Information
-
Patent Grant
-
6357354
-
Patent Number
6,357,354
-
Date Filed
Friday, September 24, 199925 years ago
-
Date Issued
Tuesday, March 19, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Cohen, Pontani, Lieberman & Pavane
-
CPC
-
US Classifications
Field of Search
US
- 101 4151
- 101 477
- 101 375
- 101 376
- 101 378
- 101 3891
- 101 3821
- 101 383
- 101 216
- 101 217
- 101 DIG 36
-
International Classifications
-
Abstract
A method and apparatus for fitting a printing plate to a plate cylinder where the printing plate is bent into a circular shape and fixed in this form by leading and trailing legs of the plate being firmly connected to each other. The printing plate shaped in this way is subsequently axially pushed onto the plate cylinder from the free side of the plate cylinder.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to printing machines, and more particularly to a method and an apparatus for fitting a printing plate, especially an offset printing plate, to an overhung plate cylinder of a rotary printing machine.
2. Description of the Related Art
DE 43 15 909 A1 shows a printing unit in which the plate cylinders are fitted with printing-plate sleeves. During printing operation, the plate cylinders are mounted on both sides in side walls. In order to change the printing-plate, supporting elements are removed from one side wall, after which the plate cylinders are overhung in the other side wall. The plate sleeves can than be drawn off the plate cylinders at the exposed sides of the latter and changed.
Plate sleeves advantageously consist of stainless steel, nickel or a nickel alloy, for example Hastelloy, and are well suited for erasable image-setting. In addition, these materials have good strength values. Plate sleeves of this type are clamped onto the plate cylinder by means of a press fit. In order to displace the plate sleeves for the purpose of changing them, they are usually expanded by means of compressed air.
Non-erasable printing plates advantageously consist of aluminium, and it is known to produce plate sleeves of this type from a butt-welded metal sheet. An apparatus which carries out a shaping and a joining step is needed for this. Such an apparatus is complicated and expensive, thus, production of plate sleeves of this type is correspondingly expensive.
EP-0 812 686 A2 shows an apparatus with which flat printing plates can be fitted axially to an overhung plate cylinder. For this purpose, the printing plates are pushed into a tube and, together with the tube, are pushed onto the plate cylinder over a mandrel, which expands the printing plate. As a result of the actuation of a plate clamping device, the printing plate is then clamped on the plate cylinder and the tube is removed from the plate cylinder. The disadvantage in this case is that the tube rests on the pre-imaged surface of the printing plate and, as a result, can cause damage to the printing surface.
DE 44 04 758 C2 refers to circularly bending a flat printing plate by hand, holding its legs together with an adhesive and subsequently pushing the printing plate axially onto a plate cylinder. The pushed on printing plate is then clamped by means of a clamping system.
SUMMARY OF THE INVENTION
The invention is based on the object of fitting overhung plate cylinders of a rotary printing machine cost-effectively with printing plates. Another object, is to enable flat printing plates to be clamped cost-effectively and reliably.
