This invention relates generally to the dispensing or other extraction of fluids from within a container, e.g., in the dispensing of wine from a wine bottle.
One or more embodiments in accordance with aspects of the invention allow a user to withdraw or otherwise extract a beverage, such as wine, from within a container that is sealed by a cork, plug, elastomeric septum or other closure without removing the closure. In some cases, removal of liquid from such a container may be performed one or more times, yet the closure may remain in place during and after each beverage extraction to maintain a seal for the container. Thus, the beverage may be dispensed from the bottle multiple times and stored for extended periods between each extraction with little or no effect on beverage quality. In some embodiments, little or no gas, such as air, which is reactive with the beverage may be introduced into the container either during or after extraction of beverage from within the container. Thus, in some embodiments, a user may withdraw wine from a wine bottle without removal of, or damage to, the cork, and without allowing air or other potentially damaging gases or liquids entry into the bottle.
In one aspect of the invention, a beverage extraction device includes a base for supporting components of the beverage extraction device, and at least one clamp arm mounted to the base and movable to clamp a beverage container neck and support the base on the beverage container. For example, a pair of clamp arms may be mounted to the base and be made movable relative to each other, such as by having one of the clamp arms pivotally mounted to the base, to engage with the beverage container neck. The clamp arms may engage the neck with force sufficient to support the device on the container neck, e.g., so that the device may be suspended or hang from the neck otherwise unsupported. A body may be movably mounted to the base, and a needle, having at least one lumen extending from a proximal end to a distal end, may be mounted to the body and be arranged to be inserted through a closure at an opening of a beverage container with movement of the body relative to the base. For example, if the one or more clamp arms engages the base such that the container neck is immobile relative to the base, the body and needle may be moved relative to the base to insert the needle through the cork or other closure of the container. In an embodiment having a pair of clamp arms, the body may be slideably movable relative to the base to move the distal end of the needle in a space between the clamp arms.
In one embodiment, the one or more clamp arms may be arranged to support the device in an upright orientation on a flat, horizontal surface such that the needle depends from the body with the distal end below the proximal end. For example, a pair of clamp arms may have a downwardly extending portion that are capable of contacting a table or countertop surface so that the device can be “stood” on the surface. In some arrangements, the body includes a lowermost portion, such as a bottom of a gas cylinder cover, that cooperates with the at least one clamp arm to support the device in the upright orientation on a flat, horizontal surface such that the needle depends from the body with the distal end below the proximal end.
In another aspect of the invention, a beverage extraction device includes a base for supporting components of the beverage extraction device, and a pair of clamp arms mounted to the base and having distal portions movable relative to each other to clamp a beverage container neck and support the base on the beverage container. Each distal portion of the clamp arms may have an inner surface with a distal tab and a proximal ridge arranged to contact the neck of a beverage container positioned between the distal portions of the clamp arms. For example, the distal tabs may contact the neck and urge the neck into a proper position relative to the clamp arms and the base. The proximal ridges may present a surface that helps engage the clamp arms with the neck, e.g., so that the ridges contact a lip of the container to prevent the neck from being withdrawn from the space between the clamp arms. A body may be movably mounted to the base, and a needle, having at least one lumen extending from a proximal end to a distal end, may be mounted to the body and arranged to be inserted through a closure at an opening of a beverage container with movement of the body relative to the base.
In one embodiment, the distal portions of the clamp arms are spring biased to move toward each other such that the tab and ridge of each clamp arm contacts a beverage container neck and urges the neck to move proximally relative to the clamp arms. This movement may cause the neck to engage with a resilient pad between the clamp arms and suitably position the cork or other closure for penetration by the needle.
In another aspect of the invention, a beverage extraction device includes a base for supporting components of the beverage extraction device and at least one clamp arm movably mounted to the base and having a distal portion arranged to clamp a beverage container neck and support the base on the beverage container. The at least one clamp arm may be arranged to urge the beverage container neck proximally and into contact with a pad on the base when the at least one clamp arm clamps the neck. Such contact may properly position the neck with respect to a needle of the device that is arranged to be inserted through a closure at an opening of a beverage container with movement relative to the base. For example, the at least one clamp arm and pad may position the neck so that the needle penetrates the cork or other closure at a desired position, e.g., away from a center of the cork that minimizes the chance of the needle penetrating the cork in a place that has been previously penetrated.
