1. Field of the Invention
The present invention relates generally to the field of electric power generation and distribution systems and, more particularly, to a method and apparatus for effecting controlled restart of electrical service throughout a utility's service area after a power outage.
2. Description of Related Art
In electric power systems, power outages occur for a variety of reasons. Some outages are planned by a utility to temporarily reduce system load during periods of peak loading or to accommodate infrastructure servicing or improvements. However, most outages are unplanned and result from inclement weather, unexpected excessive demand, or system control errors.
In addition, brown-outs may occur when system load has been cut to offset or account for power quality or supply issues. Brown-outs are used to avoid “dropping” or having a catastrophic failure of a grid area for a generating or distributing utility. Each utility's grid area is interconnected with breakers and tie lines between one or more adjacent utilities so that a grid area that becomes problematic can be isolated from other portions of the grid so as not to bring down the entire system.
The restoration of power to utility customers after a blackout or brown-out is generally considered to be a good thing to customers. However, restoring power to many customers simultaneously or within a very short period of time can cause additional problems. For example, power restoration after a planned or unplanned power outage often causes a momentary and sometimes harmful “spike” or surge in power on the utility grid from generation and distribution perspectives. An exemplary graph 100 illustrating power demand versus time during a power restoration period is shown in
Atypical changes in demand may occur that are so abrupt that they cause a substantial fluctuation in line frequency within the utility's electric grid. To respond to and correct for such changes in line frequency, utilities typically employ an Automatic Generation Control (AGC) process or subsystem to control the utility's regulating reserve. Thus, the regulating reserve component of a utility's operating reserve is typically limited to correcting for changes in line frequency. In other words, regulating reserve is typically used to regulate line frequency.
On the other hand, normal fluctuations in demand, which do not typically affect line frequency, are responded to or accommodated through certain activities, such as by increasing or decreasing an existing generator's output or by adding new generation capacity. Such accommodation is generally referred to as “economic dispatch.” The contingency reserve component of a utility's operating reserve (i.e., spinning reserve and non-spinning reserve) provides the additional generating capacity that is available for use as economic dispatch to meet changing (increasing) demand.
As shown in
While the additional costs associated with use of contingency reserve are generally undesired, such costs may outweigh the more onerous result of a restart spike, which may overload and cause damage to some parts of the utility's grid. A damaged grid can cause further power problems to service areas sourced by the grid immediately after a restart. Thus, when restarting electrical service after an outage, utilities are currently required to balance the costs of using contingency reserve against the costs of possible damage to the grid.
Therefore, a need exists for an apparatus and method for effecting a controlled restart within a utility service area that mitigates the likelihood of a restart spike without requiring use of a utility's contingency reserve.
Before describing in detail exemplary embodiments that are in accordance with the present invention, it should be observed that the embodiments reside primarily in combinations of apparatus components and processing steps related to effecting a controlled restart of electrical service to service points within an electric utility's service area so as to mitigate the likelihood of a cold restart power spike without requiring use of the utility's contingency reserve. Accordingly, the apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
In this document, relational terms, such as “first” and “second,” “top” and “bottom,” and the like, may be used solely to distinguish one entity or element from another entity or element without necessarily requiring or implying any physical or logical relationship or order between such entities or elements. The terms “includes,” “including,” “contains,” “containing,” “comprises,” “comprising,” “has,” “having” and any other variations thereof are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes, contains, comprises, or has a list of elements does not include only those elements, but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. The term “plurality of” as used in connection with any object or action means two or more of such object or action. A claim element proceeded by the article “a” or “an” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element.
The term “ZigBee” refers to any wireless communication protocol adopted by the Institute of Electronics & Electrical Engineers (IEEE) according to standard 802.15.4 or any successor standard(s), and the term “Bluetooth” refers to any short-range communication protocol implementing IEEE standard 802.15.1 or any successor standard(s). The term “High Speed Packet Data Access (HSPA)” refers to any communication protocol adopted by the International Telecommunication Union (ITU) or another mobile telecommunications standards body referring to the evolution of the Global System for Mobile Communications (GSM) standard beyond its third generation Universal Mobile Telecommunications System (UMTS) protocols. The term “Code Division Multiple Access (CDMA) Evolution Date-Optimized (EVDO) Revision A (CDMA EVDO Rev. A)” refers to the communication protocol adopted by the ITU under standard number TIA-856 Rev. A. The term “Long Term Evolution (LTE)” refers to any communication protocol based on the Third Generation Partnership Project (3GPP) Release 8 from the ITU or based on a communication protocol from another mobile telecommunications standards body referring to the evolution of GSM-based networks to voice, video, and data standards anticipated to be replacement protocols for HSPA and EVDO.
The terms “utility,” “electric utility,” “power utility,” and “electric power utility” refer to any entity that generates and/or distributes electrical power to its customers, that purchases power from a power-generating entity and distributes the purchased power to its customers, or that supplies electricity created either actually or virtually by alternative energy sources, such as solar power, wind power, load control, or otherwise, to power generation or distribution entities through the Federal Energy Regulatory Commission (FERC) electrical grid or otherwise. The terms “energy” and “power” are used interchangeably herein. The terms “utility service area,” “utility's service area,” and “service area” may refer to an entire geographical area to which electrical power is supplied by a particular utility or any portion of such geographical area.
It will be appreciated that embodiments or components of the systems described herein may be comprised of one or more conventional processors and unique stored program instructions that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions for effecting controlled restart of electrical service to service points within an electric utility's service area as described herein. The non-processor circuits may include, but are not limited to, radio receivers, radio transmitters, antennas, modems, signal drivers, clock circuits, power source circuits, relays, meters, memory, smart breakers, current sensors, and user input devices. As such, these functions may be interpreted as steps of a method to store and distribute information and control signals between devices in a power load management system so as to effect controlled restart of electrical service. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of functions are implemented as custom logic. Of course, a combination of the foregoing approaches could be used. Thus, methods and means for these functions have been described herein. Further, it is expected that one of ordinary skill in the art, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein, will be readily capable of generating such software instructions, programs and integrated circuits (ICs), and appropriately arranging and functionally integrating such non-processor circuits, without undue experimentation.
Generally, the present invention encompasses a method and apparatus for effecting controlled restart of electrical service to service points within an electric utility's service area after a power outage or other stoppage of power. In accordance with one embodiment, a random number is determined and associated with a single service point or a group of service points within the service area. Where the random number is associated with a group of service points, the quantity of service points in the group is less than the total quantity of service points in the utility service area affected by the power outage. The random number may be determined by a central controller (e.g., an active load director) located remote from the service points or by a control device (e.g., an active load client) located at a service point. The control device controls the flow of electrical power to power consuming devices (e.g., heating, ventilation, and air conditioning (HVAC) units, water heaters, pool heaters, pool pumps, water softeners, washers, dryers, appliances, equipment, lighting, etc.) located at the service point. For example, the random number may be generated and retained by the central controller or may be communicated (e.g., as an Internet Protocol (IP) data packet) to the service point's control device (e.g., where the service point's control device is operating with battery backup or has had power restarted to it) or to the group of service points' control devices. Still further, the random number may be generated by each service point's control device.
After determination of the random number, a time at which to restart electrical service at a service point or at a group of service points is determined based at least on the random number. For example, when the central controller generates the random number, the central controller may further determine that electrical service may be restored or restarted to a particular service point or group of service points when a number assigned to or associated with the service point or group of service points matches the random number. In such a case, the random number may be a number randomly chosen between one and the total quantity of service points or groups of service points in the service area (or the portion thereof) affected by the power outage. The time at which restart may occur would be promptly or immediately after a match to the random number was detected. To inform a service point control device (or control devices for a group of service points) regarding the power restart time, the central controller may transmit a restart message or command to the control device(s) instructing the control device(s) to immediately permit a flow of power to controlled power consuming devices or providing a time at which the flow of power may be permitted.