This and other objects are achieved in accordance with an embodiment of the invention, wherein flat printing plates can be cost-effectively imparted a sleeve shape, and enables these sleeves to be clamped by being axially pushed onto the plate cylinder. The production of these printing plates is compatible with development systems for printing plates which are common nowadays and can be found on the market. In various embodiments of the invention, there is also the possibility of clamping these printing plates using clamping systems for sleeves. The possibility is opened up of clamping sleeves and flat printing plates formed into sleeves, as desired, on a plate cylinder and, in addition, of choosing between erasable and non-erasable printing plates. The ability of the printing machine to be varied is therefore increased with a low outlay on costs. In addition, changing the printing plate axially by pushing it with the web threaded, reduces lost time. It is also possible for printing machines up to specific web widths to be designed in a space-saving manner without operating space between the printing units.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of the disclosure. For a better understanding of the invention, its operating advantages, and specific objects attained by its use, reference should be had to the drawing and descriptive matter in which there are illustrated and described preferred embodiments of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention is to be explained in more detail below using some exemplary embodiments. In the associated drawings:
FIG. 1
is a plan view of a printing plate having vertical plate legs welded together;
FIG. 2
is a plan view of a printing plate having oblique plate legs bonded together;
FIG. 3
is a plan view of a printing plate have plate legs connected by hook-and-loop tape;
FIG. 4
is a schematic view of the action of pushing a printing plate onto a plate cylinder using a mandrel;
FIG. 5
is a schematic view of a parent cylinder in cross section, with a printing plate held together by adhesive tape;
FIG. 6
is a top view of a parent cylinder with slots running towards each other to accommodate the legs of the plate;
FIG. 7
is a cross-section view of the parent cylinder of
FIG. 6
taken along line VII—VII;
FIG. 8
is a cross-section view of the parent cylinder of
FIG. 6
taken along line VIII—VIII;
FIG. 9
is an end view of the parent cylinder of
FIG. 6
taken along line IX;
FIG. 10
is an end view of a cylinder for bending over the edges of a printing parent cylinder according to
FIG. 6
; and
FIG. 11
is a persepective view of a parent cylinder having a plate clamping device, which can be attached to a plate cylinder.
DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
FIGS. 1
to
3
show, illustrated in part, printing plates which have been bent into a circular shape and whose plate legs, bent over at the edge, are firmly connected to each other. In detail,
FIG. 1
shows a printing plate
1
whose leading and trailing plate legs
2
and
3
, respectively, are bent over at right angles, rest on each other and, in this region, are connected to each other by electric resistance pressure welding. Electric seam welding is advantageously used to produce a continuous weld
4
. However, spot welding is also possible.
FIG. 2
shows a printing plate
5
having leading and trailing plate legs
6
and
7
, respectively, bent over obliquely at the edge. Here, the two legs
6
,
7
of the plate are bonded over their length using their faces pointing towards each other, for which purpose the rough surface is extremely suitable. In an exemplary embodiment, a liquid adhesive is used, which is applied by means of gun or spray application. The use of double-sided adhesive tape is also possible, the tape being applied first to one of the legs, for example, using a dispenser. The use of hot-melt adhesive is also possible. Following the application of the adhesive or of the adhesive tape, the legs
6
,
7
of the plate are joined to each other.
According to
FIG. 3
, the respective leading and trailing plate legs
8
and
9
of a printing plate
10
, and bent over perpendicularly at the edge, and are provided with a hook tape
11
and a loop tape
12
respectively, and pressed onto each other to be joined. In order to illustrate the hook tape
11
and the loop tape
12
better, the printing plate
10
has been illustrated in the unjoined state. The hook-and-loop tape
11
,
12
is also known under the terms touch-and-close tape of VELCRO® tape.
The joining of the respectively leading and trailing legs
2
,
3
or
6
,
7
or
8
,
9
of the plate can advantageously be carried out by means of an automatic machine. In such an automatic machine, it is also possible for the legs
2
,
3
,
6
to
9
of the plate to be aligned axially well, by the printing plates
1
,
5
,
10
being provided with stamped register tongues
13
, with which they are held in the automatic machine. These stamped register tongues have already been used for adjustment during the image-setting of the printing plate
1
,
5
,
10
previously carried out in the flat state.
In the event of an adequate stiffness, the printing plate
1
,
5
,
10
brought to circular shape according to
FIGS. 1
to
3
is pushed by hand onto an overhung plate cylinder
14
(FIG.
4
), without any aids, from the free end of the plate cylinder. This may either be a plate cylinder which is intrinsically overhung, as shown for example in DE 196 24 395 A1, or a plate cylinder which, during printing operation, is mounted in two side walls which can be exposed at one journal and is then overhung, such as shown, for example, in DE 43 15 909 A1. The overhung mounting of the plate cylinder
14
has been shown schematically in
FIG. 4
by a hatched frame at its left-hand end. If the stiffness of the printing plate
1
,
5
,
10
is not adequate, it is pushed onto the plate cylinder
14
with the assistance of a mandrel
15
.