In another aspect of the invention, a beverage extraction device includes a base for supporting components of the beverage extraction device, and at least one clamp arm mounted to the base and movable to clamp a beverage container neck. The at least one clamp arm may be spring biased to move and clamp the container neck with a spring force sufficient to suspend the device on the beverage container, e.g., so that the container may be lifted and manipulated by lifting only the extraction device. This may allow a user to pour beverage from the container by handling the device only, and/or help ensure reliable insertion of a needle of the device into a cork or other closure of the container.
In another aspect of the invention, a beverage extraction device includes a base for supporting components of the beverage extraction device, and at least one clamp arm mounted to the base and movable to clamp a beverage container neck. The clamp arm may have a distal portion arranged to engage the container neck and be spring biased to move away from a clamping position, e.g., away from a neck positioned adjacent the base. A locking mechanism may be arranged to engage the clamp arm in a clamping position such that the clamp arm engages the container neck with a force sufficient to suspend the device on the beverage container. For example, a user may move the clamp arm against the spring bias to bring the clamp arm into a clamping position in contact with a neck, and the locking mechanism may lock the clamp in engagement with the neck. The locking mechanism, which may include a buckle, ratchet/pawl mechanism, etc., may keep the clamp arm in a clamping position until the locking mechanism is released by a user.
Various embodiments may include a gas source fluidly coupled to the needle of the extraction device which is arranged to deliver pressurized gas to the at least one lumen at the proximal end of the needle. This may allow the device to introduce pressure into the container which is used to allow extraction of beverage from the container. For example, the gas source may include a compressed gas cylinder, pressure regulator, valve, etc. Thus, the needle of the device may be arranged for insertion through a cork of a wine bottle for delivery of a gas into a wine bottle and/or for delivery of wine from the bottle. The needle may be arranged to be used with closures that include a material capable of resealing upon withdrawal of the needle from the closure. For example, typical wine bottle corks may allow a needle to be passed through the cork to extract wine from the bottle, and then reseal upon removal of the needle such that gas and/or liquid are prevented from passing through the cork after needle removal.
Various exemplary embodiments of the device are further depicted and described below.
Aspects of the invention are described with reference to various embodiments, and to the figures, which include:
Aspects of the invention are described below with reference to illustrative embodiments, but it should be understood that aspects of the invention are not to be construed narrowly in view of the specific embodiments described. Thus, aspects of the invention are not limited to the embodiments described herein. It should also be understood that various aspects of the invention may be used alone and/or in any suitable combination with each other, and thus various embodiments should not be interpreted as requiring any particular combination or combinations of features. Instead, one or more features of the embodiments described may be combined with any other suitable features of other embodiments.
In this embodiment, the body 3 also includes a valve 300 operable to control the flow of gas from the regulator 600. The valve 300 may be a 3-way toggle valve that includes a single operation button and functions to selectively introduce pressurized gas into the container 700 and extract beverage 710 (such as wine) from the container 700 via a needle 200. Details regarding the operation of such a valve 300 are provided in U.S. Pat. No. 8,225,959, which is incorporated by reference in its entirety. Of course, other valve arrangements for controlling pressurized gas and beverage flow are possible. For example, the 3-way valve 300 could be replaced with a pair of on/off valves, one for controlling gas introduction to the container 700, and another for controlling flow of beverage from the container 700. Each valve could have its own actuator, allowing a user to selectively open and close the valves, whether individually or simultaneously. In short, details regarding the operation of the regulator 600 and valve 300 or other mechanisms for introducing gas into a container, and removing beverage from the container 700 are not necessarily limitations on aspects of the invention and may be modified as suitable.
To introduce gas into the container 700 and extract beverage, a needle 200 attached to the body 3 is inserted through a cork or other closure 730 that seals an opening of the container 700. This illustrative system 1 uses a pencil-tip non-coring needle 200 with a needle opening 220 along a sidewall of the needle near the needle tip. While the needle 200 may be inserted into the cork or other closure 730 in different ways, in this embodiment, the system 1 includes a base 2 with a pair of channels 21 that receive and guide movement of respective rails 31 of the body 3. Thus, movement of the body 3 and attached needle 200 relative to the container closure 730 may be guided by the base 2, e.g., the body 3 may slide relative to the base 2 to move the needle 200 into/out of the closure 730. In addition, movement of the needle 200 may be guided by a needle guide 202 that is attached to the base 2 and positioned over the closure 730. Other arrangements for guiding movement of the body 3 relative to the base 2 are possible, such as providing one or more rails on the base 2 which engage with a channel or other receiver of the body 3, providing an elongated slot, channel or groove on the body or base which engages with a corresponding feature (e.g., a tab) on the other of the body or base and allows for sliding movement, a linkage that connects the body and base together and allows for movement of the body to insert the needle into the closure, and others.