Alternatively, when the control device at a service point generates the random number, the control device may further determine whether the generated random number matches a number transmitted to it from the central controller. The number transmitted by the central controller may be a random number generated by the central controller or a number in a sequence of numbers being traversed by the central controller. If a match occurs, then electrical service may be immediately restarted at the service point. If a match does not occur, then restart of electrical service is delayed until a match occurs. In this case, the original random number generated by the service point's control device may be compared to numbers sent over time by the central controller or anew random number may be generated by the control device prior to receipt of a new number from the central controller.
Alternatively, the service point's control device may determine its own restart time independent of receiving numbers or restart messages from the central controller. In this case, the control device may estimate an amount of time required to complete a restart of electrical service in the utility service area affected by the power outage. In one embodiment, the amount of time required for restart may be received from the central controller or be prestored in a memory of the control device. The control device may also determine a start time for commencing the restart of electrical service in the utility service area. The start time may be the time at which the control device begins receiving electrical power from the utility or may be indicated in a message received from the central controller. Based on the start time and the amount of time required to complete the restart, the control device estimates a completion time for completing the restart of electrical service in the utility service area. For example, the estimated completion time may be the start time plus the length of time required to complete the restart.
To determine its own start time for supplying electrical power to power consuming devices under its control, the service point control device may alternatively generate a random number and determine a random start time for restarting electrical service at the service point based on the random number and the previously determined overall start time for commencing restoration of electrical service in the utility service area. For example, the random start time may be the start time plus the random number where the random number is in units of time and is between zero and the amount of time required to complete the restart of electrical service in the utility service area. After generating the random start time, the control device compares the random start time to a current time of day. If the random start time is no later than the current time of day, the control device restarts electrical service at the service point at the random start time. If the random start time is later than the current time of day, the control device may repeat the process again. In other words, the control device may generate a new random number, determine a new random start time based on the new random number and the start time, compare the new random start time to the current time of day, and restart electrical service at the service point at the new random start time in the event that the new random start time is no later than the current time of day.
Once the appropriate restart time has been determined, electrical power is supplied to the power consuming device or devices located at the service point or group of service points at the restart time. For example, the control device at a service point to be restarted may send a message to a controlled device, such as a smart appliance control module or a smart breaker, instructing the controlled device to permit current flow (e.g., by closing an appropriate switch or switches) to the associated power consuming device or devices.
In yet another embodiment, customer profiles may be stored in a database accessible by the central controller and such customer profiles may be used to determine a time for restarting electrical service at a particular customer's service point. For example, the central controller may determine a customer profile associated with a particular service point by retrieving the profile from the database or requesting it from another source, such as a control device installed at the service point. In one embodiment, the customer profile includes a connection/disconnection profile that includes information about power consuming devices (such as medical-related devices) used by the customer that may adversely affect the customer in the event of a loss of power, an indication of a priority of service for the service point, and other connect/disconnect information about the customer. The central controller may then determine a restart time for the service point based on the customer profile alone or in combination with other information or procedures, such as in combination with the random number generation and analysis procedure described above. For example, after the central controller generates a random number and determines that the number matches a number associated with a particular service point (or a group of service points that includes the particular service point), the central controller may retrieve a customer profile for the service point to determine a priority of service for the service point. If the priority of service is high (e.g., because the service point includes medical equipment or is used by someone with health problems), then the central controller may send a restart command to the control device at the service point. On the other hand, if the priority of service is low and only service points with higher priorities of service are being restarted, then the central controller may withhold the restart message, leaving the service point completely or substantially without power (although sufficient power may be supplied to the service point to supply the control device, for instance).
In another embodiment, the central controller may determine a priority of service for one or more service points in the service area based on stored customer profiles associated with the service points. For example, as discussed above, each customer profile may be stored in a database and include an indication of the service point's priority of service. The central controller may then retrieve the priority of service indication for a service point from the database. The central controller may also determine a prioritized order for restarting electrical service to the service points based on priorities of service. For example, the prioritized order may require the service points with the highest priorities of service to be restarted first, the service points with the second highest priorities of service to be restarted second, and so on. If a service point's priority of service matches a priority of service for which electrical service is being restarted according to the prioritized order, then the central controller transmits a restart command to the control device installed at the particular service point so as to commence power restoration at the service point. If a quantity of service points having the same priority of service exceeds a predetermined threshold established to prevent a restart power spike or use of the utility's operating reserve, the central controller may generate a random number for each service point in the group of service points having the same priority of service. The central controller may then transmit the restart command to a particular service point of the group based on the random number for the particular service point. For instance, the central controller may compare the random number to numbers previously associated with the service points and determine whether a match has occurred as discussed above.
In a further embodiment, service point characteristics may be stored in a database accessible by the central controller and such service point characteristics may be used to determine a time for restarting electrical service at a particular customer's service point. For example, the central controller may determine characteristics, such as geographic location, power consumption, or service priority associated with a particular service point or group of service points by retrieving the data relating to the characteristics from the database or requesting the data from another source, such as a control device installed at the service point. The central controller may then determine a restart time for the service point based on the characteristics alone or in combination with other information or procedures, such as in combination with the random number generation and analysis procedure described above. For example, after the central controller generates a random number and determines that the number matches a number associated with a particular service point (or a group of service points that includes the particular service point), the central controller may retrieve a customer profile for the service point to determine a priority of service for the service point. If the priority of service is high (e.g., because the service point includes medical equipment or is used by emergency personnel, healthcare personnel, one or more elderly persons, or someone with health problems), then the central controller may send a restart command to the control device at the service point. On the other hand, if the priority of service is low and only service points with higher priorities of service are being restarted, then the central controller may withhold the restart message, leaving the service point completely or substantially without power (although power may be supplied to the service point to supply the control device, for instance).
In yet another embodiment, the central controller may logically divide the service points into multiple groups based on at least one characteristic (e.g., location, power consumption, or business type) that is common among service points within a particular group. In such a case, the central controller may determine a prioritized order for restarting electrical service to each of the service points based on service point characteristics. For example, the central controller may be programmed to restart service points closest to a power generating plant or having an average power consumption above a predetermined threshold first. Based on the prioritized order and the particular service point characteristic or characteristics, the central controller may select a group of service points at which to restart electrical service and transmit a restart command to control devices installed at the selected group of service points.
In yet another embodiment, a central controller and the control devices installed at the service points may cooperate with each other to determine an order for restarting electrical service to the service points. For example, the central controller may select a number within a predetermined set of numbers (e.g., from one to a quantity of service points in the service area affected by the power outage). The central controller may then transmit a restart message containing the selected number to the control devices. Each control device may generate a respective random number within the predetermined set of numbers and compare the random number to the received (selected) number. If a match occurs, then the control device supplies electrical power to at least one power consuming device at the control device's service point.
In still a further embodiment, a control device installed at a service point in a utility service area affected by a power outage may generate a random number within a predetermined set of numbers (e.g., from one to a quantity of service points in the service area). The control device may also receive a restart message from a central controller located remotely from the service point. The restart message includes a number within the predetermined set of numbers. The control device then compares the number in the restart message to the random number generated by the control device and, if a match occurs, supplies electrical power to one or more power consuming devices at the service point to effectively restart power to the service point. If the number in the restart message does not match the random number, the control device may generate a new random number within the predetermined set of numbers and receive a new restart message that includes another number within the predetermined set of numbers. In this case, the control device compares the number in the new restart message to the new random number and, if a match occurs, supplies electrical power to the power consuming device or devices located at the service point. Alternatively, if the number in the restart message does not match the random number, the control device may maintain the same random number instead of generating a new one and compare the random number to the number in a new restart message received from the central controller. If the random number matches the number in the new restart message, the control device supplies electrical power to the power consuming device or devices located at the service point. Thus, in this embodiment, if the originally-generated random number does not match the number in the received restart message, the control device either generates a new random number or maintains the originally-generated random number for comparison to the number in the next restart message.