According to
FIG. 4
, the printing plate
1
is fitted to the mandrel
15
. After it has been positioned in alignment with the plate cylinder
14
, the printing plate
1
is pushed from the mandrel
15
onto the plate cylinder
14
with the assistance of a sliding ring
16
. Both the mandrel
15
and the plate cylinder
14
have a groove
17
and
18
, respectively which are appropriately oversized in width and depth in order that the mutually connected legs
2
,
3
of the printing plate
1
fit in.
The internal diameter of the sleeve-like printing plate
1
has a dimension smaller than the external diameter of the plate cylinder
14
. Therefore, in order to push it on, the printing plate
1
is expanded by means of compressed air. For this purpose, the plate cylinder
14
has blow holes
19
, from which compressed air flows. Blowing devices of this type are familiar to those skilled in the art and can be seen, for example, in the aforementioned EP 0 812 686 A2. The hermetic connection of the legs
2
,
3
and
6
to
9
of the plate prevents compressed air escaping from this joint. After the pushing-on operation, firm seating of the printing plate
1
on the plate cylinder
14
is achieved by switching off the compressed air. Furthermore, the legs
2
,
3
of the plate, which are located in the groove
18
, ensure positive securing of the printing plate
1
against moving as a result of slippage. By perpendicularly bending over the plate legs at the edge secures the leg when rolling on a rubber blanket, both in a leading manner and in a trailing manner. In addition, very narrow widths of the groove
18
can be implemented. Leading and trailing plate legs
6
,
7
(
FIG. 2
) which are obliquely bent over in relation to the circumference, offer security against the printing plate
5
slipping out of the gap in the plate cylinder
14
in the event that the adhesive seam does not hold. However, this design variant requires a fixedly predetermined “conveying direction” of a blanket cylinder in the indicated arrow direction P (FIG.
2
).
In order to disassemble the printing plate
1
(or
5
or
10
), compressed air is again delivered from the blow holes
19
(FIG.
4
), resulting in the expansion of the printing plate
1
and enabling the pushing off of the plate from the plate cylinder
14
. Depending on whether a detachable connection between the plate legs
3
,
4
,
6
to
9
was carried out, it is possible for the plate legs
6
to
9
to be separated again, and the printing plate
5
,
10
can be transferred again into the flat state.
Instead of the printing plate
1
,
5
,
10
with its respective plate legs
2
,
3
firmly connected to each other, the plate cylinder
14
may also be fitted with a truly sleeve-like printing plate, for example, a sleeve butt-welded from sheet metal, a seamed or seamless sleeve which has been produced by electroplating. The latter sleeves are particularly suitable as printing plates which can be erased and can have a new image set for offset printing, if they are produced from nickel or a nickel alloy, while the printing plates
1
,
5
,
10
advantageously produced from aluminium according to
FIGS. 1
to
3
are not erasable. However, their production from sheet metal made of a nickel alloy is also possible here, and this then provides them with the ability to be erased and have a new image set. The setting of the images on the printing plates
1
,
5
,
10
can be carried out when the plates are clamped onto the plate cylinder
14
or outside the printing machine. This being advantageously carried out in the latter case when the printing plate is flat, for example by means of copying.
The previous exemplary embodiments and those still to follow are treated with reference to printing plates for offset printing. However, the application of the invention to printing plates for other printing processes, for example for gravure printing, is also possible.
