This application is related to the following co-pending U.S. patent applications: 1) U.S. patent application Ser. No. 10/745,239 entitled, “Method and Apparatus for Characterizing and/or Predicting Display Backlight Response Latency”, assigned to the assignee of the present invention and filed Dec. 22, 2003; 2) U.S. patent application Ser. No. 10/367,070 entitled “Real-Time Dynamic Design of Liquid Crystal Display (LCD) Panel Power Management Through Brightness Control,” assigned to the assignee of the present invention and filed Feb. 14, 2003; 3) U.S. patent application Ser. No. 10/663,316 entitled, “Automatic Image Luminance Control with Backlight Adjustment”, assigned to the assignee of the present invention and filed Sep. 15, 2003; and 4) U.S. patent application Ser. No. 10/882,446 entitled “Method and Apparatus to Synchronize Backlight Intensity Changes with Image Luminance Changes,” assigned to the assignee of the present application and filed Jun. 30, 2004.
As more functionality is integrated within mobile computing platforms, the need to reduce power consumption becomes increasingly important. Furthermore, users expect increasingly longer battery life in mobile computing platforms, furthering the need for creative power conservation solutions. Mobile computer designers have responded by implementing power management solutions such as, reducing processor and chipset clock speeds, intermittently disabling unused components, and reducing power required by display devices, such as a Liquid Crystal Diode (LCD) or “flat panel” display.
Power consumption in flat-panel display monitors increases with flat panel display backlight brightness. In some computer systems, flat panel display backlight power consumption can soar as high as 6 Watts when the backlight is at maximum luminance. In a mobile computing system, such as a laptop computer system, this can significantly shorten battery life. In order to reduce flat panel power consumption and thereby increase battery life, mobile computing system designers have designed power management systems to reduce the flat-panel display backlight brightness while the system is in battery-powered mode. However, in reducing backlight brightness in a flat panel display, the user is often left with a display image that is of lower quality than when the mobile computing platform is operating on AC power. This reduction in display image quality can result from a reduction in color or brightness contrast among display image features within the display image when backlight brightness is reduced.
Display image quality is further effected by ambient light surrounding a display monitor in which an image is displayed, reducing the number of environments in which a user can use a mobile computing system comfortably. Ambient light brightness effects the display image quality regardless of whether the computer system is operating on battery power.
Finally, display image quality can be affected by a computer program being executed within a computer system. Computer programs that use computer graphics features to generate display images on a display are often created with a particular display monitor type in mind. As a result, the quality of graphics images generated by a computer program may vary across display monitor types.
The features and advantages will become apparent from the following detailed description in which:
a illustrates a pixel within a flat-panel display monitor in accordance with one embodiment.
a is a histogram illustrating the relationship between an LCD image brightness and the number of pixels used to display the image.
The following describes a method and apparatus for enabling power management in a Liquid Crystal Diode (LCD), or “flat panel”, display monitor. Flat panel displays are used in a variety of computing environments including Personal Digital Assistants (PDA), laptop computers, and many other devices that can operate on battery power. As with any mobile computing system, power management is vital to preserving battery life. One method of power management includes decreasing backlight luminance (brightness) in a computer system's flat-panel display monitor. However, reducing backlight brightness can effect the quality of the image being displayed by reducing color or brightness contrast among features within the display image such as, text, graphics, and background. Quality of the display image can suffer further as the backlight brightness becomes dimmer than ambient light surrounding a flat-panel display.
It is, therefore, desirable to decrease backlight brightness in a flat-panel display monitor while maintaining a display image quality. Furthermore, it is desirable for a display image brightness to be adjusted in order to achieve or maintain a display image quality regardless of variances in backlight brightness of a flat-panel display or ambient light brightness surrounding a flat-panel display.