In another embodiment, a central controller (e.g., an active load director) for an active load management system includes a database, an event manager (e.g., a master event manager), and a client device manager (e.g., an active load client manager). The database is operable to store a plurality of numbers associated with a plurality of service points located in a service area of a utility. The event manager is operably coupled to the database and operable to: (i) determine whether electrical power can be restored to the service points after a power outage has occurred; (ii) generate a random number responsive to a determination that electrical power can be restored; (ii) compare the random number to each of the numbers stored in the database; and (iv) generate a restart message when the random number matches one of the stored numbers. The client device manager is operably coupled to the event manager and operable to transmit the restart message to one or more active load clients or other similar control devices installed at service points that are associated with the number that matched the random number. For example, in one embodiment, each service point is associated with a number stored in the database (e.g., a sequential list of numbers is stored in the database with each number corresponding to one of the service points in the utility's service area). The event manager generates a random number between one and the total quantity of service points in the service area (or the portion thereof affected by a power outage). If the random number matches a number associated with a service point, the client device manager transmits a restart message to the chosen service point. If no match occurs, another random number is generated and the process repeats. In an alternative embodiment, all or some of the numbers stored in the database may be associated with groups of service points instead of individual service points. A group of service points may correspond to the residential service points of a neighborhood or subdivision or all service points in a town or city. In this case, when the random number matches a stored number corresponding to a group of service points, the client device manager transmits the restart message to all the service points in the group.
By selectively restarting electrical service to service points in a controlled manner through communications between a central controller, such as an active load director, and control points, such as active load clients installed at service points throughout a utility's service area, the present invention reduces the likelihood of startup power spikes causing instability and possible damage to the utility's power grid. Additionally, such a controlled restart enables the utility to maintain its power output at or below its acceptable peak level and, thereby, avoid use of some or all of its operating reserve.
The present invention can be more readily understood with reference to
The exemplary ALMS 10 monitors and manages power distribution via an active load director (ALD) 100 or other centralized controller connected between one or more utility control centers (UCCs) 200 (one shown) and one or more active load clients (ALCs) 300 (one shown) or other control devices installed at one or more service points 20 (one shown). The ALD 100 may communicate with the utility control center 200 and each active load client 300 either directly or through a network 80 using the Internet Protocol (IP) or any other address or connection-based protocols (e.g., Ethernet). For example, the ALD 100 may communicate using RF systems operating via one or more base stations 90 (one shown) and using one or more wireless communication protocols, such as GSM, ANSI C12.22, Enhanced Data GSM Environment (EDGE), HSPA, LTE, Time Division Multiple Access (TDMA), or CDMA data standards, including CDMA 2000, CDMA Revision A, CDMA Revision B, and CDMA EVDO Rev. A. Alternatively, or additionally, the ALD 100 may communicate via a digital subscriber line (DSL) capable connection, a cable television based IP capable connection, a satellite connection, or any combination thereof. In the exemplary embodiment shown in
Each active load client 300 is accessible through a specified address (e.g., IP address) and controls and monitors the state of individual smart breaker modules or intelligent appliances 60 installed at the service point 20 (e.g., in the business or residence) with which the active load client 300 is associated (e.g., connected or supporting). Each active load client 300 is associated with a single residential or commercial customer. In one embodiment, the active load client 300 communicates with a residential load center 400 that contains smart breaker modules, which are able to switch from an “ON” (active) state to an “OFF” (inactive) state, and vice versa, responsive to signaling from the active load client 300. Smart breaker modules may include, for example, smart breaker panels manufactured by Schneider Electric SA under the trademark “Square D” or Eaton Corporation under the trademark “Cutler-Hammer” for installation during new construction. For retro-fitting existing buildings, smart breakers having means for individual identification and control may be used. Typically, each smart breaker controls a single appliance (e.g., a washer/dryer 30, a hot water heater 40, an HVAC unit 50, or a pool pump 70). In an alternative embodiment, IP addressable relays or device controllers that operate in a manner similar to a “smart breaker” may be used in place of smart breakers, but would be installed coincident with the load under control and would measure the startup power, steady state power, power quality, duty cycle and energy load profile of the individual appliance 60, HVAC unit 40, pool pump 70, hot water heater 40, or any other controllable load as determined by the utility or end customer.
Additionally, the active load client 300 may control individual smart appliances directly (e.g., without communicating with the residential load center 100) via one or more of a variety of known communication protocols (e.g., IP, Broadband over PowerLine (BPL) in its various forms, including through specifications promulgated or being developed by the HOMEPLUG Powerline Alliance and the IEEE, Ethernet, Bluetooth, ZigBee, Wi-Fi (IEEE 802.11 protocols), HSPA, EVDO, etc.). Typically, a smart appliance 60 includes a power control module (not shown) having communication abilities. The power control module is installed in-line with the power supply to the appliance, between the actual appliance and the power source (e.g., the power control module is plugged into a power outlet at the home or business and the power cord for the appliance is plugged into the power control module). Thus, when the power control module receives a command to turn off the appliance 60, it disconnects the actual power supplying the appliance 60. Alternatively, the smart appliance 60 may include a power control module integrated directly into the appliance, which may receive commands and control the operation of the appliance directly (e.g., a smart thermostat may perform such functions as raising or lowering the set temperature, switching an HVAC unit on or off, or switching a fan on or off).
The active load client 300 may further be coupled to one or more variability factor sensors 94. Such sensors 94 may be used to monitor a variety of variability factors or parameters affecting operation of the devices, such as inside and/or outside temperature, inside and/or outside humidity, time of day, pollen count, amount of rainfall, wind speed, and other factors or parameters. The service point may also include a power storage device 62 coupled to the active load client 300 and/or the residential load center 400. The power storage device 62 is described in detail in commonly-owned, co-pending U.S. application Ser. No. 12/783,415.
Referring now to
In one embodiment, the service point 20 may include a web-based user interface (e.g., Internet-accessible web portal) into the web browser interface 114 of the ALD 100. The web-based user interface is referred to herein as a “customer dashboard” 98. When the customer dashboard 98 is accessed by the customer via a computer, smart phone, personal digital assistant, or other comparable device, the customer dashboard 98 may be used by the customer to specify preferences for use by the ALMS 10 to control devices at the customer's service point 20. The customer dashboard 98 effectively provides the customer with access into the ALD 100. The ALD 100 (e.g., through the web browser interface 114) accepts inputs from the customer dashboard 98 and outputs information to the customer dashboard 98 for display to the customer. The customer dashboard 98 may be accessed from the service point 20 or remotely from any Internet-accessible device, preferably through use of a user name and password for security purposes. Thus, the customer dashboard 98 is preferably a secure, web-based interface used by customers to specify preferences associated with devices controlled by the ALD 100 and located at the customer's service point 20. The customer dashboard 98 may also be used to provide information requested by a customer personal settings application or the customer sign-up application 116 executed by the ALD 100 in connection with controlled devices and/or service point conditions or parameters. Customer preferences may include, for example, control event preferences (e.g., times, durations, etc.), bill management preferences (e.g., goal or target for maximum monthly billing cost), maximum and minimum boundary settings for environmental characteristics or conditions, and various other customer settings.
In one embodiment, customers use the customer dashboard 98 to interact with the ALD 100 through the web browser interface 114 and subscribe to some or all of the services offered by the ALMS 10 via the customer sign-up application 116. In accordance with the customer sign-up application 116, the customer enters customer personal settings 138 that contain information relating to the customer and the customer's service point 20 (e.g., residence or business), and specifies the extent of service to which the customer wishes to subscribe. Additional details of establishing customer profiles using the customer dashboard 98 are discussed below. Customers may also use the customer dashboard 98 to access and modify information pertaining to their existing accounts after they have been established.
In one embodiment, the ALD 100 collects, through the web browser interface 114, customer data, such as customer personal settings 138, and information about controllable power consuming devices located at the customer's service point 20 to generate a profile for each customer. The information from which a customer profile is created is preferably entered by the customer through the customer dashboard 98 or may be alternatively provided by other means, such as through a phone conversation with utility customer service personnel, a response to a survey, email, or entering data at the utility's website. When used, customer profiles are preferably stored within the ALD database 124 or in another database accessible by the ALD 100. The customer profile may be updated over time to include the customer's pattern of energy consumption based on power consumption data reported to the ALD 100 by the active load client 300 installed at the customer's service point 20. Details for creating customer profiles are disclosed in co-pending, U.S. patent application Ser. No. 12/702,640 entitled “System and Method for Determining and Utilizing Customer Energy Profiles for Load Control for Individual Structures, Devices, and Aggregation of Same,” which was filed on Feb. 9, 2010, was published as U.S. Patent Application Publication No. US 2010/0145534 A1 on Jun. 10, 2010, and is incorporated herein by this reference as if fully set forth herein.
