This invention relates generally to electrical switchgear and more particularly, to a method and apparatus for facilitating monitoring and protecting a centrally controlled power distribution system.
In an industrial power distribution system, power generated by a power generation company may be supplied to an industrial or commercial facility wherein the power may be distributed throughout the industrial or commercial facility to various equipment such as, for example, motors, welding machinery, computers, heaters, lighting, and other electrical equipment. At least some known power distribution systems include switchgear which facilitates dividing the power into branch circuits which supply power to various portions of the industrial facility. Circuit breakers are provided in each branch circuit to facilitate protecting equipment within the branch circuit. Additionally, circuit breakers in each branch circuit can facilitate minimizing equipment failures since specific loads may be energized or de-energized without affecting other loads, thus creating increased efficiencies, and reduced operating and manufacturing costs. Similar switchgear may also be used within an electric utility transmission system and a plurality of distribution substations, although the switching operations used may be more complex.
Switchgear typically include multiple devices, other than the power distribution system components, to facilitate providing protection, monitoring, and control of the power distribution system components. For example, at least some known breakers include a plurality of shunt trip circuits, under-voltage relays, trip units, and a plurality of auxiliary switches that close the breaker in the event of an undesired interruption or fluctuation in the power supplied to the power distribution components. Additionally, at least one known power distribution system also includes a monitor device that monitors a performance of the power distribution system, a control device that controls an operation of the power distribution system, and a protection device that initiates a protective response when the protection device is activated.
In at least some other known power distribution systems, a monitor and control system operates independently of the protective system. For example, a protective device may de-energize a portion of the power distribution system based on its own predetermined operating limits, without the monitoring devices recording the event. The failure of the monitoring system to record the system shutdown may mislead an operator to believe that an over-current condition has not occurred within the power distribution system, and as such, a proper corrective action may not be initiated by the operator. Additionally, a protective device, i.e. a circuit breaker, may open because of an over-current condition in the power distribution system, but the control system may interpret the over-current condition as a loss of power from the power source, rather than a fault condition. As such, the control logic may undesirably attempt to connect the faulted circuit to an alternate source, thereby restoring the over-current condition. In addition to the potential increase in operational defects which may occur using such devices, the use of multiple devices and interconnecting wiring associated with the devices may cause an increase in equipment size, an increase in the complexity of wiring the devices, and/or an increase in a quantity of devices installed.
In one aspect, a method for monitoring a centrally controlled power distribution system is provided. The power distribution system includes a plurality of circuit breakers, each circuit breaker communicatively coupled to a single node electronics unit, each node electronics unit located remotely from its respective circuit breaker, and each node electronics unit communicatively coupled to at least one central control processing unit through at least one digital network. The method includes sampling an electrical current flow in the centrally controlled power distribution system proximate each circuit breaker in the centrally controlled power distribution system wherein said sampling is time synchronized by the central control processing unit, transmitting the sampled current signals associated with each circuit breaker to a central control processing unit, determining a ground fault presence and location in the power distribution system based on the current signals received from all of the node electronics units in the power distribution system; and isolating the determined ground fault by opening circuit breakers supplying power to the fault.
In another aspect, an apparatus for monitoring a centrally controlled power distribution system is provided. The system includes a plurality of circuit breakers, each circuit breaker communicatively coupled to a single node electronics unit, each node electronics unit located remotely from its respective circuit breaker, and each node electronics unit communicatively coupled to at least one central control processing unit through at least one digital network. The apparatus is configured to sample an electrical current flow in said centrally controlled power distribution system proximate each circuit breaker in said centrally controlled power distribution system wherein each sample is time synchronized by said central control processing unit, transmit said sampled current signals associated with each circuit breaker to a central control processing unit, determine a ground fault presence and location in said power distribution system based on said current signals received from all of said node electronics units in said power distribution system, and isolate said determined ground fault by opening circuit breakers supplying power to said fault.