In some embodiments, the base 2 may be fixed or otherwise held in place relative to the container 700, e.g., by a clamp arm, sleeve, strap or other device that engages with the container 700. Clamp arrangements in accordance with aspects of the invention are described in more detail below and may be used to temporarily or releasably secure the device 1 to a wine bottle neck or other container 700. By restraining movement of the base 2 relative to the container 700, such an arrangement may help guide motion of a needle 200 relative to the container 700 when penetrating a closure 730, or when being withdrawn from the closure 730. Alternately, the container 700 may be manipulated by grasping and manipulating the device 1 since the clamp engaging the device 1 to the container 700 may securely hold the device 1 and container 700 together.
To insert the needle 200 through the closure 730, a user may push downwardly on the body 3 while maintaining the base 2 and the container 700 at least somewhat stationary relative to each other. The needle 200 will pass through the closure 730, guided in its motion, at least in part, by the guided motion of the body 3 relative to the base 2 (e.g., by the rails 31 and channels 21). With the needle 200 suitably inserted as shown in
As discussed above, a beverage extraction device may include a clamp configured to engage the device with a container, e.g., by clamping the device to the neck of a bottle. For example, the device can include one or more clamp arms that are movably mounted to the device and are arranged to engage with a container to support the device on the container during use. In accordance with an aspect of the invention, the beverage extraction device may include one or more clamp arms that are arranged to not only engage a container during use of the device, but also support the device in an upright orientation on a flat, horizontal surface (such as a table top) so that the needle depends from the body with the distal end below the proximal end. This configuration may make the device more easily handled by a user, e.g., by positioning a handle of the device at an uppermost location for easy grasping. In addition, or alternately, allowing the device to stand upright may allow maintenance of the device more convenient, such as by positioning the device to allow a user to readily observe and/or replace the needle. Moreover, this arrangement may help prevent the beverage dispensing outlet from contacting potentially contaminating surfaces, e.g., because the outlet may be held up and out of contact with surrounding surfaces and so that a user can grasp the device handle with reduced risk of touching the outlet. As another example, the upright orientation may allow for convenient and space-saving storage of the device, e.g., in a cabinet or other location. In short, upright orientation of the device has been found to be an attractive feature to users for a variety of different reasons.
Also included in this embodiment is a clamp 4 having a pair of clamp arms 41 that are arranged to support the device 1 in an upright orientation on a flat, horizontal surface 10, such as a table or counter top. (It should be appreciated, however, that a single clamp arm may be provided instead of a pair, as described in more detail below.) In this embodiment, the clamp arms 41 each include a downwardly extending portion 41c that contacts the surface 10 along with a lowermost portion of the body 3, which in this example is a lower end of gas cylinder cover 101. Thus, the clamp arms 41 and cover 101 may provide three points of contact with the surface 10, although additional (or fewer) points of contact may be provided. Note that in this embodiment, the lowermost portions of the downwardly extending portions 41c that contact the surface 10 are located proximally, relatively near the cover 101, and the lower surfaces of the downwardly extending portions 41c nearest the surface 10 form an angle with the surface 10 such that distal ends of the lower surfaces are uplifted from the surface 10. This arrangement may help prevent tipping of the device 1 forward. For example, if the device 1 is contacted while standing upright so that the device 1 begins to tip forward, the lower surfaces of the downwardly extending portions 41 c may contact the surface 10 and help arrest movement of the device 1 and complete tipping over. Also, the cover 101 need not contact the surface 10 to help support the device 1, and instead other portions of the body 3 or the base 2 may contact the surface 10 to support the device 1 in an upright orientation. In another arrangement, the clamp arms 41 alone may contact the surface 10 and support the device 1. For example, a clamp arm 41 may include a “foot” or other structure that contacts the surface 10 to suitably support the device 1 without assistance from other parts of the device 1.