FIG. 5
shows, in section, part of a parent cylinder
20
having a printing plate
21
laid on it. The leading
22
and trailing
23
legs of the plate
21
having been inserted loosely into a cylinder channel
24
running axially. An adhesive tape
25
is stuck onto the circumferential regions of the printing plate
21
laid on in this way, on either side of the cylinder channel
24
, that is to say in the non-printing region. The printing plate
21
prepared in this way and held in the circular shape by the adhesive tape
25
is now pushed off the parent cylinder
20
and pushed onto an overhung plate cylinder
26
, which has clamping elements
28
for the leading
22
and trailing
23
plate legs in a cylinder channel
27
. For the purpose of simplification, the item numbers for the elements of the plate cylinder
26
have also been indicated, placed in brackets, on the parent cylinder
20
, and the clamping elements
28
have been drawn with thin lines. After the printing plate
21
has been pushed onto the plate cylinder
26
, the adhesive tape
25
is removed and the printing plate
21
is clamped by means of the clamping elements
28
. The parent cylinder
20
is advantageously oversized by comparison with the plate cylinder
26
as a result of which blow holes
19
and therefore blown-air support during the operation of pushing the printing plate
21
onto the plate cylinder
26
can be dispensed with. The application of the adhesive tape
25
does not need to be air-tight either, therefore the latter does not need to be applied continuously over the entire width of the printing plate
21
. For the purpose of disassembly, the printing plate
21
can be axially pushed off the plate cylinder
26
after the clamping elements
28
have been loosened.
Although not illustrated, the cylinder channel of a parent cylinder and the bent-over legs of a printing plate can also be configured such that the legs, more or less rest on each other, and have space in the cylinder channel. In this case, a low-viscosity adhesive can be introduced between the adjacent faces of the legs of the plate. The further handling of the flat printing plate shaped into a sleeve in this way is carried out in a manner similar to that shown in FIG.
4
and described in relation to this figure.
FIG. 6
shows part of a parent cylinder
29
having a clamping channel
30
containing two slots
31
,
32
(
FIG. 7
) which are arranged at an acute angle δ with respect to the circumference of the parent cylinder
29
, and are disposed in a V-shape with respect to each other and run towards each other at an angle α in the direction in which the printing plate
33
to be fitted is pushed on (
FIGS. 7
,
8
) The angle δ is advantageously chosen to be in the range from 0.1 to 0.2 degrees. The angle α between the slots
31
,
32
is about 70 to 90 degrees.
Referring to
FIG. 7
, the leading and trailing legs of the printing plate
33
are inserted into the respective slots
31
and
32
, and the printing plate
33
is axially pushed onto the parent cylinder
29
. The printing plate brought into the circular shape in this way is then drawn off the parent cylinder
29
by means of an apparatus and is pushed onto an overhung plate cylinder
29
.
1
(which is not illustrated since it resembles the parent cylinder
29
), in a manner analogous to the parent cylinder
29
. The plate cylinder
29
.
1
contains a clamping channel
30
.
1
with slots
31
.
1
,
32
.
1
running towards one another in the insertion direction. The item numbers of the plate cylinder
29
.
1
have also been applied to the parent cylinder in
FIG. 7
, but placed in brackets.
The apparatus (
FIG. 9
) contains a plurality of suction bars
37
arranged on a holder
36
such that with appropriate handling of the holder
36
, the suction bars are placed longitudinally on the parent cylinder
29
, and distributed around the printing plate
33
on the parent cylinder
29
. In this position, the suction bars
37
are connected to a vacuum source and enter into vacuum contact with the printing plate
33
. By means of appropriate handling of the holder
36
, the printing plate is now drawn off the parent cylinder
29
and pushed onto the overhung plate cylinder
29
.
1
from the free side of the latter. In the process, the printing plate
33
maintains its circular shape as a result of appropriate arrangement of the suction bars
37
on the holder
36
. The parent cylinder
29
is advantageously slightly undersized with respect to the plate cylinder
29
.
1
. The necessary tension for the printing plate
33
is then achieved as it is being pushed onto the plate cylinder
29
.
1
. The operation can also be carried out, as described in earlier examples, with air assistance. For this purpose, the plate cylinder has blown-air openings on the circumference. For the purpose of disassembly, the printing plate
33
is gripped by the suction bars
37
and axially drawn off the plate cylinder
29
.
1
. Although not illustrated, the ends on both sides of the clamping channel
30
of the printing plate
33
on the parent cylinder
29
can also be connected using adhesive tape (analogous to FIG.