In use, power is supplied to a main feed system 12, i.e. a switchboard for example, from a source (not shown) such as, an electric generator driven by a prime mover locally, or an electric utility source from an electrical substation. The prime mover may be powered from, for example, but not limited to, a turbine, or an internal combustion engine. Power supplied to main feed system 12 is divided into a plurality of branch circuits by a plurality of busbars configured to route the power from a branch feed breaker and a bus-tie breaker to a plurality of load circuit breakers 16 which supply power to various loads 18 in the industrial facility. In addition, circuit breakers 16 are provided in each branch circuit to facilitate protecting equipment, i.e. loads 18, connected within the respective branch circuit. Additionally, circuit breakers 16 facilitate minimizing equipment failures since specific loads 18 may be energized or de-energized without affecting other loads 18, thus creating increased efficiencies, and reduced operating and manufacturing costs.
Power distribution system 10 includes a circuit breaker control protection system 19 that includes a plurality of node electronics units 20 that are each communicatively coupled to a digital network 22 via a network interface controller switch 23 such as, but not limited to, an Ethernet switch 23. Circuit breaker control protection system 19 also includes at least one central control processing unit (CCPU) 24 that is communicatively coupled to digital network 22. In use, each respective node electronic unit 20 is electrically coupled to a respective circuit breaker 16, such that CCPU 24 is communicatively coupled to each circuit breaker 16 through digital network 22 and through an associated node electronic unit 20.
In one embodiment, digital network 22 includes, for example, at least one of a local area network (LAN) or a wide area network (WAN), dial-in-connections, cable modems, and special high-speed ISDN lines. Digital network 22 also includes any device capable of interconnecting to the Internet including a web-based phone, personal digital assistant (PDA), or other web-based connectable equipment.
In one embodiment, CCPU 24 is a computer and includes a device 26, for example, a floppy disk drive or CD-ROM drive, to facilitate reading instructions and/or data from a computer-readable medium 28, such as a floppy disk or CD-ROM. In another embodiment, CCPU 24 executes instructions stored in firmware (not shown). CCPU 24 is programmed to perform functions described herein, but other programmable circuits can likewise be programmed. Accordingly, as used herein, the term computer is not limited to just those integrated circuits referred to in the art as computers, but broadly refers to computers, processors, microcontrollers, microcomputers, programmable logic controllers, application specific integrated circuits, and other programmable circuits. Additionally, although described in a power distribution setting, it is contemplated that the benefits of the invention accrue to all electrical distribution systems including industrial systems such as, for example, but not limited to, an electrical distribution system installed in an office building.
Additionally, in an exemplary embodiment, internal bus 50 includes an address bus, a data bus, and a control bus. In use, the address bus is configured to enable CPU 48 to address a plurality of internal memory locations or an input/output port, such as, but not limited to communications interface 52 through communications processor 54, and a gateway interface 57, through a gateway processor 58. The data bus is configured to transmit instructions and/or data between CPU 48 and at least one input/output, and the control bus is configured to transmit signals between the plurality of devices to facilitate ensuring that the devices are operating in synchronization. In the exemplary embodiment, internal bus 50 is a bi-directional bus such that signals can be transmitted in either direction on internal bus 50. CCPU 24 also includes at least one storage device 60 configured to store a plurality of information transmitted via internal bus 50.
In use, gateway interface 57 communicates to a remote workstation (not shown) via an Internet link 62 or an Intranet 62. In the exemplary embodiment, the remote workstation is a personal computer including a web browser. Although a single workstation is described, such functions as described herein can be performed at one of many personal computers coupled to gateway interface 57. For example, gateway interface 57 may be communicatively coupled to various individuals, including local operators and to third parties, e.g., remote system operators via an ISP Internet connection. The communication in the example embodiment is illustrated as being performed via the Internet, however, any other wide area network (WAN) type communication can be utilized in other embodiments, i.e., the systems and processes are not limited to being practiced via the Internet. In one embodiment, information is received at gateway interface 57 and transmitted to node electronic unit 20 via CCPU 24 and digital network 22. In another embodiment, information sent from node electronic unit 24 is received at communication interface 52 and transmitted to Internet 62 via gateway interface 57.
In one embodiment, node electronics unit 20 receives signals input from a plurality of devices, such as, but not limited to, a current sensor 82, and a voltage sensor 84, and/or circuit breaker 16. A plurality of inputs from the circuit breaker 16 are provided as status input 86, and these inputs may include inputs, such as, but not limited to, an auxiliary switch status, and a spring charge switch status. Additionally, node electronics unit 20 sends status input 86 to at least circuit breaker 16 in order to control one or more states of the circuit breaker 16.