In this embodiment, the clamp arms 41 are arranged to support the device 1 in an upright orientation when the body 3 is in an uppermost position relative to the base 2, i.e., when the body 3 is moved upwardly as far as possible relative to the base 2. However, the clamp arms 41 may be arranged to support the device 1 in the upright orientation for other positions of the body 3 relative to the base 2, such as for upper positions of the body 3 relative to the base 2 (where the body 3 is positioned in an upper half of its range of movement relative to the base 2) or for any suitable position of the body 3 relative to the base 2. Thus, the clamp arms 41 may be arranged to help hold the device 1 in an upright position when the body 3 is in two or more positions relative to the base 2.
In this embodiment, the device 1 includes a detent that resiliently holds the body 3 in an upper position relative to the base 2, e.g., to help ensure that the body 3 does not move relative to the base 2 while at rest on a counter top. For example, the detent may include a spring-loaded ball or other element mounted on the base 2 that engages with a suitable groove on the body 3 to hold the body 3 and base 2 stationary relative to each other until suitable force is exerted to overcome the detent holding function. (See, for example,
In accordance with another aspect of the invention, the clamp arm(s) may include a feature to help properly engage the clamp arm(s) with a variety of different bottle necks. For example, different bottles may have different neck diameters, different lip diameters or lengths (as used herein, a lip is a feature of many wine bottles near the top of the neck in which the bottle flares, steps or otherwise protrudes outwardly in size). In one embodiment, the clamp arm(s) include a distal tab feature and a proximal ridge feature that cooperate to properly engage with different neck configurations.
In another aspect of the invention, the tabs 43 may help urge the neck proximally relative to the base 2, e.g., to move the neck toward a pad 22 located on the base 2 between the clamp arms 41. By urging the neck to move proximally and into contact with the pad 22 or other component, the clamp arms 41 may help position the neck in a consistent way relative to the needle guide 202 and the needle 200. This may help ensure that the needle 200 penetrates the closure 730 in a desired location. For example, the needle guide 202 and needle 200 may be arranged to pierce a closure 730 in a location that is offset from a center of the closure 730 with the neck positioned in contact with the pad 22. This may help avoid having the needle 200 penetrate the closure in the same location if the device 1 is used two or more times to extract beverage from the container 700. (As noted above, beverage can be extracted without removal of the closure 730, and since the closure can reseal after removal of the needle, beverage can be extracted multiple times from a container 700 without removal of the closure 730, although the closure 730 may be pierced several times to do so.) Alternately, the needle 200 and guide 202 may be configured to penetrate a closure at its center with the neck in contact with the pad 22, and by positioning the neck proximally and in contact with the pad 22, the closure 730 may be penetrated at the center as desired. In another arrangement in which the device is arranged to penetrate the closure 730 at a center position, the clamp arms 41 may each include semi-circular or other suitably arranged surfaces that contact the neck so the center of the closure 730 is always positioned for penetration by the needle 200.
The ridge 44 may have a length measured in a direction perpendicular to a bottle neck (or in a direction perpendicular to the length of the needle 200) that is greater than the tab 43, e.g., to help the ridge 43 provide a suitably long contact surface for the lip of the bottle. For example, while the tabs 43 may help center the neck between the clamp arms 41 and urge the neck to move proximally, the ridges 43 may contact an underside of the bottle lip with a suitably long surface to help prevent the neck from moving downwardly relative to the clamp arms 41 more than a desired distance. The extended length of the ridges 44 may provide the ridges 44 with greater strength and help the clamp arms operate with a wide array of bottle neck and lip sizes and shapes. In addition, the ridges 44 may have a variable radial length, e.g., increasing proximally as shown in
The pad 22 in this illustrative embodiment includes a strip of resilient material, such as a rubber, that can help the device grip the bottle neck when engaged by the clamp arms 41. In some embodiments, the pad 22 may include a protrusion or step near a lower portion of the pad 22 (see
In this illustrative embodiment, the clamp arms 41 are pivotally mounted to the base 2 such that the distal portions 41b are normally biased to move toward each other, e.g., to clamp a bottle neck positioned between the arms 41. For example, as shown in
That is, whether the clamp arms 41 are spring biased or not, movement of the arms may be restricted or otherwise controlled in some way by a locking mechanism. For example, the arms 41 may be secured together by a ratchet and pawl mechanism that allows the distal portions 41b of the clamp arms 41 to move freely toward each other, but prevents movement of the distal portions 41b away from each other unless the pawl is first cleared from the ratchet. This arrangement may allow a user to securely clamp the arms 41 onto a bottle neck with the ratchet and pawl ensuring that the arms 41 will not move away from each other to release the neck until the user releases the pawl. In other embodiments, the arms 41 may be secured against movement away from each other in alternate ways, such as by a buckle and strap (with the strap secured to one arm 41 and the buckle secured to the other arm 41), a screw and nut (in which the screw engages one arm 41, the nut engages the other arm 41, and the screw and nut threadedly engage each other to secure the arms 41 together), a hook-and-loop closure element that spans across the arms 41 at their distal end, or other arrangement suited to engage the arms 41 with the container 700.
