1. Field of the Invention
This invention is generally related to apparatus and method for automatically and continuously drilling, punching, perforating or otherwise producing openings of selected diameter and spacing in polymeric pipe or tube material such as used in underground drainage or air conditioning systems; and more particularly to a method and apparatus wherein a drill head receives an unperforated length of tubing and the drill head and tubing move in synchronization with one another between a tube receiving and tube discharging station during which time drills in the drill head are actuated to form openings in the length of tubing, whereupon the perforated length of tubing is discharged and the drill head returned to receive the next succeeding length of tubing.
2. Related Art
Apparatus for drilling, punching, perforating, or otherwise providing holes or openings of predetermined diameter and spacing in a workpiece are known. Orth U.S. Pat. Nos. 1,1044,564 and 1,101,879 disclose an apparatus wherein drill carriers for boring nail openings in the edge of flooring material are positioned along an oval conveyor belt. The drill carrier and work piece move together in unison as a result of spurs or dogs associated with the drill spindles being rotated by the advancing belt into gripping engagement with the flooring material.
Palmer U.S. Pat. No. 4,898,501 discloses apparatus wherein a continuous length of elastomeric gasket stock is brought into tangential engagement with the outer circumference of a drill wheel. As the stock is advanced, the wheel is rotated and radially arranged drilling units in the wheel are rotated into register with the stock and the stock drilled.
Apparatus for perforating axial sections of corrugated tubing is disclosed in U.S. Pat. No. 3,910,713 (Maroschak); and U.S. Pat. No. 4,219,293 (Licht). In each, and in a manner similar to Palmer, the corrugated tube section is positioned to be tangential to the outer circumference of a radially toothed drive wheel and radial teeth in the wheel engaging with corrugations in the tube section. As the wheel is rotated, the teeth engage with successive of the corrugations, causing the tube section to move and successive radially arranged drill units in the wheel to rotate into register with and drill the tube section.
U.S. Pat. Nos. 5,572,917; 5,385,073; 5,381,711; and 5,957,020, each issuing Truemner et al., disclose apparatus for perforating corrugated tubing, which apparatus includes an array of multiple feeder-cutter wheels that operate to drive tubing through the apparatus and concurrently perforate the tubing in the valley of its corrugations.
While believed suitable for their intended purposes, the apparatus disclosed herein above have disadvantages, such as being complex, expensive, not dependable, and possibly not capable of being modified to produce multiple openings in smooth-walled tubing, in a continuous, automatic manner, whether the tubing is single or multi-walled.
Heretofore the forming of multiple and/or uniform openings in both smooth-walled and multiple walled corrugated tubing has presented problems. The reason for this is believed to be that as the tube section is moved past a succession of drill spindles, the openings are not drilled exactly in synchronous relation to one another, thereby leading to splitting of the tube and possibly tool breakage. As a result, the part may have to be scrapped, the tool replaced and the production stopped.
This invention is concerned with apparatus for perforating tubing, which tubing is advantageously used as underground drainage piping, which piping requires openings or perforations along its length to enable water to operatively percolate into the piping through the perforations therein for drainage therealong. One skilled in the art would appreciate that selectively perforated tubing is desirable in other applications such as in ducts used in heater/defroster air conditioning systems.
In particular, according to the invention herein, there is provided apparatus that is relatively simple, operable on tubing which is axially elongated, smooth-walled and corrugated in cross-section, and single or multi-walled, and provides at least one and preferably an array of holes, openings, perforations, slots and the like of predetermined size and relationship along the tube length of and through both the peaks and the valleys of the corrugated cross-section. Such tubing may be of blow-moldable or vacuum formable materials, such as polyethylene, HDPE, polyvinyl chloride, polypropylene, nylon, or Teflon®.
It is further proposed herein that the apparatus according to the invention herein form the perforations in such tubing by receiving the unperforated tubing after its formation in, for example, a blow-molding apparatus, in which the perforation or opening forming tool is engaged with the wall (or walls) of the tubing to form the requisite opening.
Additionally, the apparatus according to the present invention desirably presents the perforated section of tubing to a cutter or tube severing apparatus, such as a flying ram, in which a cutter or like blade element is brought into engagement with the wall (or walls) of the tubing to sever the perforated end portion of the tubing from the extruded tubing presented to the apparatus.