The active load clients 300 or other control devices (e.g., gateways), which are installed at service points 20 as an integrated part of the ALMS 10, have the capability to report the status of the power consumed at their respective service points 20 and to control when the power consuming devices at the service points 20 are allowed to receive or access electricity once power has been restored. Thus, the active load clients 300 and the ALD 100 may be programmed to implement one or more embodiments for effecting a controlled restart of the service points 20 in the utility's service area. According to one embodiment, a random number generator may be employed in the ALD 100 and/or each active load client 300 to start up each service point 20 in a generally random manner. By restarting service points 20 in a fairly random manner, the utility avoids or at least mitigates the undesirable effects of restarting all service points 20 at one time, such as system instability due to a power spike or unnecessary use of the utility's operating reserve.
In accordance with a first embodiment as illustrated in the logic flow diagram 600 of
In an alternative embodiment, the random number generation and comparison approach of the foregoing embodiment may be applied to groups of service points, as opposed to just individual service points. In such an embodiment, the master event manager 106 may associate (601) each group of service points with a number and store (603) the numbers in the ALD database 124. Upon determining (605) that power can be restored to the service points 20 in the service area, the master event manager 106 may generate (607) a random number from one to a number corresponding to the total quantity of service point groups in the entire service area or in a portion thereof that suffered the outage and compare (609) the random number to the group numbers stored in the ALD database 124. If a match is detected, then the master event manager 106 may send a restart message to the ALC manager 108, which in turn sends the message (611) to the active load clients 300 for all the service points within the group being restarted. Generation of random numbers, comparison of the random numbers to stored service point group numbers, and issuance of restart messages would continue (613) until all the service points 20 in the affected service area have been restarted or had their electricity restored.
In a further embodiment, the active load client 300 may initiate a restart without the need to contact the ALD 100. In this embodiment, the event scheduler 344 or an equivalent element of each active load client 300 includes a random number generator.
To illustrate the embodiment of
In a further embodiment, the ALD 100 and each active load client 300 collaborate to determine respective restart times, as illustrated in the logic flow diagram 800 of
According to yet another embodiment of the present invention, a utility operator may manually monitor the power availability status for each individual service point 20 or for groups of service points and restore power to them in an orderly fashion after an outage so as to reduce or eliminate transients, voltage and current spikes, and other harmful byproducts of a “cold” restart. In this embodiment, the utility operator may utilize geographic information system (GIS) maps stored within the ALD 100 together with diagnostic and monitoring software to display, among other things, outages in the utility's service area. A screen shot of an exemplary computer display through which a utility operator may view power outages within a utility service area is shown in
Another embodiment of the present invention builds upon the use of customer profiles as detailed in U.S. Patent Application Publication No. US 2010/0145534 A1. According to this embodiment, which is illustrated in the logic flow diagram 1000 of
In this embodiment, the utility initiates a controlled restart instructing (1003) the ALD 100 to restart electrical service to the service points 20 according to a prioritized order based on priority of service. Thus, in this case, the utility operator or a service restart/restore software program executed by the ALD 100 consults the ALD database 124 and obtains (1005) a list of all service points, preferably ordered or organized by their priorities of service. Then, the master event manager 106 of the ALD 100 schedules (1007) transmission of restart commands to the active load clients 300 for the service points 20 based on the priorities of service. For example, the service points 20 with the highest priority of service are scheduled to receive restart commands first, the service points 20 with the second highest priority of service are scheduled to receive restart commands second, and so forth. In such a manner, restart events are scheduled within the master event manager 106 relative to each service point's priority of service. In the event that the quantity of service points with equal priority of service exceeds a predetermined threshold (1009) (e.g., a quantity that would likely cause an undesirable power spike or require use of utility operating reserve), the ALD 100 may determine or generate (1011) random numbers for each service point in this group or for subgroups within the group and issue restart commands based on the random numbers. For example, as discussed above, numbers may be randomly generated between one and the quantity of service points or subgroups that have equal priorities of services. The numbers would be assigned to the service points or subgroups and the ALD 100 or other central controller would issue (1013) restart commands to the service points or subgroups based on their randomly assigned numbers. The restart commands may be separated in time by a predetermined delay (e.g., 5 minutes) to provide adequate time for the service points or subgroups to startup and reach steady state operation.
In yet another embodiment, the utility may restore power to service points within a group, as defined by the utility. According to this embodiment, the ALD 100 may logically divide the service points 20 into groups based on one or more common characteristics, such as by geography (e.g., geographic location), power consumption (e.g., average hourly, daily or monthly power consumption), type of business operated at the service point, or some other characteristic. Those of ordinary skill in the art will readily recognize and appreciate that priority of service may also be considered a characteristic of a service point 20. In this embodiment, the utility uses the ALD database 124 to obtain a list of groups. The utility then uses characteristics of each group (such as geography) to schedule and prioritize restarts for service points 20 within each group.
As described above, the present invention encompasses an apparatus and method for effecting controlled restart of service points after a service outage. With this invention, power spikes resulting from cold restarts are mitigated so as to maintain stability in the utility's power grid, as well as to reduce the risk of infrastructure damage. Additionally, the controlled restart produced by the present invention enables power restoration without resort to using utility operating reserve.
In the foregoing specification, the present invention has been described with reference to specific embodiments. However, one of ordinary skill in the art will appreciate that various modifications and changes may be made without departing from the spirit and scope of the present invention as set forth in the appended claims. For example, random number generation may be performed by the utility control center 200 and random numbers may be subsequently communicated to the ALD 100. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present invention.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments of the present invention. However, the benefits, advantages, solutions to problems, and any element(s) that may cause or result in such benefits, advantages, or solutions to become more pronounced are not to be construed as a critical, required, or essential feature or element of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
This application is a continuation-in-part of U.S. application Ser. No. 12/715,124 filed on Mar. 1, 2010 now U.S. Pat. No. 8,010,812, which is a division of U.S. application Ser. No. 11/895,909 filed on Aug. 28, 2007, now U.S. Pat. No. 7,715,951 B2, and is incorporated herein by this reference as if fully set forth herein. This application is also a continuation-in-part of U.S. application Ser. No. 12/715,195 filed on Mar. 1, 2010 now U.S. Pat. No. 8,032,233, which is also a division of U.S. application Ser. No. 11/895,909, now U.S. Pat. No. 7,715,951 B2, and is incorporated herein by this reference as if fully set forth herein. This application is further a continuation-in-part of U.S. application Ser. No. 12/702,640 filed on Feb. 9, 2010 now U.S. Pat. No. 8,131,403, which is a continuation-in-part of U.S. application Ser. No. 11/895,909, now U.S. Pat. No. 7,715,951 B2, claims priority upon U.S. Provisional Application No. 61/150,978 filed on Feb. 9, 2009 and U.S. Provisional Application No. 61/176,752 filed on May 8, 2009 for commonly disclosed subject matter, and is incorporated herein by this reference as if fully set forth herein. This application further claims priority under 35 U.S.C. §119(e) upon U.S. Provisional Application Ser. No. 61/279,072 filed on Oct. 15, 2009 solely to the extent of the subject matter disclosed in said provisional application, which application is incorporated herein by this reference as if fully set forth herein. Finally, this application is related to commonly-owned U.S. application Ser. No. 12/001,819 filed on Dec. 13, 2007 and commonly-owned U.S. application Ser. No. 12/775,979 filed on May 7, 2010.
