g. X-ray beams over a continuous range of energies, or configured to generate e.g. X-ray beams at a single energy.
The inspection system 1 can include multiple sources or a single source to generate the ionizing radiation 5.
The generator 31 may comprise a linear accelerator or microwave excited X-ray source. The energy of the tissue penetrating radiation may be in the range of 50 keV to 300 kV, such as a 160 kV. For example, to provide an energy range of 50 keV to 160 keV, a tube based X-ray generator may be used, such as in the B-SCAN 16HR-LD range of transmission X-ray scanners or the B-SCAN 16HR-DV range of transmission X-ray scanners, which are available from Smiths Group plc., 459 Park Avenue, Bushey, Watford, Hertfordshire, WD23 2BW, United Kingdom.
In some embodiments the provider 3 may comprise a dual band X-ray source.
In some embodiments the provider 3 comprises a passive source of tissue penetrating radiation such as a radioactive isotope that provides a gamma ray source. The source may also comprise a neutron source.
The dose of the ionizing radiation can range, for example, from 0 to 4.5 μSv, such as from 0 to 2.0 μSV, and ideally less than 0.1 μSv.
The apparatus 10 can be configured to sense the ionizing radiation reflected back or deflected off of the body 2, i.e., backscatter x-ray radiation.
The apparatus 10 can also, actively or passively, examine the body for radioactive material, gamma radiation, or neutron detection. For example, the apparatus 10 can detect radioactive material concealed under the clothing of the body being scanned.
A suitable wave length range of the non-ionising radiation 7 may be from 10 GHz to 500 THz, for example between 15 GHz and 450 GHz, for example between 20 GHz and 400 THz, for example mm-wave radiation from 18 to 27 GHz, and also 77 GHz, also 96 GHz and higher, for example the J/K bands. Infrared radiation in the frequency range of 300 GHz to 430 THz may also be used.
It has been explained above that the imagers may remain stationary and the body 2 may be moved past the sensors. Alternatively or additionally, the conveyance apparatus 9 may be configured such that the body 2 may stand still while it is scanned—either electronic scanning or mechanical scanning may be used. As will be appreciated in the context of the present disclosure, electronic scanning may comprise controlling a phased array to electronically steer a beam of the ionizing radiation.
In some examples the filter 33 may comprise an actuator controlled by the controller 6 (e.g. by translation and/or rotation). In some examples the actuator may comprise any type of actuator, such as comprising an electrical motor and/or a solenoid and/or hydraulic actuators (such as hydraulic cylinders).
The data processor 12 can be coupled to the scanner 11 by, for example, one or more data transmission lines. Data can be wirelessly transferred to the data processor 12 to enable, for example a remote screening application or a cloud networked application.
The data processor 12 can include a processor, memory, a storage device, an input/output interface, e.g. including a display device. The data processor 12 can include additional, fewer, and/or different components than those listed above. The type and number of listed components are exemplary only and not intended to be limiting.
The processor can be a central processing unit(s) (CPU) and/or a graphic processing unit(s) (GPU). The processor can execute sequences of computer program instructions to perform various computation and analysis processes. The memory modules include, among other things, a random access memory (RAM) and a read-only memory (ROM). The computer program instructions can be accessed and read from the ROM, or any other suitable memory location, and loaded into the RAM for execution by the processor. Depending on the type of the data processor being used, the processor can include one or more printed circuit boards, and/or microprocessor chips, or may have the form of a multiprocessor industrial computer or a combination of several independent rack computers optimized for different processing tasks such as image analysis, detection algorithm processing, and image presentation.
The storage device can include any type of mass storage device suitable for storing information. For example, the storage device can include one or more hard disk devices, optical disk devices, or any other storage devices that provide data storage space.
With reference to the drawings in general, it will be appreciated that schematic functional block diagrams are used to indicate functionality of systems and apparatus described herein. It will be appreciated however that the functionality need not be divided in this way, and should not be taken to imply any particular structure of hardware other than that described and claimed below. The function of one or more of the elements shown in the drawings may be further subdivided, and/or distributed throughout apparatus of the disclosure. In some embodiments the function of one or more elements shown in the drawings may be integrated into a single functional unit.
In some examples, one or more memory elements can store data and/or program instructions used to implement the operations described herein. Embodiments of the disclosure provide tangible, non-transitory storage media comprising program instructions operable to program a processor to perform any one or more of the methods described and/or claimed herein and/or to provide data processing apparatus as described and/or claimed herein.
The activities and apparatus outlined herein may be implemented with fixed logic such as assemblies of logic gates or programmable logic such as software and/or computer program instructions executed by a processor. Other kinds of programmable logic include programmable processors, programmable digital logic (e.g., a field programmable gate array (FPGA), an erasable programmable read only memory (EPROM), an electrically erasable programmable read only memory (EEPROM)), an application specific integrated circuit, ASIC, or any other kind of digital logic, software, code, electronic instructions, flash memory, optical disks, CD-ROMs, DVD ROMs, magnetic or optical cards, other types of machine-readable mediums suitable for storing electronic instructions, or any suitable combination thereof.
The above embodiments are to be understood as illustrative examples. Further embodiments are envisaged. It is to be understood that any feature described in relation to any one embodiment may be used alone, or in combination with other features described, and may also be used in combination with one or more features of any other of the embodiments, or any combination of any other of the embodiments.
Other embodiments will be apparent to those skilled in the art. It is intended that the specification and examples be considered as exemplary only. The present scope of the disclosure is defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
1619718 | Nov 2016 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2017/053488 | 11/21/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/096324 | 5/31/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7116756 | Klingenbeck-Regn | Oct 2006 | B2 |
7894570 | Evron | Feb 2011 | B2 |
8971486 | Scholling | Mar 2015 | B2 |
20050031082 | Haaga | Feb 2005 | A1 |
20070172102 | Hempel | Jul 2007 | A1 |
20130188772 | Geus | Jul 2013 | A1 |
20140339430 | Hillis | Nov 2014 | A1 |
20150177391 | Cox | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
203299146 | Nov 2013 | CN |
105717548 | Jun 2016 | CN |
Entry |
---|
PCT International Preliminary Report on Patentability and Written Opinion for PCT/GB2017/053488, dated May 28, 2019. |
PCT International Search Report and Written Opinion for PCT/GB2017/053488, dated Mar. 9, 2018. |
Number | Date | Country | |
---|---|---|---|
20190285768 A1 | Sep 2019 | US |