In use, the status inputs 86 and signals received from current transformer 82, and potential transformer 84 are transmitted to CCPU 24 via node electronics unit 20, and digital network 22. Node electronics unit 20 receives the status inputs 86, current sensor 82, and voltage sensor 84, and packages a digital message that includes the input and additional data relating to a health and status of node electronics unit 20. The health and status data may include information based on problems found by internal diagnostic routines and a status of self checking routines that run locally in node electronics unit 20. CCPU 24 processes digital message 85 using one or more protection algorithms, monitoring algorithms, and any combination thereof. In response to the processing of digital message 85, CCPU 24 sends digital message 85 back to node electronics unit 20 via digital network 22. In the exemplary embodiment, node electronics unit 20 actuates circuit breaker 16 in response to the signal received from CCPU 24. In one embodiment, circuit breaker 16 is actuated in response to commands sent only by CCPU 24, i.e., circuit breaker 16 is not controlled locally by node 20, but rather is operated remotely from CCPU 24 based on inputs received from current sensor 82, voltage sensor 84, and status inputs 86 received from node electronics unit 20 over network 22.
In use, actuation signals from node electronics unit 20 are transmitted to circuit breaker 16 to actuate a plurality of functions in circuit breaker 16, such as, but not limited to, operating a trip coil 100, operating a close coil 102, and affecting a circuit breaker lockout feature. An auxiliary switch 104 and operating spring charge switch 106 provide a status indication of circuit breaker parameters to node electronics unit 20. Motor 108 is configured to recharge an operating spring, configured as a close spring (not shown) after circuit breaker 16 closes. It should be appreciated that the motor 108 can include, for example, a spring charge switch, a solenoid or any other electromechanical device capable of recharging a trip spring. To close circuit breaker 16, a close coil 102 is energized by a close signal from actuation power module (not shown). Close coil 102 actuates a closing mechanism (not shown) that couples at least one movable electrical contact (not shown) to a corresponding fixed electrical contact (not shown). The closing mechanism of circuit breaker 16 latches in a closed position such that when close coil 102 is de-energized, circuit breaker 16 remains closed. When breaker 16 closes, an “a” contact of auxiliary switch 104 also closes and a “b” contact of auxiliary switch 104 opens. The position of the “a” and “b” contacts is sensed by node electronics unit 20. To open circuit breaker 16, node electronics unit 20 energizes trip coil (TC) 100. TC 100 acts directly on circuit breaker 16 to release the latching mechanism that holds circuit breaker 16 closed. When the latching mechanism is released, circuit breaker 16 will open, opening the “a” contact and closing the “b” contact of auxiliary switch 104. Trip coil 100 is then de-energized by node electronics unit 20. After breaker 16 opens, with the close spring recharged by motor 108, circuit breaker 16 is prepared for a next operating cycle. In the exemplary embodiment, each node electronics unit 20 is coupled to circuit breaker 16 in a one-to-one correspondence. For example, each node electronics unit 20 communicates directly with only one circuit breaker 16. In an alternative embodiment, node electronics unit 20 may communicate with a plurality of circuit breakers 16.
Sources 612, 614 and 616 are shown as each comprising a transformer secondary having three phase windings connected in wye configuration with their neutral points solidly grounded at 632, 634, and 636, respectively. The neutral point of source 612 is connected to a neutral conductor 642, while the neutral point of source 614 is connected to a neutral conductor 644 and the neutral point of source 616 is connected to the neutral conductor 646.
In the exemplary embodiment, the ground fault protection circuit is magnetically coupled to the primary circuit and is provided to protect system 10 from ground faults that may occur in the system. For example, if a ground fault occurs on the main bus 602, it is usually necessary to open main circuit breaker 622 and tie circuit breaker 628 to isolate the fault from the rest of the system. Under such circumstances, the remaining circuit breakers 624, 626, and 630 should remain in the position they were in prior to the occurrence of the ground fault to permit uninterrupted power from the sources 614 and 616 to continue over the sound buses 604, 606 and 610.