Several power management specifications exist that define power states for a graphics display device, such as a 3-D graphics accelerator. Some power management specifications may define power states for a display monitor in order to achieve display device power targets. Other power management specifications may define display device power states in order to achieve display device power consumption targets. Display device power states can be defined by power management specifications, such as the Advanced Component Power Interface Specification (ACPI). Display device power states can be defined not only by power consumption targets, but also in terms of other factors, such as the time required to go between power states. ACPI defines several power states that may be satisfied, at least in part, by reducing the power consumed by the display device. For example, ACPI defines a D0 power state, in which a display device or other device within a computer system may be in an “on”, or full-power state. ACPI also defines a D1 state from which a device, such as a display device, must be able to return to the D0 power state in a prescribed amount of time. The ACPI timing requirement for transitioning between D0 and D1 power states influences what functionality may be disabled within a display device in order to achieve a particular power target range. Typically, functionality is disabled within a display device that results in the greatest possible power savings while satisfying an ACPI power state timing requirement. In one embodiment, a display device power state can be satisfied, at least in part, by reducing the backlight brightness of a flat-panel display monitor controlled by the display device. A display device power state may be detected in one embodiment by a software program, such as a display device driver. In response to detecting a display device power state, the display device software driver may configure a display device to reduce backlight brightness in a display monitor controlled from the display device.
Power consumption targets may also be defined by computer system manufacturers. For example, a computer system manufacturer may desire to achieve a particular power consumption target in order to meet a certain battery life target when the computer system is running on battery power. In order to achieve a power consumption target, the computer system designer may implement a method to detect when the computer system is operating on battery life as opposed to Alternating Current (AC) power. A computer system designer may then achieve, at least partially, a power consumption target by reducing the amount of power consumed by a display device, such as a 3-D graphics accelerator. Power consumed by a display device may be reduced by reducing a backlight brightness in a flat-panel display monitor being controlled by the display device. Therefore, in order to satisfy a particular power consumption target, a flat-panel display backlight can be reduced to reduce power consumed by a display device.
In one embodiment, the backlight brightness of a flat-panel display monitor controlled from a computer system may be adjusted to satisfy a computer system power consumption target when the computer system is operating on either battery power or AC power. In order to maintain a pre-determined display image quality, a display image brightness may then be detected and adjusted in response to adjusting the flat-panel display monitor backlight brightness. In one embodiment, the display image brightness is detected by display image detectors that indicate display image brightness to a software program. The software program may then configure a device, such as a graphics gamma unit, to adjust the display image brightness, while the power consumption target is achieved or maintained.
Display signals produced by the display device may pass through various control devices 120 before being interpreted by and subsequently displayed on the flat-panel display monitor. In one embodiment, display signals produced by a display device are translated into a format that allow the signals to travel a longer distance without excessive attenuation. The translated display signals may then be translated back to an digital format appropriate to be subsequently displayed on the flat-panel display.
a illustrates a group of pixels within a flat-panel monitor screen in accordance with one embodiment. In one embodiment, the pixels are formed using Thin Film Transistor (TFT) technology, and each pixel is composed of three sub-pixels 225 that, when enabled, cause a red, green, and blue (RGB) color to be displayed, respectively. Each sub-pixel is controlled by a TFT 230. A TFT enables light from a display backlight to pass through a sub-pixel, thereby illuminating the sub-pixel to a particular color. Each sub-pixel color may vary according to a combination of bits representing each sub-pixel. The number of bits representing a sub-pixel determines the number of colors, or color depth, that may be displayed by a sub-pixel. By increasing the number of bits that are used to represent each sub-pixel, the number of colors that each sub-pixel represents increases by a factor of 2N, where “N” is the color depth of a sub-pixel.