According to the present invention there is provided apparatus for automatically and continuously producing openings of selected diameter and spacing in polymeric tube material such as used in underground drainage or air conditioning systems, the apparatus comprising:
According to the invention, the drill head is mounted on a support frame for slidable movement between the tube receiving and tube discharging stations, the actuatable tool comprises a linear array of actuatable drill bits each for forming at least one opening in the wall of the tubing, and the first means comprises a threaded shaft and screw nut, the shaft being mounted to the drill head for rotation relative thereto and the screw nut extending from the frame and threadably engaged with the thread on the shaft, wherein rotation of the threaded shaft is transmitted to the nut and the drill head is axially advanced away from or towards the inlet station, depending on the sense of shaft rotation.
Desirably, the apparatus for automatically and continuously producing openings further comprises:
According to this invention, the second means is an extruder which forms and feeds tubing material to the drill head, and the second means is at least one cutter mounted in the path of and intersects the tubing, the cutter moving in a plane substantially at right angles to the axial path of the tubing for intermittent intersection of the tubing by the cutter.
The present invention is also concerned with a method of perforating tubing, and it is a primary object of a further aspect of the invention to provide such a method.
According to this further aspect of the present invention there is provided a method of perforating tubing, the steps of the method comprising sidably mounting a drill head for reciprocating movement on a support frame, the drill head having at least one drill for forming an opening in the wall of the tubing, advancing the tubing along an axial path and into the drill head, and simultaneously advancing both the drill head and the tubing material at the same speed without clamping the tubing and also actuating the drill and forming an opening in the pipe, and discharging the perforated tube portion and returning the drill head to the next succeeding section of unperforated tubing and repeating the process.
Further, the steps of the method include feeding the tubing to the drill head from an extruder, and feeding and severing the perforated tubing from the extruded tubing being advanced to the drill head.
According to this invention, the process automatically operates to form, feed, and intermittently sever lengths of polymeric tubing in a continuous operation. In the first aspect, an endless length of corrugated tubing is formed by an extrusion process, such as blow-molding or vacuum forming, fed to the inlet station, and advanced into operative relation with the drill press. After being operated on by the drill head, the perforated length of tubing is positioned at the outlet station and severed. The extruder and severing apparatus are known to those skilled in the art and will not be discussed further.
Importantly, and according to this invention, the carriage and tubing are moved in unison with one another, during which time the drill head drills the holes or openings through the wall(s) of the tubing. In this regard, a first optical encoder or sensor is associated with the extruder and provides a first signal indicative of the speed at which the extruded plastic tubing is being fed to the drill carriage, a second optical encoder or sensor is associated with the drill press and provides a second signal indicative of the speed of the carriage, and a comparator is provided to read and compare the first and second signals and generate a signal to adjust the speed of one or both of the extruder and drill head as needed to ensure that the drill head and tubing are moving at the same, or substantially the same speed.
The comparator is operatively connected to a central server computer and programmed to compare the first and second signals and ensure that the motor operably connected to the ball screw drive shaft rotates the shaft at a rate that forces the drive head to move substantially in unison (i.e., is synchronous) with the tubing supplied to the drill press.
In order that the present invention may be more clearly understood and more readily carried into effect the same will now, by way of example, be more fully described with reference to the accompanying drawings in which:
Referring to the drawings,
As used in the discussion to follow, it is to be understood that the term hollow cylindrical tube material or tubing also refers to piping and like structures that are axially elongated, hollow, thin-walled, and generally cylindrical. Additionally, while described in connection with on-line operations wherein an endless section of hollow tubing is fed to the drill press and then severed into a desired length, the drill press 16 is applicable to off-line operations and the provision of perforations in stick or pre-cut sections of tube stock.
Further, while described as a drill press for providing perforations in cylindrical tubing, it is to be understood that depending on the tool utilized, the tools of the drill press 16 operate to engage the wall of the tube to drill, punch, sever or otherwise provide perforations, openings, holes, slots or like discontinuities through the material of the tube wall.
Turning to
Preferably, the tube material 12 is comprised of a suitable blow-moldable or vacuum formable material, such as polyvinyl chloride, polyethylene, HDPE, polypropylene, nylon, or Teflon®. While shown as being three walled, the tube operated on can be single or double walled.