Similarly, if a ground fault should occur on the main bus 604, main circuit breaker 624 and tie circuit breakers 628 and 630 should be opened to isolate the fault from the remaining buses, while main circuit breakers 622 and 626 should remain closed to maintain power from sources 612 and 616, respectively, to main buses 602 and 606, respectively.
The ground fault tripping function of the main circuit breakers 622, 624 and 626 and the tie circuit breakers 628 and 630 are controlled by commands and action messages received from each CCPU 24 through each circuit breakers respective node electronics unit 20. Each node electronics unit 20 receives a current signal from respective current sensors 652, 654, and 656 monitoring the electrical bus proximate each node electronics unit 20 of respective circuit breakers 622, 624 and 626. All node electronics units 20 transmit the current signals associated with it's respective circuit breakers to all CCPUs 24 via network 23. Each CCPU 24 processes the current data to determine the presence of a ground fault and determines a command and action message that may be transmitted to all node electronics unit 20. Each node electronics unit 20 commands it's respective circuit breaker based on the commands and actions received from CCPUs 24.
The current sensors are responsive to the vector sum of the currents flowing through the primary conductors at the location of the individual sensor. Each of the current sensors consist of four current transformers (not shown) for sensing the current flowing in its associated phase and neutral buses. These current transformers develop current signals representative of the currents flowing in the phase and neutral buses and transmit these signals to their respective node electronics unit 20. CCPU 24 receives the current signals from node electronics unit 20. The current signals are synchronized at node electronics unit 20 such that all current signals received by CCPU 24 are representative of current values on power distribution system 10 buses within a five microsecond window of time. CCPU 24 evaluates phase and vector sums of all phase currents and all ground currents available on power distribution system 10 to determine the presence of a ground fault. Because CCPU 24 is able to examine all phase currents and all ground currents simultaneously CCPU 24 may determine ground faults in a plurality of zones predetermined by a user's requirements. Additionally, a response of CCPU 24 may vary based on changing conditions of power distribution system 10 in response to operator actions and responses to commands and actions that may be developed by CCPU 24 that are independent of a ground fault condition. An effect of circulating neutral currents may be facilitated being eliminated by sampling phase and neutral currents at a plurality of locations. From Kirchhoff's Law, it is known that current flowing into any point in a circuit is equal to the current flowing away from that point. Because CCPU 24 receives current data sampled substantially simultaneously, for example, samples taken within five microseconds of each, currents sampled from multiple locations in power distribution system 10 may be summed to facilitate errors that may be introduced by circulating neutral currents. For example, current values from a first set of sensors may be summed to determine a presence of a ground fault. Summing current values from a second different set of sensors may confirm the presence of the ground fault, or may call into question the accuracy of the determination made based on the first set of sensors. CCPU 24 is configured to resolve conflicts between current summations from different sets of sensors. The first set of sensors and the second set of sensors may have individual sensors common to each set. The determination made by the second set of sensors facilitates locating the ground fault. Additionally, on-line verification, or double-checking of protective actions may be implemented by sensing ground faults using different sets of sensors monitoring different locations of power distribution system 10. Furthermore, when a current sensor or other component fails, CCPU 24 may use other sensors in a backup determination of the presence and location of a ground fault.
Monitored currents are transmitted 704 from current sensor 652, for example, to an associated node electronics unit 20 and from node electronics unit 20 to CCPU 24 via network 23. CCPU 24 receives monitored currents from all circuit breakers in power distribution system 10 and maintains a global information set that includes, power distribution system 10 state data of which the monitored currents are a portion. From the monitored currents, CCPU 24 determines 706 the presence of a ground fault in power distribution system 10 based on summing currents entering and leaving predetermined nodes in power distribution system 10. If a ground fault is determined based on a first set, or group of sensors, CCPU 24 may double-check the determination by making an alternative determination based on a second set of sensors wherein the first and second sets of sensors are different, although individual sensors in each set may be common.