Number | Name | Date | Kind |
---|---|---|---|
3906242 | Stevenson | Sep 1975 | A |
4023043 | Stevenson | May 1977 | A |
4077061 | Johnston et al. | Feb 1978 | A |
4589075 | Buennagel | May 1986 | A |
4799059 | Grindahl et al. | Jan 1989 | A |
4819180 | Hedman et al. | Apr 1989 | A |
4819229 | Pritty et al. | Apr 1989 | A |
5237507 | Chasek | Aug 1993 | A |
5361982 | Liebl et al. | Nov 1994 | A |
5388101 | Dinkins | Feb 1995 | A |
5481546 | Dinkins | Jan 1996 | A |
5495239 | Ouellette | Feb 1996 | A |
5502339 | Hartig | Mar 1996 | A |
5544036 | Brown, Jr. et al. | Aug 1996 | A |
5553094 | Johnson et al. | Sep 1996 | A |
5570002 | Castleman | Oct 1996 | A |
5592491 | Dinkins | Jan 1997 | A |
5640153 | Hildebrand et al. | Jun 1997 | A |
5644173 | Elliason et al. | Jul 1997 | A |
5675503 | Moe et al. | Oct 1997 | A |
5682422 | Oliver | Oct 1997 | A |
5696695 | Ehlers et al. | Dec 1997 | A |
5721936 | Kikinis et al. | Feb 1998 | A |
5748104 | Argyroudis et al. | May 1998 | A |
5926776 | Glorioso et al. | Jul 1999 | A |
6018690 | Saito et al. | Jan 2000 | A |
6047274 | Johnson et al. | Apr 2000 | A |
6078785 | Bush | Jun 2000 | A |
6102487 | Ovrebo | Aug 2000 | A |
6115676 | Rector et al. | Sep 2000 | A |
6122603 | Budike, Jr. | Sep 2000 | A |
6154859 | Norizuki et al. | Nov 2000 | A |
6178362 | Woolard et al. | Jan 2001 | B1 |
6185483 | Drees | Feb 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6233327 | Petite | May 2001 | B1 |
6254009 | Proffitt et al. | Jul 2001 | B1 |
6304552 | Chapman et al. | Oct 2001 | B1 |
6374101 | Gelbien | Apr 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6519509 | Nierlich et al. | Feb 2003 | B1 |
6535797 | Bowles et al. | Mar 2003 | B1 |
6577962 | Afshari | Jun 2003 | B1 |
6601033 | Sowinski | Jul 2003 | B1 |
6621179 | Howard | Sep 2003 | B1 |
6622097 | Hunter | Sep 2003 | B2 |
6622925 | Carner et al. | Sep 2003 | B2 |
6628113 | Gallavan | Sep 2003 | B2 |
6633823 | Bartone et al. | Oct 2003 | B2 |
6671586 | Davis et al. | Dec 2003 | B2 |
6681154 | Nierlich et al. | Jan 2004 | B2 |
6687574 | Pietrowicz et al. | Feb 2004 | B2 |
6732055 | Bagepalli et al. | May 2004 | B2 |
6763250 | Forbes, Jr. | Jul 2004 | B1 |
6778882 | Spool et al. | Aug 2004 | B2 |
6784807 | Petite et al. | Aug 2004 | B2 |
6785592 | Smith et al. | Aug 2004 | B1 |
6832135 | Ying | Dec 2004 | B2 |
6834811 | Huberman et al. | Dec 2004 | B1 |
6836737 | Petite et al. | Dec 2004 | B2 |
6862498 | Davis et al. | Mar 2005 | B2 |
6865450 | Masticola et al. | Mar 2005 | B2 |
6868293 | Schurr et al. | Mar 2005 | B1 |
6879059 | Sleva | Apr 2005 | B2 |
6882498 | Kurumatani et al. | Apr 2005 | B2 |
6891838 | Petite et al. | May 2005 | B1 |
6904336 | Raines et al. | Jun 2005 | B2 |
6906617 | Van der Meulen | Jun 2005 | B1 |
6909942 | Andarawis et al. | Jun 2005 | B2 |
6914533 | Petite | Jul 2005 | B2 |
6914553 | Petite | Jul 2005 | B1 |
6914893 | Petite | Jul 2005 | B2 |
6934316 | Cornwall et al. | Aug 2005 | B2 |
6961641 | Forth et al. | Nov 2005 | B1 |
6990593 | Nakagawa | Jan 2006 | B2 |
7003640 | Mayo et al. | Feb 2006 | B2 |
7019667 | Petite et al. | Mar 2006 | B2 |
7035719 | Howard et al. | Apr 2006 | B2 |
7039532 | Hunter | May 2006 | B2 |
7051332 | Gatto et al. | May 2006 | B2 |
7053767 | Petite et al. | May 2006 | B2 |
7088014 | Nierlich et al. | Aug 2006 | B2 |
7089125 | Sonderegger | Aug 2006 | B2 |
7103511 | Petite | Sep 2006 | B2 |
7123994 | Weik et al. | Oct 2006 | B2 |
7130719 | Ehlers et al. | Oct 2006 | B2 |
7133750 | Raines et al. | Nov 2006 | B2 |
7177728 | Gardner | Feb 2007 | B2 |
7181320 | Whiffen et al. | Feb 2007 | B2 |
7184861 | Petite | Feb 2007 | B2 |
7200134 | Proctor, Jr. et al. | Apr 2007 | B2 |
7206670 | Pimputkar et al. | Apr 2007 | B2 |
7209804 | Curt et al. | Apr 2007 | B2 |
7209840 | Petite et al. | Apr 2007 | B2 |
7231280 | Costa | Jun 2007 | B2 |
7231281 | Costa | Jun 2007 | B2 |
7233843 | Budhraja et al. | Jun 2007 | B2 |
7263073 | Petite et al. | Aug 2007 | B2 |
7274975 | Miller | Sep 2007 | B2 |
7289887 | Rodgers | Oct 2007 | B2 |
7295128 | Petite | Nov 2007 | B2 |
7305282 | Chen | Dec 2007 | B2 |
7313465 | O'Donnell | Dec 2007 | B1 |
7333880 | Brewster et al. | Feb 2008 | B2 |
7343341 | Sandor et al. | Mar 2008 | B2 |
7345998 | Cregg et al. | Mar 2008 | B2 |
7346463 | Petite et al. | Mar 2008 | B2 |
7366164 | Habib et al. | Apr 2008 | B1 |
7397907 | Petite | Jul 2008 | B2 |
7406364 | Andrén et al. | Jul 2008 | B2 |
7412304 | Uenou | Aug 2008 | B2 |
7424527 | Petite | Sep 2008 | B2 |
7440871 | McConnell et al. | Oct 2008 | B2 |
7451019 | Rodgers | Nov 2008 | B2 |
7468661 | Petite et al. | Dec 2008 | B2 |
7480501 | Petite | Jan 2009 | B2 |
7486681 | Weber | Feb 2009 | B2 |
7528503 | Rognli et al. | May 2009 | B2 |
7536240 | McIntyre et al. | May 2009 | B2 |
7541941 | Bogolea et al. | Jun 2009 | B2 |
7565227 | Richard et al. | Jul 2009 | B2 |
7650425 | Davis et al. | Jan 2010 | B2 |
7697492 | Petite | Apr 2010 | B2 |
7711796 | Gutt et al. | May 2010 | B2 |
7715951 | Forbes, Jr. et al. | May 2010 | B2 |
7738999 | Petite | Jun 2010 | B2 |
7739378 | Petite | Jun 2010 | B2 |
8010812 | Forbes, Jr. et al. | Aug 2011 | B2 |
8032233 | Forbes, Jr. et al. | Oct 2011 | B2 |
8131403 | Forbes, Jr. et al. | Mar 2012 | B2 |
8145361 | Forbes, Jr. et al. | Mar 2012 | B2 |
8260470 | Forbes, Jr. et al. | Sep 2012 | B2 |
8307225 | Forbes, Jr. et al. | Nov 2012 | B2 |
8315717 | Forbes, Jr. et al. | Nov 2012 | B2 |
8390221 | Jayanth et al. | Mar 2013 | B2 |
20010025209 | Fukui et al. | Sep 2001 | A1 |
20010030468 | Anderson et al. | Oct 2001 | A1 |
20010038343 | Meyer et al. | Nov 2001 | A1 |
20020019802 | Malme et al. | Feb 2002 | A1 |
20020035496 | Fukushima et al. | Mar 2002 | A1 |
20020109607 | Cumeralto et al. | Aug 2002 | A1 |
20020138176 | Davis et al. | Sep 2002 | A1 |
20020143693 | Soestbergen et al. | Oct 2002 | A1 |
20030009705 | Thelander et al. | Jan 2003 | A1 |
20030036820 | Yellepeddy et al. | Feb 2003 | A1 |
20030040844 | Spool et al. | Feb 2003 | A1 |
20030063723 | Booth et al. | Apr 2003 | A1 |
20030074304 | Okada | Apr 2003 | A1 |
20030083980 | Satake | May 2003 | A1 |
20030144864 | Mazzarella | Jul 2003 | A1 |
20030225483 | Santinato et al. | Dec 2003 | A1 |
20030229572 | Raines et al. | Dec 2003 | A1 |
20030233201 | Horst et al. | Dec 2003 | A1 |
20040006439 | Hunter | Jan 2004 | A1 |
20040088083 | Davis et al. | May 2004 | A1 |