The drill press 16 herein is adapted to operate on tube wall that is smooth or corrugated, and single or multi walled. Further, the drill press is capable of simultaneously forming a plurality of clean, round holes in either the peaks or the valleys of corrugated tube material.
The cutter member 20 is conventional and is known by one skilled in the art. Illustrative is a flying ram. Although the cutter member 20 will not be described in any great detail, the cutter member includes at least one blade element that is mounted in the path of and intersects the tubing. The cutter blade moves in a plane substantially at right angles to the axial path of the tubing for intermittent intersection of the tubing by the cutter to sever the perforated end portion of the tubing from the unperforated tubing presented to the drill press by the extruder.
Turning to
The drill head 32 includes a pair of axially spaced end walls 34 and 36 and is mounted for horizontal movement relative to the frame 24. The end walls 34 and 36 are generally vertically disposed and each is provided with a respective circular opening 34a and 36a, the openings being substantially of the same diameter, coaxially aligned with one another, and having their respective centers on a common central axis. The end wall openings 34a and 36a are of a diameter slightly greater than, and sufficient to pass, the tubing material, whether fed to the drill head or carriage 32 automatically and/or continuously by the extruder, or otherwise, such as if individually fed.
Preferably and according to this invention, a pair of upper guide plates 38 and a pair of lower guide plates 40 extend horizontally between the end walls 34 and 36 for axially centering, supporting, and guiding the tube material advanced into and through the axial space formed between the end walls of the carriage 32. The guide plates 38 and 40 are generally flat, rectangular, and have, respectively, an elongated edge 38a and 40a, and a pair of spaced axial end faces 38b and 40b. So mounted to the movable drill head 32, the respective guide plates 38 and 40 are disposed generally radially along a respective radius through the central axis. Further, the elongated edges 38a and 40a are disposed in parallel relation to one another and extend along the outer cylindrical surface of an imaginary cylinder, which cylinder has a diameter slightly less than that of the openings 34a and 36a and has an axis that is maintained in parallel, and in some cases concentric, relation with the central axis.
As shown best in
The lower guide plates 40 are disposed at an acute angle to one another and the elongated edges 40a extend upwardly from the frame structure, and towards one another and the central axis. So positioned, the opposite axial end faces 40b have a portion disposed within the openings 34a and 36a. The elongated edges 40a form an axial cradle, or support rails, over which the tube material passes during the perforating process.
Further, tube material of different diameter is centered and constrained for parallel axial movement along the axial path by the provision of adjustment screws 42a and 42b that connect the two spaced end walls 34 and 36 to the two lower guide plates 40. As shown, the adjustment screws 42a and 42b are threadably engageable with one of a plurality of threaded bores (not shown) provided in the opposite axial end faces 40b of each lower guide plate 40. Depending on the threaded bore selected, the guide plates 40 can be moved vertically upwardly (or downwardly) relative to the respective end walls 34 and 36 and the guide plate edges 40a positioned within a respective opening 34a and 36a, whereby to enable tubes of different diameter to be centered relative to the openings when the tubing is disposed between the end walls 34 and 36.
An axially elongated rotatable ball screw or helically threaded shaft 44 is mounted on the support frame 24 for rotation relative thereto and a ball screw nut 46 is fixedly connected to the drill head 32 and threadably engaged with the thread of the ball screw shaft 44. The opposite axial end portions of the threaded shaft 44 are journalled for rotation in a respective bearing support 50 mounted in each endwall 34 and 36.
Threadable engagement between the screw shaft 44 and the screw nut 46 is such that upon rotation of the screw shaft 44, torque is transmitted to the screw nut 46 and the drill head 32 is moved between the opposite end stations 26 and 28 of the frame 24. Rotation of the screw shaft 44 in one direction (e.g., clockwise) operates on the screw nut 46 to axially drive and move the drill head 32 in a first direction, such as from the inlet station 26 to the outlet station 28. Rotation of the screw shaft 44 in a second and opposite direction (e.g., reversed and rotated in a counterclockwise direction) operates to drive the drill head 32 in a second and opposite direction, such as from the outlet station 28 back to the inlet station 26, whereby to repeat the process.
A drive motor 48 has a mounting flange 48a, fixedly connected to the end wall 34, and a drive shaft (not shown). The motor drive shaft is operably connected in driving relation to one end portion of the ball screw shaft 44 (e.g., the end journalled in the bearing support 50 mounted in the end wall 34) whereby to rotate the ball screw shaft and axially reciprocate the drill head 32.