When a ground fault is determined to be present on power distribution system 10, CCPU 24 determines 708 a zone of protection for the ground fault wherein the system facilitates minimizing the loss of power to power distribution system 10 loads due to the ground fault. CCPU 24 determines a location of the ground fault to a specific bus or plurality of buses. CCPU 24 then determines 710 which circuit breakers to open to isolate the ground fault while minimizing a loss of power to loads. In the exemplary embodiment, CCPU 24 may selectively close circuit breakers to reenergize buses that are deenergized to isolate the ground fault. CCPU 24 will not automatically reenergize a faulted bus.
CCPU 24 determines 712 a command and action message to be sent to node electronics unit 20 to implement the determined fault isolation commands. CCPU 24 transmits 714 the command and action message to all node electronics unit 20 on power distribution system 10. Each node electronics unit 20 receives the message which is multicast, or broadcast to all node electronics unit 20 at the same time. Each message includes commands and actions addressed to each node electronics unit 20. For example, a power distribution system 10 may include ten circuit breakers 16 and ten associated node electronics units 20, therefore each multicast message would include ten individually addressed command and action messages, one for each node electronics unit 20.
Each node electronics unit 20 receives each command and action message and determines 716 an actuation command for its associated circuit breaker 16 based on the received command and action message and transmits the determined actuation command to its associated circuit breaker 16. Circuit breaker 16 operates to open or close as commanded by node electronics unit 20.
The above-described power distribution system network monitoring system is cost-effective and highly reliable. Each system includes at least one central control processing unit (CCPU) and a plurality of node electronics unit communicatively coupled via a high-speed digital network. There may be additional CCPUs and corresponding network backbones coupled in the power distribution system to facilitate meeting a system reliability goal. Each node electronics unit communicates to every CCPU via a digital message packet that facilitates efficient communication while maintaining a system latency requirement. Accordingly, the power distribution system communication system facilitates protection and optimization of power system operation in a cost-effective and reliable manner.
Exemplary embodiments of power distribution system communication system components are described above in detail. The components are not limited to the specific embodiments described herein, but rather, components of each system may be utilized independently and separately from other components described herein. Each power distribution system communication system component can also be used in combination with other power distribution system components.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