5
). The printing plate
33
can then be pushed off the parent cylinder
29
and pushed onto the plate cylinder
29
.
1
.
FIG. 10
shows an apparatus for bending over the edges of the leading
34
and trailing
35
plate legs of the printing plate
33
according to the preceding exemplary embodiment. For this purpose, the printing plate
33
is wound around a cylinder
38
whose diameter is greater than that of the parent cylinder
29
. The cylinder
38
bears two grooves
39
,
40
which run in the axial direction and run towards each other at the angle δ at which the slots
31
,
32
of the plate cylinder
29
.
1
are also inclined. The ends of the printing plate
33
placed on in this way are then pressed into the grooves
39
,
40
by means of a bar
41
and are bent over, forming the plate legs
34
,
35
.
FIG. 11
shows a parent cylinder
42
which, in a cylinder channel
43
, has a clamping device which contains, for example, a leading channel edge
44
and a clamping spindle
45
. The leading plate leg
47
of the printing plate
46
is hooked into the leading channel edge
44
of the parent cylinder
42
and wound around the latter. The trailing plate
48
is then inserted into a slot in the clamping spindle
45
(not shown). The parent cylinder
42
is then attached at the end to the free end of the overhung plate cylinder
49
(the overhung mounting is illustrated schematically by a hatched frame at the mounting side of the plate cylinder
49
). The plate cylinder
49
has an identical clamping device to that of the parent cylinder
42
, having a leading channel edge
44
.
1
and a clamping spindle
45
.
1
in a cylinder channel
43
.
1
. When the parent cylinder
42
is fitted to the plate cylinder
49
, the clamping devices, that is to say the leading channel edges
44
and
44
.
1
and the clamping spindles
45
and
45
.
1
, are brought into alignment. The parent cylinder
42
can be held on the plate cylinder
49
, for example, by means of magnetic force or a closure device.
For easier handling, the parent cylinder
42
can be of lightweight design, or else can be brought up to the plate cylinder
49
by an apparatus. The printing plate
46
is pushed onto the plate cylinder
49
from the attached parent cylinder
42
, advantageously with the aid of a sliding ring
50
. In the process, the leading plate leg
47
is pushed onto the leading channel edge
44
.
1
, and the trailing plate leg
48
is pushed into the slot in the clamping spindle
45
.
1
. The printing plate
46
positioned on the plate cylinder
49
can then be clamped by operating the clamping spindle
45
.
1
. Disassembly of the printing plate
46
is carried out after the clamping spindles
45
.
1
have been loosened by axially pushing the printing plate
46
off the plate cylinder
49
.
In all the applications, the plate cylinders
24
,
26
,
29
.
1
,
49
can advantageously have a stop which limits the amount to which the printing plate
1
,
5
,
10
,
21
,
33
,
46
is laterally pushed on, and thus brings the printing plate into side register as it is pushed on.
The invention is not limited by the embodiments described above which are presented as examples only but can be modified in various ways within the scope of protection defind by the appended patent claims.
Claims
- 1. A method for fitting a flat offset printing plate having a leading and a trailing plate leg to an overhung plate cylinder of a rotary printing machine comprising the steps of:fitting the printing plate to a parent cylinder by inserting the leading and trailing legs into a cylinder channel running axially in a circumference of the parent cylinder; fixing the leading and trailing legs of the printing plate in the cylinder channel with regard to positions they have assumed in relation to each other; removing the printing plate from the parent cylinder in the axial direction; axially pushing the printing plate onto the plate cylinder from a free end of the plate cylinder; clamping the printing plate on the plate cylinder; and providing said plate cylinder with two slots arranged at an acute angle to the circumference of the plate cylinder, said slots being disposed in a V-shape with respect to each other and running toward each other at an angle in an insertion direction, said leading and trailing legs being pushed into said slots.