For example,
In accordance with an aspect of the invention, a device may be arranged such that the needle penetrates the closure of containers at a location positioned away from the center of the closure. For example, as can be seen in
Off-center penetration of a closure can be achieved in other ways than simply offsetting the needle and needle guide with respect to the pad a certain distance. For example, the clamp arms 41 may be arranged to engage a bottle neck so that the center of the closure is always offset from the needle penetrating area regardless of neck diameter. In doing so, the clamp arms 41 need not necessarily place the bottle neck in contact with a pad 22 or similar reference surface, but rather may engage the neck without contact of any other part of the device with the neck. In another embodiment shown in
While the locking mechanism 6 may be arranged in other ways, in this embodiment the locking mechanism 6 includes a clutch spring 61 that is fitted over, and is engageable with an upper binding post 62 that is fixed to the clamp arm 41 and a lower binding post 65 that is fixed to the base 2. As will be understood by those of skill in the art, the clutch spring 61 may engage the binding posts 62, 65 so as to allow movement of the clamp arm 41 in a clockwise direction (as viewed from above) relative to the lower binding post 65, yet resist counterclockwise movement. A sleeve 63 may house the clutch spring 61 and a release tab 64 may be movable by a user to release the clutch spring 61 from the upper binding post 62 so as to allow the clamp arm 41 to move in the counterclockwise direction. Another spring (not shown) may be used to bias the clamp arm 41 to move toward the open position, e.g., so that the arm 41 moves under the spring bias to the open position when the release tab 64 is activated. Other arrangements for the locking mechanism are possible, such as ratchet and pawl configurations, rotary detents, etc.
Note also that aspects of the invention may be used with clamping arrangements that include a single clamp arm, or more than one clamp arm. Thus, embodiments are not restricted to use of two clamp arms. For example, the
It has been found that needles having a smooth walled exterior, pencil point or Huber point needle of 16 gauge or higher are effective to penetrate through a wine bottle cork or other closure, while sealing effectively with the cork to prevent the ingress or egress of gases or fluids during beverage extraction. Moreover, such needles allow the cork to reseal after withdrawal of the needle, allowing the container and any remaining beverage to be stored for months or years without abnormal alteration of the beverage flavor. Further, such needles may be used to penetrate a foil cover or other wrapping commonly found on wine bottles and other containers. Thus, the needle may penetrate the foil cover or other element as well as the closure, eliminating any need to remove the foil or other wrapping prior to beverage extraction. Other needle profiles and gauges are also usable with the system.
While in the above embodiments the needle guide 202 and needle are positioned to have the needle penetrate the center of the closure 730, the lower opening or through hole of the guide 202 could be arranged to introduce the needle at a location offset from the center of cork 730. This may decrease the chances that a needle penetrates the closure 730 in a same location if the system 1 is used to dispense beverage from the container several times and may allow the closure 730 to better reseal upon needle withdrawal.
While in the above embodiments, a user moves the body 3 in a linear fashion relative to the base 2 to insert/remove a needle with respect to a container closure, a manual or powered drive mechanism may be used to move a needle relative to a closure. For example, a rail 31 may include a toothed rack, while the base 2 may include a powered pinion gear that engages the rack and serves to move the body 3 relative to the base 2. The pinion may be powered by a user-operated handle, a motor, or other suitable arrangement. In another embodiment, the needle may be moved by a pneumatic or hydraulic piston/cylinder, e.g., which is powered by pressure from the gas cylinder 100 or other source.
A needle used in a beverage extraction device may be a smooth exterior walled, cylindrical needle with a non-coring tip that can be passed through a cork without removing material from the cork. One non-coring tip is a pencil-tip that dilates a passageway through the cork, although deflected-tip and stylet needles have also been found to work properly and could be used in alternative embodiments. The pencil-tip needle preferably has at least one lumen extending along its length from at least one inlet on the end opposite the pencil-tip and at least one outlet proximal to the pencil-tip. As shown above, a needle outlet may be positioned in the side-wall of the needle at the distal end of the needle, although proximal of the extreme needle tip.