This application is related to U.S. patent application Ser. No. 60/359,544 filed on Feb. 25, 2002 for “Integrated Protection, Monitoring, and Control” the content of which is incorporated in its entirety herein by reference. This application is also related to U.S. patent application Ser. No. 60/438,159 filed on Jan. 6, 2003 for “Single Processor Concept for Protection and Control of Circuit Breakers in Low-Voltage Switchgear” the content of which is incorporated in its entirety herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3772505 | Massell | Nov 1973 | A |
3938007 | Boniger et al. | Feb 1976 | A |
3956671 | Nimmersjo | May 1976 | A |
3963964 | Mustaphi | Jun 1976 | A |
4001742 | Jencks et al. | Jan 1977 | A |
4107778 | Nii et al. | Aug 1978 | A |
4245318 | Eckart et al. | Jan 1981 | A |
4291299 | Hinz et al. | Sep 1981 | A |
4301433 | Castonguay et al. | Nov 1981 | A |
4311919 | Nail | Jan 1982 | A |
4415968 | Maeda et al. | Nov 1983 | A |
4423459 | Stich et al. | Dec 1983 | A |
4432031 | Premerlani | Feb 1984 | A |
4455612 | Girgis et al. | Jun 1984 | A |
4468714 | Russell | Aug 1984 | A |
4589074 | Thomas et al. | May 1986 | A |
4623949 | Salowe et al. | Nov 1986 | A |
4631625 | Alexander et al. | Dec 1986 | A |
4642724 | Ruta | Feb 1987 | A |
4652966 | Farag et al. | Mar 1987 | A |
4672501 | Bilac et al. | Jun 1987 | A |
4672555 | Hart et al. | Jun 1987 | A |
4674062 | Premerlani | Jun 1987 | A |
4689712 | Demeyer | Aug 1987 | A |
4709339 | Fernandes | Nov 1987 | A |
4751653 | Junk et al. | Jun 1988 | A |
4752853 | Matsko et al. | Jun 1988 | A |
4754407 | Nolan | Jun 1988 | A |
4777607 | Maury et al. | Oct 1988 | A |
4783748 | Swarztrauber et al. | Nov 1988 | A |
4796027 | Smith-Vaniz | Jan 1989 | A |
4799005 | Fernandes | Jan 1989 | A |
4827369 | Saletta et al. | May 1989 | A |
4833592 | Yamanaka | May 1989 | A |
4849848 | Ishii | Jul 1989 | A |
4855671 | Fernandes | Aug 1989 | A |
4862308 | Udren | Aug 1989 | A |
4964058 | Brown, Jr. | Oct 1990 | A |
4979122 | Davis et al. | Dec 1990 | A |
4983955 | Ham, Jr. et al. | Jan 1991 | A |
4996646 | Farrington | Feb 1991 | A |
5053735 | Ohishi et al. | Oct 1991 | A |
5060166 | Engel et al. | Oct 1991 | A |
5101191 | MacFadyen et al. | Mar 1992 | A |
5113304 | Ozaki et al. | May 1992 | A |
5132867 | Klancher | Jul 1992 | A |
5134691 | Elms | Jul 1992 | A |
5136458 | Durivage, III | Aug 1992 | A |
5162664 | Haun et al. | Nov 1992 | A |
5166887 | Farrington et al. | Nov 1992 | A |
5170310 | Studtmann et al. | Dec 1992 | A |
5170360 | Porter et al. | Dec 1992 | A |
5179376 | Pomatto | Jan 1993 | A |
5181026 | Granville | Jan 1993 | A |
5182547 | Griffith | Jan 1993 | A |
5185705 | Farrington | Feb 1993 | A |
5196831 | Bscheider | Mar 1993 | A |
5214560 | Jensen | May 1993 | A |
5216621 | Dickens | Jun 1993 | A |
5225994 | Arinobu et al. | Jul 1993 | A |
5231565 | Bilas et al. | Jul 1993 | A |
5237511 | Caird et al. | Aug 1993 | A |
5247454 | Farrington et al. | Sep 1993 | A |
5253159 | Bilas et al. | Oct 1993 | A |
5272438 | Stumme | Dec 1993 | A |
5301121 | Garverick et al. | Apr 1994 | A |
5305174 | Morita et al. | Apr 1994 | A |
5311392 | Kinney et al. | May 1994 | A |
5323307 | Wolf et al. | Jun 1994 | A |
5353188 | Hatakeyama | Oct 1994 | A |
5361184 | El-Sharkawi et al. | Nov 1994 | A |
5367427 | Matsko et al. | Nov 1994 | A |
5369356 | Kinney et al. | Nov 1994 | A |
5381554 | Langer et al. | Jan 1995 | A |
5384712 | Oravetz et al. | Jan 1995 | A |
5402299 | Bellei | Mar 1995 | A |
5406495 | Hill | Apr 1995 | A |
5414635 | Ohta | May 1995 | A |
5420799 | Peterson et al. | May 1995 | A |