- 2. A method for fitting a flat offset printing plate having a leading and a trailing plate leg to an overhung plate cylinder of a rotary printing machine comprising the steps of:fitting the printing plate to a parent cylinder by inserting the leading and trailing legs into a cylinder channel running axially in a circumference of the parent cylinder; fixing the leading and trailing legs of the printing plate in the cylinder channel with regard to positions they have assumed in relation to each other; providing suction bars around the printing plate on the parent cylinder; bringing the suction bars into vacuum contact with the printing plate; and drawing the printing plate off the parent cylinder and pushing the printing plate onto the plate cylinder using said suction bars; clamping the printing plate on the plate cylinder; and providing said plate cylinder with two slots arranged at an acute angle to the circumference of the plate cylinder, said slots being disposed in a V-shape with respect to each other and running toward each other at an angle in an insertion direction, said leading and trailing legs being pushed into said slots.
- 3. An overhung plate cylinder of a rotary printing machine and an apparatus for fitting a flat offset printing plate having leading and trailing legs to the overhung plate cylinder, said apparatus comprising:a parent cylinder for receiving the printing plate in a substantially cylindrical shape; a clamping device disposed in said parent cylinder for maintaining said printing plate in the cylindrical shape; and means for displacing the printing plate from the parent cylinder and onto the plate cylinder while maintaining the clamped cylindrical shape, wherein said parent cylinder further comprises a circumference, two slots arranged in an axial direction at an acute angle with the circumference and being disposed in a V-shape with respect to each other and running toward each other in an insertion direction, the leading and trailing legs of the printing plate adapted to be pushed into said slots, wherein said plate cylinder further comprises slots corresponding to said parent cylinder slots; said means for displacing further comprising: a plurality of suction bars extending in a longitudinal direction of said parent cylinder and positioned so as to be distributed around the printing plate on the parent cylinder; a holder for fastening said plurality of suction bars in place, wherein the printing plate is adapted to be axially drawn off said parent cylinder by said plurality of suction bars and pushed onto the plate cylinder, the leading and trailing legs adapted to be pushed from the parent cylinder slots into the plate cylinder slots.
- 4. The apparatus in accordance with claim 3, wherein said clamping device of said parent cylinder enables loose clamping of the printing plate around the parent cylinder, and the plate cylinder comprises a plate cylinder clamping device, wherein a free end of said parent cylinder is attached to a free end of the plate cylinder such that said parent cylinder clamping device is aligned with said plate cylinder clamping device, and wherein the printing plate is adapted to be axially pushed off said parent cylinder out of the parent cylinder clamping device and onto the plate cylinder and into the plate cylinder clamping device.
- 5. A device for attaching a flexible printing form on a form cylinder of a rotary printing machine, the device comprising a cylinder body and axially running slit-shaped canals in the outer surface of the cylinder body in which folded ends of the printing form are adapted to be axially slidably inserted in an insertion direction, the two slit-shaped canals being disposed in a V-shape with respect to each other and running toward each other in the insertion direction, wherein the ends of the printing plate are adapted to be axially pushed in the slit-shaped canals.
- 6. The device of claim 5, wherein said two slit-shaped canals run toward each other at an angle within the range of 0.1 to 0.2 degrees.
- 7. The device of claim 5, wherein said two slit-shaped canals are arranged in a V-shape at an angle within the range of 70 to 90 degrees from each other.
Priority Claims (1)
Number |
Date |
Country |
Kind |
198 44 560 |
Sep 1998 |
DE |
|
US Referenced Citations (13)
Foreign Referenced Citations (12)
Number |
Date |
Country |
1 960 635 |
Jun 1971 |
DE |
4315909 |
Dec 1993 |
DE |
43 15 996 |
Aug 1994 |
DE |
43 23 750 |
Jan 1995 |
DE |
4404758 |
Aug 1995 |
DE |
19801689 |
Aug 1998 |
DE |
0 812 686 |
Jun 1997 |
EP |
0812686 |
Dec 1997 |
EP |
6-328657 |
Nov 1994 |
JP |
7-68736 |
Mar 1995 |
JP |
7-195668 |
Aug 1995 |
JP |
10-52907 |
Feb 1998 |
JP |