20040095237 | Chen et al. | May 2004 | A1 |
20040117330 | Ehlers et al. | Jun 2004 | A1 |
20040128266 | Yellepeddy et al. | Jul 2004 | A1 |
20040153170 | Santacatterina et al. | Aug 2004 | A1 |
20040158478 | Zimmerman | Aug 2004 | A1 |
20040162793 | Scott et al. | Aug 2004 | A1 |
20040193329 | Ransom et al. | Sep 2004 | A1 |
20040230533 | Benco | Nov 2004 | A1 |
20050033481 | Budhraja et al. | Feb 2005 | A1 |
20050055432 | Rodgers | Mar 2005 | A1 |
20050065742 | Rodgers | Mar 2005 | A1 |
20050096856 | Lubkeman et al. | May 2005 | A1 |
20050096857 | Hunter | May 2005 | A1 |
20050116836 | Perry et al. | Jun 2005 | A1 |
20050125243 | Villalobos | Jun 2005 | A1 |
20050138432 | Ransom et al. | Jun 2005 | A1 |
20050192711 | Raines et al. | Sep 2005 | A1 |
20050192713 | Weik et al. | Sep 2005 | A1 |
20050216302 | Raji et al. | Sep 2005 | A1 |
20050216580 | Raji et al. | Sep 2005 | A1 |
20050234600 | Boucher et al. | Oct 2005 | A1 |
20050240314 | Martinez | Oct 2005 | A1 |
20050240315 | Booth et al. | Oct 2005 | A1 |
20050246190 | Sandor et al. | Nov 2005 | A1 |
20050267642 | Whiffen et al. | Dec 2005 | A1 |
20050276222 | Kumar et al. | Dec 2005 | A1 |
20060020544 | Kaveski | Jan 2006 | A1 |
20060022841 | Hoiness et al. | Feb 2006 | A1 |
20060025891 | Budike, Jr. | Feb 2006 | A1 |
20060031934 | Kriegel | Feb 2006 | A1 |
20060064205 | Ying | Mar 2006 | A1 |
20060106635 | Ulrich et al. | May 2006 | A1 |
20060142900 | Rothman et al. | Jun 2006 | A1 |
20060142961 | Johnson et al. | Jun 2006 | A1 |
20060161450 | Carey et al. | Jul 2006 | A1 |
20060168191 | Ives | Jul 2006 | A1 |
20060195334 | Reeb et al. | Aug 2006 | A1 |
20060259199 | Gjerde et al. | Nov 2006 | A1 |
20060271244 | Cumming et al. | Nov 2006 | A1 |
20060271314 | Hayes | Nov 2006 | A1 |
20070021874 | Rognli et al. | Jan 2007 | A1 |
20070025249 | Yeom | Feb 2007 | A1 |
20070058453 | Shaffer et al. | Mar 2007 | A1 |
20070058629 | Luft | Mar 2007 | A1 |
20070070895 | Narvaez | Mar 2007 | A1 |
20070085702 | Walters et al. | Apr 2007 | A1 |
20070091900 | Asthana et al. | Apr 2007 | A1 |
20070100503 | Balan et al. | May 2007 | A1 |
20070203722 | Richards et al. | Aug 2007 | A1 |
20070204176 | Shaffer et al. | Aug 2007 | A1 |
20070205915 | Shuey et al. | Sep 2007 | A1 |
20070213878 | Chen | Sep 2007 | A1 |
20070255457 | Whitcomb et al. | Nov 2007 | A1 |
20070286210 | Gutt et al. | Dec 2007 | A1 |
20070291644 | Roberts et al. | Dec 2007 | A1 |
20070299562 | Kates | Dec 2007 | A1 |
20080015975 | Ivchenko et al. | Jan 2008 | A1 |
20080015976 | Sandor et al. | Jan 2008 | A1 |
20080091625 | Kremen | Apr 2008 | A1 |
20080130673 | Cregg et al. | Jun 2008 | A1 |
20080147465 | Raines et al. | Jun 2008 | A1 |
20080165714 | Dettinger et al. | Jul 2008 | A1 |
20080172312 | Synesiou et al. | Jul 2008 | A1 |
20080177423 | Brickfield et al. | Jul 2008 | A1 |
20080177678 | Di Martini et al. | Jul 2008 | A1 |
20080183523 | Dikeman | Jul 2008 | A1 |
20080201255 | Green | Aug 2008 | A1 |
20080224892 | Bogolea et al. | Sep 2008 | A1 |
20080228630 | Gotthelf et al. | Sep 2008 | A1 |
20080231114 | Tolnar et al. | Sep 2008 | A1 |
20080238710 | Tolnar et al. | Oct 2008 | A1 |
20080255899 | McConnell et al. | Oct 2008 | A1 |
20080275815 | Musier et al. | Nov 2008 | A1 |
20080281473 | Pitt | Nov 2008 | A1 |
20090018884 | McConnell et al. | Jan 2009 | A1 |
20090043519 | Bridges et al. | Feb 2009 | A1 |
20090043520 | Pollack et al. | Feb 2009 | A1 |
20090055031 | Slota et al. | Feb 2009 | A1 |
20090062970 | Forbes, Jr. et al. | Mar 2009 | A1 |
20090063122 | Nasle | Mar 2009 | A1 |
20090063228 | Forbes, Jr. | Mar 2009 | A1 |
20090088991 | Brzezowski et al. | Apr 2009 | A1 |
20090106571 | Low et al. | Apr 2009 | A1 |
20090112758 | Herzig | Apr 2009 | A1 |
20090135836 | Veillette | May 2009 | A1 |
20090157510 | Pridmore et al. | Jun 2009 | A1 |
20090171975 | McConnell et al. | Jul 2009 | A1 |
20090177505 | Dietrich et al. | Jul 2009 | A1 |
20090184689 | Kressner et al. | Jul 2009 | A1 |
20090187499 | Mulder et al. | Jul 2009 | A1 |
20090192894 | Dikeman | Jul 2009 | A1 |
20090210295 | Edholm et al. | Aug 2009 | A1 |
20090228320 | Lopez et al. | Sep 2009 | A1 |
20090228406 | Lopez et al. | Sep 2009 | A1 |
20090240381 | Lane | Sep 2009 | A1 |
20090265568 | Jackson | Oct 2009 | A1 |
20090313033 | Hafner et al. | Dec 2009 | A1 |
20090319091 | Flohr | Dec 2009 | A1 |
20100023376 | Brown | Jan 2010 | A1 |
20100042420 | Hutchinson | Feb 2010 | A1 |
20100063832 | Brown | Mar 2010 | A1 |
20100076825 | Sato et al. | Mar 2010 | A1 |
20100106575 | Bixby et al. | Apr 2010 | A1 |
20100145534 | Forbes, Jr. et al. | Jun 2010 | A1 |
20100161148 | Forbes, Jr. et al. | Jun 2010 | A1 |
20100179670 | Forbes, Jr. et al. | Jul 2010 | A1 |
20100191862 | Forbes, Jr. et al. | Jul 2010 | A1 |
20100198713 | Forbes, Jr. et al. | Aug 2010 | A1 |
20100218010 | Musti et al. | Aug 2010 | A1 |
20100222935 | Forbes, Jr. et al. | Sep 2010 | A1 |
20100228601 | Vaswani et al. | Sep 2010 | A1 |
20100228861 | Arsovski et al. | Sep 2010 | A1 |
20100235008 | Forbes, Jr. et al. | Sep 2010 | A1 |
20100254290 | Gong et al. | Oct 2010 | A1 |
20110029655 | Forbes, Jr. et al. | Feb 2011 | A1 |
20110061014 | Frader-Thompson et al. | Mar 2011 | A1 |
20110063126 | Kennedy et al. | Mar 2011 | A1 |
20110082598 | Boretto et al. | Apr 2011 | A1 |
20110115302 | Slota et al. | May 2011 | A1 |
20110125422 | Goncalves Jota et al. | May 2011 | A1 |
20110133655 | Recker et al. | Jun 2011 | A1 |
20110144819 | Andrews et al. | Jun 2011 | A1 |
20110172837 | Forbes, Jr. | Jul 2011 | A1 |
20110172841 | Forbes, Jr. | Jul 2011 | A1 |
20110231320 | Irving | Sep 2011 | A1 |
20110251730 | Pitt | Oct 2011 | A1 |
20110251807 | Rada et al. | Oct 2011 | A1 |
20110257809 | Forbes, Jr. et al. | Oct 2011 | A1 |
20110258022 | Forbes, Jr. et al. | Oct 2011 | A1 |
20130120881 | Jayanth et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
1 729 223 | Dec 2006 | EP |
2000078748 | Mar 2000 | JP |
2001008380 | Jan 2001 | JP |
2001306839 | Nov 2001 | JP |
2002133568 | May 2002 | JP |
2002176729 | Jun 2002 | JP |
2002281666 | Sep 2002 | JP |
2003067457 | Mar 2003 | JP |
2004248174 | Feb 2004 | JP |
2004112868 | Apr 2004 | JP |
2004180412 | Jun 2004 | JP |
2004301505 | Oct 2004 | JP |
2006060911 | Mar 2006 | JP |
2006277597 | Oct 2006 | JP |
2007132553 | May 2007 | JP |
2010081722 | Apr 2010 | JP |
2010119269 | May 2010 | JP |
2010183760 | Aug 2010 | JP |