5422778 | Good et al. | Jun 1995 | A |
5428495 | Murphy et al. | Jun 1995 | A |
5440441 | Ahuja | Aug 1995 | A |
5451879 | Moore | Sep 1995 | A |
5487016 | Elms | Jan 1996 | A |
5490086 | Leone et al. | Feb 1996 | A |
5493468 | Hunter et al. | Feb 1996 | A |
5498956 | Kinney et al. | Mar 1996 | A |
5530738 | McEachern | Jun 1996 | A |
5534782 | Nourse | Jul 1996 | A |
5534833 | Castonguay et al. | Jul 1996 | A |
5537327 | Snow et al. | Jul 1996 | A |
5544065 | Engel et al. | Aug 1996 | A |
5559719 | Johnson et al. | Sep 1996 | A |
5560022 | Dunstan et al. | Sep 1996 | A |
5576625 | Sukegawa et al. | Nov 1996 | A |
5581471 | McEachern et al. | Dec 1996 | A |
5587917 | Elms | Dec 1996 | A |
5596473 | Johnson et al. | Jan 1997 | A |
5600527 | Engel et al. | Feb 1997 | A |
5608646 | Pomatto | Mar 1997 | A |
5613798 | Braverman | Mar 1997 | A |
5619392 | Bertsch et al. | Apr 1997 | A |
5621776 | Gaubatz | Apr 1997 | A |
5627716 | Lagree et al. | May 1997 | A |
5627717 | Pein et al. | May 1997 | A |
5627718 | Engel et al. | May 1997 | A |
5629825 | Wallis et al. | May 1997 | A |
5631798 | Seymour et al. | May 1997 | A |
5638296 | Johnson et al. | Jun 1997 | A |
5650936 | Loucks et al. | Jul 1997 | A |
5661658 | Putt et al. | Aug 1997 | A |
5666256 | Zavis et al. | Sep 1997 | A |
5670923 | Gonzalez et al. | Sep 1997 | A |
5694329 | Pomatto | Dec 1997 | A |
5696695 | Ehlers et al. | Dec 1997 | A |
5719738 | Singer et al. | Feb 1998 | A |
5734576 | Klancher | Mar 1998 | A |
5736847 | Van Doorn et al. | Apr 1998 | A |
5737231 | Pyle et al. | Apr 1998 | A |
5742513 | Bouhenguel et al. | Apr 1998 | A |
5751524 | Swindler | May 1998 | A |
5754033 | Thomson | May 1998 | A |
5754440 | Cox et al. | May 1998 | A |
5768148 | Murphy et al. | Jun 1998 | A |
5784237 | Velez | Jul 1998 | A |
5784243 | Pollman et al. | Jul 1998 | A |
5786699 | Sukegawa et al. | Jul 1998 | A |
5812389 | Katayama et al. | Sep 1998 | A |
5821704 | Carson et al. | Oct 1998 | A |
5825643 | Dvorak et al. | Oct 1998 | A |
5828576 | Loucks et al. | Oct 1998 | A |
5828983 | Lombardi | Oct 1998 | A |
5831428 | Pyle et al. | Nov 1998 | A |
5867385 | Brown et al. | Feb 1999 | A |
5872722 | Oravetz et al. | Feb 1999 | A |
5872785 | Kienberger | Feb 1999 | A |
5890097 | Cox | Mar 1999 | A |
5892449 | Reid et al. | Apr 1999 | A |
5903426 | Ehling | May 1999 | A |
5905616 | Lyke | May 1999 | A |
5906271 | Castonguay et al. | May 1999 | A |
5926089 | Sekiguchi et al. | Jul 1999 | A |
5936817 | Matsko et al. | Aug 1999 | A |
5946210 | Montminy et al. | Aug 1999 | A |
5958060 | Premerlani | Sep 1999 | A |
5963457 | Kanoi et al. | Oct 1999 | A |
5973481 | Thompson et al. | Oct 1999 | A |
5973899 | Williams et al. | Oct 1999 | A |
5982595 | Pozzuoli | Nov 1999 | A |
5982596 | Spencer et al. | Nov 1999 | A |
5995911 | Hart | Nov 1999 | A |
6005757 | Shvach et al. | Dec 1999 | A |
6005758 | Spencer et al. | Dec 1999 | A |
6018451 | Lyke et al. | Jan 2000 | A |
6038516 | Alexander et al. | Mar 2000 | A |
6047321 | Raab et al. | Apr 2000 | A |
6054661 | Castonguay et al. | Apr 2000 | A |
6055145 | Lagree et al. | Apr 2000 | A |
6061609 | Kanoi et al. | May 2000 | A |
6084758 | Clarey et al. | Jul 2000 | A |
6138241 | Eckel et al. | Oct 2000 | A |
6139327 | Callahan et al. | Oct 2000 | A |
6141196 | Premerlani et al. | Oct 2000 | A |
6157527 | Spencer et al. | Dec 2000 | A |