For example, a sub-pixel represented digitally by 8 bits may display 28 or 256 colors. A brighter or dimmer shade of a color being displayed by a pixel can be achieved by scaling the binary value representing each sub-pixel color (red, green, and blue, respectively) within the pixel. The particular binary values used to represent different colors depends upon the color-coding scheme, or color space, used by the particular display device. By modifying the color shade of the sub-pixels (by scaling the binary values representing sub-pixel colors) the brightness of the display image may be modified on a pixel-by-pixel basis. Furthermore, by modifying the color shade of each pixel, the amount of backlight necessary to create a display image of a particular display image quality can be reduced accordingly.
a is a display image brightness histogram according to one embodiment. In one embodiment, brightness indicators within a graphics display device detect brightness of pixels within a display image. By interpreting the brightness indicators, the number of pixels that are displaying a range of colors within a particular color segment may be determined. Color segments are defined by a range of color displayed by pixels within a particular color depth. For example, in one embodiment, each pixel is capable of displaying any of 256 colors. Therefore, four segments of 64 colors (256 colors, total) each may be detected and accumulated within the histogram of
The graphics gamma unit 545 effects the brightness of an image to be displayed on a display monitor by scaling each sub-pixel color. In one embodiment, a graphics gamma unit can be programmed to scale the sub-pixel color on a per-pixel basis in order to achieve greater brightness in some areas of the display image, while reducing the brightness in other areas of the display image.
In addition to character and background display image brightness being detected in order to evaluate and adjust display image quality, other factors effecting display image quality may also be considered. In one embodiment, an ambient light sensor 560 is used to determine the brightness of ambient light surrounding a display monitor, in which the display image will be displayed. The image may then be adjusted to account for ambient light brightness.
A pre-determined display image quality can be achieved by maintaining a relationship among a set of display image properties. In one embodiment, a relationship among a set of display image properties is represented by a ratio of display image properties. In one embodiment, the display image properties include ambient light brightness, display character brightness, and background brightness. In other embodiments, other display image properties may be used to maintain or achieve a display image quality. In one embodiment, a ratio among display image properties is represented by the values, 10:3:1, which correspond to character brightness, ambient light brightness, and background brightness, respectively. This ratio may be different in other embodiments. In one embodiment, a software program maintains a display image brightness ratio by interpreting display image brightness indicators and ambient light brightness information. The software program may then adjust display image brightness and/or backlight brightness in order to achieve a pre-determined display image quality by programming the graphics gamma unit and/or PWM accordingly.
In one embodiment, the display image quality is represented by a pre-determined ratio of display image properties. However, in other embodiments, the display image quality may not be pre-determined, but may vary according to a decision-making algorithm, such as would be embodied in a software program or hardware circuit. Furthermore, in other embodiments, the display image quality may be represented by means other than a ratio of display properties. In one embodiment, a ratio of display image properties used to represent a display image quality includes display image character brightness, display image background brightness, and ambient light brightness. In other embodiments, more or fewer display image properties may be used to represent a display image quality.
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications of the illustrative embodiments, as well as other embodiments , which are apparent to persons skilled in the art to which the invention pertains are deemed to lie within the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4958148 | Olson | Sep 1990 | A |
5270818 | Ottenstein | Dec 1993 | A |
5488434 | Jung | Jan 1996 | A |
5532719 | Kikinis | Jul 1996 | A |
5854617 | Lee et al. | Dec 1998 | A |
6111559 | Motomura et al. | Aug 2000 | A |
6346937 | Sasaki et al. | Feb 2002 | B1 |
6388388 | Weindorf et al. | May 2002 | B1 |
6466196 | Isogawa et al. | Oct 2002 | B1 |
6611249 | Evanicky et al. | Aug 2003 | B1 |
20010022584 | Tsugawa | Sep 2001 | A1 |
20020003522 | Baba et al. | Jan 2002 | A1 |
20040000249 | Avetisian | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
0 883 103 | Dec 1998 | EP |
0 888 004 | Dec 1998 | EP |
1 111 575 | Jun 2001 | EP |
11 213090 | Aug 1999 | JP |
200330542 | Nov 2000 | JP |
WO 9930309 | Jun 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20030001815 A1 | Jan 2003 | US |