2005001584 | Jan 2005 | KR |
20050045272 | May 2005 | KR |
20060036171 | Apr 2006 | KR |
100701298 | Mar 2007 | KR |
20070098172 | Oct 2007 | KR |
20080112692 | Dec 2008 | KR |
2005029243 | Mar 2005 | WO |
2007136456 | Nov 2007 | WO |
WO 2008125696 | Oct 2008 | WO |
2009032161 | Mar 2009 | WO |
2009032162 | Mar 2009 | WO |
2010129059 | Nov 2010 | WO |
2010129958 | Nov 2010 | WO |
2010132456 | Nov 2010 | WO |
2010132469 | Nov 2010 | WO |
2010132477 | Nov 2010 | WO |
2010134987 | Nov 2010 | WO |
2011043818 | Apr 2011 | WO |
2011046589 | Apr 2011 | WO |
2012106431 | Aug 2012 | WO |
2012145102 | Oct 2012 | WO |
Entry |
---|
International Search Report and Written Opinion dated Oct. 30, 2012 issued by the Korean Intellectual Property Office as International Searching Authority in connection with related International Application No. PCT/US2012/029339 (13 pages). |
Korean Intellectual Property Office, Second Notification of Provisional Rejection dated Oct. 31, 2012, as entered in related Korean Application No. 10-2010-7006801 (5 pages). |
The Patent Office of the People'S Republic of China; Notification of the Second Office Action dated Oct. 29, 2012, as entered in related Chinese Application No. 200880113530.X (9 pages). |
Mexican Institute of Industrial Property, Official Action dated Nov. 9, 2012, as entered in related Mexican Application No. MX/a/2011/011824 (2 pages). |
Korean Intellectual Property Office, Notification of Provisional Rejection dated Nov. 23, 2012, as entered in related Korean Application No. 10-2011-7029409 (3 pages). |
The Patent Office of the People'S Republic of China; Notification of the Second Office Action dated Oct. 26, 2012, as entered in related Chinese Application No. 200880113529.7 (7 pages). |
Korean Intellectual Property Office, Second Notification of Provisional Rejection dated Oct. 22, 2012, as entered in related Korean Application No. 10-2012-7001804 (1 page). |
Korean Intellectual Property Office, Notification of Provisional Rejection dated Dec. 14, 2012, as entered in related Korean Application No. 10-2011-7030546 (2 pages). |
U.S. Patent and Trademark Office; Final Office Action dated Jan. 4, 2013, as entered in related U.S. Appl. No. 12/783,415 (39 pages). |
The Patent Office of the People's Republic of China; Notification of the First Office Action dated Oct. 17, 2011, as entered in related Chinese Application No. 200880113530.X (9 pages). |
The Patent Office of the People's Republic of China; Notification of the First Office Action dated Oct. 17, 2011, as entered in related Chinese Application No. 200880113529.7 (11 pages). |
U.S. Patent and Trademark Office; Office Action dated Dec. 15, 2011, as entered in related U.S. Appl. No. 13/172,261 (8 pages). |
U.S. Patent and Trademark Office; Office Action dated Feb. 6, 2012, as entered in related U.S. Appl. No. 13/172,389 (9 pages). |
U.S. Patent and Trademark Office; Office Action dated Jan. 3, 2012, as entered in related U.S. Appl. No. 12/702,768 (9 pages). |
U.S. Patent and Trademark Office; Notice of Allowability dated Jan. 25, 2012, as entered in related U.S. Appl. No. 12/702,640 (11 pages). |
U.S. Patent and Trademark Office; Notice of Allowability dated Feb. 10, 2012, as entered in related U.S. Appl. No. 12/702,785 (10 pages). |
U.S. Patent and Trademark Office; Office Action dated Mar. 9, 2012, as entered in related U.S. Appl. No. 12/783,415 (36 pages). |
International Search Report and Written Opinion dated Dec. 20, 2010 issued by the United States Patent and Trademark Office as International Searching Authority in connection with related International Application No. PCT/US10/02676 (20 pages). |
International Search Report and Written Opinion dated Nov. 30, 2010 issued by the Korean Intellectual Property Office as International Searching Authority in connection with related International Application No. PCT/US2010/034395 (8 pages). |
International Search Report and Written Opinion dated Dec. 21, 2010 issued by the Korean Intellectual Property Office as International Searching Authority in connection with related International Application No. PCT/US2010/034247 (7 pages). |
International Search Report and Written Opinion dated Dec. 22, 2010 issued by the Korean Intellectual Property Office as International Searching Authority in connection with related International Application No. PCT/US2010/034409 (7 pages). |
International Search Report and Written Opinion dated Dec. 22, 2010 issued by the Korean Intellectual Property Office as International Searching Authority in connection with related International Application No. PCT/US2010/034418 (7 pages). |
Office Action dated Jan. 7, 2011 from the Australian Patent Office (Australian Government IP Australia) in connection with related Australian Application No. 2008296979 (2 pages). |
Mashiro Inoue, Toshiyasu Higuma, Yoshiaki Ito, Noriyuki Kushiro and Hitoshi Kubota, Network Architecture for Home Energy Management System, IEEE Transactions on Consumer Electronics, vol. 49, Issue 3, Aug. 2003, pp. 606-613 (8 pages). |
Paul Darbee, INSTEON The Details, Smarthouse, Inc., Aug. 11, 2005, 68 pages. |
Paul Darbee, INSTEON Compared, SmartLabs, Inc., Jan. 2, 2006, 69 pages. |
International Search Report and Written Opinion dated May 31, 2011 issued by the Korean Intellectual Property Office as International Searching Authority in connection with related International Application No. PCT/US2010/002709 (7 pages). |
U.S. Patent and Trademark Office; Office Action dated Sep. 13, 2011, as entered in related U.S. Appl. No. 12/001,819 (18 pages). |
Amendment and Response dated Mar. 13, 2012, as filed in related U.S. Appl. No. 12/001,819 (21 pages). |
Japanese Patent Office; Notification of First Office Action dated Mar. 21, 2012, as entered in related Japanese Application No. 2010522954 (10 pages). |
Amendment and Response dated May 7, 2012, as filed in related U.S. Appl. No. 13/172,261 (30 pages). |
Amendment and Response dated Apr. 2, 2012, as filed in related U.S. Appl. No. 12/702,768 (12 pages). |
U.S. Patent and Trademark Office; Notice of Allowability dated May 2, 2012, as entered in related U.S. Appl. No. 12/702,768 (7 pages). |
Amendment and Response dated May 7, 2012, as filed in related U.S. Appl. No. 13/172,389 (15 pages). |
U.S. Patent and Trademark Office; Office Action dated Jun. 1, 2012, as entered in related U.S. Appl. No. 12/775,979 (6 pages). |