6167329 | Engel et al. | Dec 2000 | A |
6175780 | Engel | Jan 2001 | B1 |
6185482 | Egolf et al. | Feb 2001 | B1 |
6185508 | Van Doorn et al. | Feb 2001 | B1 |
6186842 | Hirschbold et al. | Feb 2001 | B1 |
6195243 | Spencer et al. | Feb 2001 | B1 |
6198402 | Hasegawa et al. | Mar 2001 | B1 |
6212049 | Spencer et al. | Apr 2001 | B1 |
6233128 | Spencer et al. | May 2001 | B1 |
6236949 | Hart | May 2001 | B1 |
6242703 | Castonguay et al. | Jun 2001 | B1 |
6268991 | Criniti et al. | Jul 2001 | B1 |
6285917 | Sekiguchi et al. | Sep 2001 | B1 |
6288882 | DiSalvo et al. | Sep 2001 | B1 |
6289267 | Alexander et al. | Sep 2001 | B1 |
6291911 | Dunk et al. | Sep 2001 | B1 |
6292340 | O'Regan et al. | Sep 2001 | B1 |
6292717 | Alexander et al. | Sep 2001 | B1 |
6292901 | Lys et al. | Sep 2001 | B1 |
6297939 | Bilac et al. | Oct 2001 | B1 |
6313975 | Dunne et al. | Nov 2001 | B1 |
6341054 | Walder et al. | Jan 2002 | B1 |
6347027 | Nelson et al. | Feb 2002 | B1 |
6351823 | Mayer et al. | Feb 2002 | B1 |
6356422 | Bilac et al. | Mar 2002 | B1 |
6356849 | Jaffe | Mar 2002 | B1 |
6369996 | Bo | Apr 2002 | B1 |
6377051 | Tyner et al. | Apr 2002 | B1 |
6385022 | Kulidjian et al. | May 2002 | B1 |
6396279 | Gruenert | May 2002 | B1 |
6397155 | Przydatek et al. | May 2002 | B1 |
6405104 | Dougherty | Jun 2002 | B1 |
6406328 | Attarian et al. | Jun 2002 | B1 |
6411865 | Qin et al. | Jun 2002 | B1 |
6441931 | Moskovich et al. | Aug 2002 | B1 |
6459997 | Anderson | Oct 2002 | B1 |
6496342 | Horvath et al. | Dec 2002 | B1 |
6535797 | Bowles et al. | Mar 2003 | B1 |
6549880 | Willoughby et al. | Apr 2003 | B1 |
6553418 | Collins et al. | Apr 2003 | B1 |
6571182 | Adamiak et al. | May 2003 | B1 |
6694271 | Hannon | Feb 2004 | B1 |
20010010032 | Ehlers et al. | Jul 2001 | A1 |
20010032025 | Lenz et al. | Oct 2001 | A1 |
20010044588 | Mault | Nov 2001 | A1 |
20010048354 | Douville et al. | Dec 2001 | A1 |
20010055965 | Delp et al. | Dec 2001 | A1 |
20020010518 | Reid et al. | Jan 2002 | A1 |
20020032535 | Alexander et al. | Mar 2002 | A1 |
20020034086 | Scoggins et al. | Mar 2002 | A1 |
20020045992 | Shincovich et al. | Apr 2002 | A1 |
20020059401 | Austin | May 2002 | A1 |
20020063635 | Shincovich | May 2002 | A1 |
20020064010 | Nelson et al. | May 2002 | A1 |
20020091949 | Ykema | Jul 2002 | A1 |
20020094799 | Elliott et al. | Jul 2002 | A1 |
20020107615 | Bjorklund | Aug 2002 | A1 |
20020108065 | Mares | Aug 2002 | A1 |
20020109722 | Rogers et al. | Aug 2002 | A1 |
20020111980 | Miller et al. | Aug 2002 | A1 |
20020116092 | Hamamatsu et al. | Aug 2002 | A1 |
20020124011 | Baxter et al. | Sep 2002 | A1 |
20020146076 | Lee | Oct 2002 | A1 |
20020146083 | Lee et al. | Oct 2002 | A1 |
20020147503 | Osburn, III | Oct 2002 | A1 |
20020159402 | Binder | Oct 2002 | A1 |
20020162014 | Przydatek et al. | Oct 2002 | A1 |
20020163918 | Cline | Nov 2002 | A1 |
20020165677 | Lightbody et al. | Nov 2002 | A1 |
20020181174 | Bilac et al. | Dec 2002 | A1 |
20020193888 | Wewalaarachchi et al. | Dec 2002 | A1 |
20030043785 | Liu et al. | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
0718948 | Jun 1996 | EP |
0723325 | Jul 1996 | EP |
0949734 | Oct 1999 | EP |
Number | Date | Country | |
---|---|---|---|
20030216876 A1 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
60359544 | Feb 2002 | US | |
60438159 | Jan 2003 | US |