Preferably, and according to this invention, a flexible cylindrical coupling 52 is used to connect the motor drive shaft to the ball screw shaft 44. Desirably, such connection permits a small amount of misalignment between the axes of the motor drive shaft and the ball screw shaft, such misalignment possibly leading to destruction of the drive motor 48.
In the partial disassembly illustrated in
Importantly, the ball screw and drive motor arrangement provides a low wear drive mechanism, and permits extremely precise positioning of the carriage relative to the frame, and provides excellent speed capabilities. For example, in an illustrative embodiment, the ball screw and motor drive arrangement was able to move the carriage in side-by-side relation with and simultaneously perforate tube material moving at over 110 ft/min.
Preferably, due to the high speeds of production and for safety considerations, a brake motor is connected to the ball screw to stop rotation of the ball screw and advance of the drill head. The brake motor is not shown as being conventional and known by one skilled in the art.
Referring to
The arrangement shown illustrates an embodiment for automatically simultaneously drilling 28 holes through the wall of the tube 12. That is, there are two angularly spaced, linearly extending, rows of drill spindles 56, each row including fourteen drill spindles, and each drill spindle including a drill 18. However, depending on the application, the user can increase (or decrease) the number of rows used, or the number of drill spindles per row, or the number of drills 18.
The drill spindles 56 include actuators or air cylinders that are connected to a source of pressurized air (not shown) which when actuated cause the drill spindle to move relative to its cage either in a first direction toward the tube material or in second direction away from the tube material. The drill bits 18 in each respective row are generally coplanar with one another and the planes of each respective row are at an acute angle to a plane angled downwardly towards the ball screw 44. So mounted, each drill bit is generally radially directed and mounted for rotation in the respective drill spindle 56 for rotation about an axis of rotation that is generally radially directed.
Desirably, the carriage or drill head 32 can be retooled very quickly in that the drill bits may be replaced, such as when dull or if broken, or to enable larger and/or smaller diameter holes to be produced. Each drill spindle 56 has a collet 60, which enables the diameter or length of a drill bit 18 to be changed. Advantageously, the compact mounting reduces cost and space requirements.
Each drill spindle 56 further includes a pair of sensors 62 and 64 to indicate whether the spindle is remote to the tube material (i.e., retracted) or inwardly and in position for perforating the tube material, or direct that the spindle position be changed. The sensor information is fed back to the central control system 22 for operation purposes.
As shown in
In one application, a 2 HP AC motor was used to drive the belts 66 and a fan 70 was connected to each pulley. In a typical operation, the drill spindles are driven at about 3,500 rpm and develop considerable heat. The individual fans 70 operate to cool the drive belts 66 during operation to increase the life of the drive belts, as well as to cool the tube material worked on. To further increase the life of the drive belts, the central control system 22 is connected to and programmed to send a control signal to each of the spindle drive motors, which signal operates to pulse the drive motors on and off.
The drill spindles 56 and associated drill bits 18 are adapted to be actuated and driven radially inwardly towards the tube material fed into the carriage by an amount sufficient that each drill bit will engage, be rotatably driven and drilled through the wall of the tube material, and be pulled radially outwardly and away from the tube material. Air actuators, drive motors 68 and associated drill spindles 56 of each row are connected to and controlled by the central control system 22.
Further, as shown in
In operation, the extruder 14 forms and feeds tube material 12 into the carriage or drill head 32 at a predetermined speed. The advancing tube material triggers an optical sensor in the extruder, with further advance starting the motors, triggering an optical encoder. The optical sensor and optical encoder are included in a first assembly 100 that is operatively associated with the extruder 14. The control system program 22 allows a certain amount of tube material to enter and pass through the carriage 32, and then actuates the bail screw drive system to move the carriage.
Importantly and critical to this invention is the fact that the speed of the tube material being fed into the frame and disposed in the carriage and the speed of the carriage both be the same and move at substantially the same rate of speed. The two move together in unison (i.e., synchronized), there is no relative movement between the carriage 32 and the tube material 12 being perforated, and the carriage does not clamp onto the tube material.