Response to Examination Report dated Jun. 5, 2012, as filed in related Australian Patent Application No. 2008296979 (33 pages). |
European Patent Office, Extended European Search Report (including Supplementary European Search Report and European Search Opinion) dated May 29, 2012, as issued in connection with related European Patent Application No. 08795673.6 (7 pages). |
European Patent Office, Extended European Search Report (including Supplementary European Search Report and European Search Opinion) dated Jun. 1, 2012, as issued in connection with related European Patent Application No. 08795674.4 (6 pages). |
U.S. Patent and Trademark Office; Notice of Allowability dated Jun. 5, 2012, as entered in related U.S. Appl. No. 13/172,261 (4 pages). |
U.S. Patent and Trademark Office; Office Action dated May 18, 2012, as entered in related U.S. Appl. No. 12/001,819 (21 pages). |
International Search Report and Written Opinion dated Jun. 22, 2012 issued by the Korean Intellectual Property Office as International Searching Authority in connection with related International Application No. PCT/US2012/023488 (8 pages). |
Patent Examination Report No. 3 dated Jul. 6, 2012 from the Australian Patent Office (Australian Government IP Australia) in connection with related Australian Application No. 2008296979 (4 pages). |
Decision of Rejection issued Jul. 31, 2012 by the Japanese Patent Office in connection with related Japanese Application No. 2010-522953 (2 pages). |
Amendment and Response dated Sep. 4, 2012, as filed in related U.S. Appl. No. 12/775,979 (7 pages). |
Amendment and Response dated Sep. 10, 2012, as filed in related U.S. Appl. No. 12/783,415 (40 pages). |
International Search Report and Written Opinion dated Feb. 25, 2009 issued by the Korean Intellectual Property Office as International Searching Authority in connection with related International Application No. PCT/US2008/010199 (7 pages). |
Office Action dated Jul. 17, 2009, as entered in grandparent U.S. Appl. No. 11/895,909 (11 pages). |
Amendment and Response dated Oct. 15, 2009, as filed in grandparent U.S. Appl. No. 11/895,909 (14 pages). |
Notice of Allowability dated Dec. 23, 2009, as entered in grandparent U.S. Appl. No. 11/895,909 (4 pages). |
Office Action dated May 19, 2010, as entered in co-pending, parent U.S. Appl. No. 12/715,195 (10 pages). |
Amendment and Response dated Jul. 19, 2010 as filed in co-pending, parent U.S. Appl. No. 12/715,195 (20 pages). |
International Search Report and Written Opinion dated Mar. 6, 2009 issued by the Korean Intellectual Property Office as International Searching Authority in connection with International Application No. PCT/US2008/010200 (8 pages). |
International Search Report and Written Opinion dated Jul. 15, 2010 issued by the United States Patent and Trademark Office as International Searching Authority in connection with related International Application No. PCT/US10/01354 (10 pages). |
International Search Report and Written Opinion dated Jul. 23, 2010 issued by the United States Patent and Trademark Office as International Searching Authority in connection with related International Application No. PCT/US10/01489 (11 pages). |
Michael Ahlheim and Friedrich Schneider, Allowing for Household Preferences in Emission Trading, A Contribution to the Climate Policy Debate, Environmental and Resource Economics, vol. 21, pp. 317-342, 2002 Kluwer Academic Publishers, Printed in the Netherlands (26 pages). |
Olivier Rousse, Environmental and economic benefits resulting from citizens' participation in CO2 emissions trading: An efficient alternative solution to the voluntary compensation of CO2 emissions, Energy Policy 36 (2008), pp. 388-397 (10 pages). |
Notice of Allowability dated Aug. 31, 2010, as entered in parent U.S. Appl. No. 12/715,124 (5 pages). |
Notice of Allowability dated Sep. 8, 2010, as entered in parent U.S. Appl. No. 12/715,195 (4 pages). |
B.J. Kirby, Spinning Reserve from Responsive Loads, Oak Ridge National Laboratory, United States Dept. of Energy, Mar. 2003 (54 pages). |
Eric Hirst and Brendan Kirby, Opportunities for Demand Participation in New England Contingency-Reserve Markets, New England Demand Response Initiative, Feb. 2003 (15 pages). |
Pablo A. Ruiz and Peter W. Sauer, Valuation of Reserve Services, IEEE Proceedings of the 41st Hawaii International Conference on System Sciences, 2008 (9 pages). |
Eric Hirst and Richard Cowart, Demand Side Resources and Reliability, New England Demand Response Initiative, Mar. 20, 2002 (32 pages). |
C.W. Gellings and W.M. Smith, Integrating Demand-Side Management into Utility Planning, Proceedings of the IEEE, vol. 77, Issue: 6, Jun. 1989, pp. 908-918 (Abstract only). |
M. Rashidi-Nejad, Y.H. Song, and M.H. Javidi-Dasht-Bayaz, Operating Reserve Provision in Deregulated Power Markets, IEEE Power Engineering Society Winter Meeting, vol. 2, 2002, pp. 1305-1310 (Abstract only). |
L.T. Anstine, R.E. Burke, J.E. Casey, R. Holgate, R.S. John, and H.G. Stewart, Application of Probability Methods to the Determination of Spinning Reserve Requirements for the Pennsylvania-New Jersey-Maryland Interconnection; IEEE Transactions on Power Apparatus and Systems, vol. 82, Issue 68, Oct. 1963, pp. 726-735 (Abstract only). |
Zhu Jinxiang, G. Jordan, and S. Ihara, The Market for Spinning Reserve and Its Impacts on Energy Prices, IEEE Power Engineering Society Winter Meeting, vol. 2, 2000, pp. 1202-1207 (Abstract Only). |
Kathleen Spees and Lester B. Lave, Demand Response and Electricity Market Efficiency, The Electricity Journal, vol. 20, Issue 3, Apr. 2007 (online Mar. 27, 2007), pp. 69-85 (Abstract only). |
Number | Date | Country | |
---|---|---|---|
20110022239 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
61150978 | Feb 2009 | US | |
61176752 | May 2009 | US | |
61279072 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11895909 | Aug 2007 | US |
Child | 12715124 | US | |
Parent | 12896307 | US | |
Child | 12715124 | US | |
Parent | 11895909 | US | |
Child | 12715195 | US | |
Parent | 12896307 | US | |
Child | 12715195 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12715124 | Mar 2010 | US |
Child | 12896307 | US | |
Parent | 12715195 | Mar 2010 | US |
Child | 12896307 | US | |
Parent | 12702640 | Feb 2010 | US |
Child | 12896307 | US | |
Parent | 11895909 | US | |
Child | 12702640 | US |