With the correct needle gauge, it has been found that a passageway (if any) that remains following removal of the needle from a cork self-seals against egress or ingress of fluids and/or gases under normal storage conditions. Thus, a needle may be inserted through a closure to extract beverage, and then be removed, allowing the closure to reseal such that beverage and gas passage through the closure is prevented. While multiple needle gauges can work, preferred needle gauges range from 16 to 22 gauge, with an optimal needle gauge in some embodiments being between 17 and 20 gauge. These needles gauges may offer optimal fluid flow with minimal pressures inside the container while doing an acceptably low level of damage to the cork even after repeated insertions and extractions.
Multiple needle lengths can be adapted to work properly in various embodiments, but it has been found that a minimum needle length of about 1.5 inches is generally required to pass through standard wine bottle corks. Needles as long as 9 inches could be employed, but the optimal range of length for some embodiments has been found to be between 2 and 2.6 inches. (Needle length is the length of a needle that is operable to penetrate a closure and/or contact a needle guide for guidance in moving through the closure.) The needle may be fluidly connected to the valve directly through any standard fitting (e.g. NPT, RPT, Leur, quick-connect or standard thread) or alternatively may be connected to the valve through an intervening element such as a flexible or rigid tube. When two or more needles are used, the needle lengths may be the same or different and vary from 0.25 inches to 10 inches. Creating distance between the inlet/outlets of the needles can prevent the formation of bubbles.
In some embodiments, a suitable gas pressure is introduced into a container to extract beverage from the container. For example, with some wine bottles, it has been found that a maximum pressure of between around 40 and 50 psi may be introduced into the bottle without risking leakage at, or ejection of, the cork, although pressures of between around 15 and 30 psi have been found to work well. These pressures are well tolerated by even the weakest of cork-to-bottle seals at the bottle opening without causing cork dislodging or passage of liquid or gas by the cork, and provide for relatively fast beverage extraction. The lower pressure limit in the container during wine extraction for some embodiments has been found to be between about 0 and 20 psi. That is, a pressure between about 0 and 20 psi has been found needed in a bottle to provide a suitably fast extraction of beverage from the bottle. In one example using a single 17 to 20 gauge needle, a pressure of 30 psi was used to establish an initial pressure in a wine bottle, and rapid wine extraction was experienced even as the internal pressure dropped to about 15-20 psi.
The source of pressurized gas can be any of a variety of regulated or unregulated pressurized gas containers filled with any of a variety of non-reactive gases. In a preferred embodiment, the gas cylinder contains gas at an initial pressure of about 2000-3000 psi. This pressure has been found to allow the use of a single relatively small compressed gas cylinder (e.g., about 3 inches in length and 0.75 inches in diameter) for the complete extraction of the contents of several bottles of wine. Multiple gases have been tested successfully over extended storage periods, and preferably the gas used is non-reactive with the beverage within the container, such as wine, and can serve to protect the beverage oxidation or other damage. Suitable gases include nitrogen, carbon dioxide, argon, helium, neon and others. Mixtures of gas are also possible. For example, a mixture of argon and another lighter gas could blanket wine or other beverage in argon while the lighter gas could occupy volume within the bottle and perhaps reduce the overall cost of the gas.
The embodiment above, a single needle with a single lumen is used to introduce gas into the container and extract beverage from the container. However, in other embodiments two or more needles may be used, e.g., one needle for gas delivery and one needle for beverage extraction. In such an embodiment, the valve 300 may operate to simultaneously open a flow of gas to the container and open a flow of beverage from the container. The needles may have the same or different diameters or the same or different length varying from 0.25 to 10 inches. For example, one needle delivering gas could be longer than another that extracts wine from the bottle. Alternately, a two lumen needle may be employed where gas travels in one lumen and beverage travels in the other. Each lumen could have a separate entrance and exit, and the exits could be spaced from each other within the bottle to prevent circulation of gas.
Multiples of these components could be combined into single parts or components serving multiple functions. For example, the needle guide may be made part of a container clamp.
While aspects of the invention have been shown and described with reference to illustrative embodiments, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application claims the benefit of U.S. Provisional application No. 61/641,874, filed May 2, 2012, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61641874 | May 2012 | US |