Substantially simultaneously with this synchronous movement of the tube material 12 and drill head 32, the control system 32 transmits an actuation signal to the drill spindles 56, thereby synchronously actuating the drive belts 66, the drill bits 18 and the air cylinders. The respective air cylinders force the drill spindles 56 and their associated rotating drill bits 18 radially inwardly towards the tube material, ultimately driving the rotating drill bits through the wall of the tube material. The upper and lower guide plates 38 and 40 operate to center the tube portion between the end walls 34 and 36 relative to the drill head 32 during the drilling operation. Thereafter, the control system 22 transmits a de-actuating signal to the drill spindles 56, causing the drive motors 68 to stop, the drill bits 18 and the drive belts to stop rotating, and the drill spindles to retract.
The central control system 22 constantly “tracks” the position of the tube material and the “perforated” portion of the tube material in relation to the frame and the carriage with the drill spindles 56. Approximately at the time the drill spindles have been retracted, the control system sends a signal to the cutter directing that the tube be severed proximate to the trailing end wall 36 of the carriage, and a signal to the drive motor 48 causing the ball screw 44 to reverse rotation, the carriage 32 to return to the inlet station 26 to be placed in superposed relation about the next succeeding section of unperforated tube material, and the perforating process is then repeated.
The central control system 22 includes a comparator circuit 102 that is constantly reading a signal indicative of the speed of the tube material supplied by the extruder 14 and a signal indicative of the speed of the ball screw 44 from a second assembly 101 operatively associated with the drill head 32 and including an optical encoder and a sensor, ensuring that the two speeds are substantially identical and that the drill head and tube material are synchronized to move in unison during the perforating operation.
The central control system 22 is programmed for a desired operation and is connected to position indicators associated with the drill head to receive position signals from the drill head whereby to track and compare the actual position if the drill head with a desired position. Data is transmitted from the control system to the drill head and, motors or drive belts to control the operation of the apparatus, depending on the rate of tube material fed from the extruder.
The tube 12 from the extruder 14 is automatically, continuously advanced, perforated by the drill head moving in unison with the advancing tube end portion, severed from the advancing tube to form a tube section, whereupon the drill head is returned to be brought into register with the advancing tube from the extruder to start a new cycle.
In the embodiment illustrated in
Depending on the application, the following could be changed (i.e., increased or decreased) from that illustrated: the number of rows of drill holes, the number of drills and/or drill holes per row, the diameter of each drill hole, the spacing or distance between drill holes, or the spacing or distance of the last drilled hole in any row from the opposite end of the tube section. Additionally, by changing the inlet and outlet stations of the frame, the diameter of the tubing could be changed.
The apparatus herein discharges tube sections with accurately controlled lengths and equally spaced hole center distances at extremely high speed from the drill head. Because the drill bits move horizontally in unison with the tube fed thereinto by the extruder, the holes thus drilled through the tube wall are clean, round and very smooth.
Although the present invention has been described herein with respect to a specific embodiment thereof, it will be understood that the foregoing description is intended to be illustrative. Many modifications of the present invention will occur to those skilled in the art. All such modifications, which fall within the scope of the appended claims, are intended to be within the scope and spirit of the present invention.
This is a Completion Patent Application of co-pending U.S. Provisional Patent Application Ser. No. 60/316,893, filed on Aug. 31, 2001, for “Method and Apparatus For Forming Openings in Polymeric Tubing”, the disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1044564 | Orth | Nov 1912 | A |
1101879 | Orth | Jun 1914 | A |
3877831 | Maroschak | Apr 1975 | A |
3899265 | Lang | Aug 1975 | A |
3901713 | Yamasue et al. | Aug 1975 | A |
3957386 | Lupke | May 1976 | A |
4219293 | Licht | Aug 1980 | A |
4898501 | Palmer | Feb 1990 | A |
5381711 | Truemner et al. | Jan 1995 | A |
5385073 | Truemner et al. | Jan 1995 | A |
5572917 | Truemner et al. | Nov 1996 | A |
5713114 | Mosiewicz | Feb 1998 | A |
5909908 | Furuse | Jun 1999 | A |
5957020 | Truemner et al. | Sep 1999 | A |
6061905 | Logic | May 2000 | A |
Number | Date | Country |
---|---|---|
2169761 | Sep 1973 | FR |
Number | Date | Country | |
---|---|---|---|
20040011174 A1 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
60316893 | Aug 2001 | US |