1. Field of Invention
The present invention relates in general to the field of electronic packaging. More particularly, the present invention relates to electronic packaging that grounds a heat sink used to remove heat from an electronic component.
2. Background Art
Electronic components, such a microprocessors and integrated circuits, must operate within certain specified temperature ranges to perform efficiently. Excessive heat degrades electronic component performance, reliability, life expectancy, and can even cause failure. Heat sinks are widely used for controlling excessive heat. Typically, heat sinks are formed with fins, pins or other similar structures to increase the surface area of the heat sink and thereby enhance heat dissipation as air passes over the heat sink. In addition, it is not uncommon for heat sinks to contain high performance structures, such as vapor chambers and/or heat pipes, to further enhance heat transfer. Heat sinks are typically formed of metals, such as copper or aluminum.
Electronic components are generally packaged using electronic packages (i.e., modules) that include a module substrate to which the electronic component is electronically connected. In some cases, the module includes a cap (i.e., a capped module) which seals the electronic component within the module. In other cases, the module does not include a cap (i.e., a bare die module). In the case of a capped module, a heat sink is typically attached with a thermal interface between a bottom surface of the heat sink and a top surface of the cap, and another thermal interface between a bottom surface of the cap and a top surface of the electronic component. In the case of a bare die module, a heat sink is typically attached with a thermal interface between a bottom surface of the heat sink and a top surface of the electronic component. Heat sinks are attached to modules using a variety of attachment mechanisms, such as adhesives, clips, clamps, screws, bolts, barbed push-pins, load posts, and the like.
In addition to generating heat, electronic components also generate electromagnetic radiation. The electromagnetic radiation emitted by electronic components can cause electromagnetic interference (EMI) or noise in neighboring electronic components and systems. Regulatory bodies in the U.S. and in other countries set forth regulations that specify limits for EMI caused by electronic products. Because of these regulations and the negative effects of EMI, it is desirable to design electronic products so that EMI is suppressed (i.e., electromagnetic radiation generated within electronic products is minimized or effectively contained). EMI suppression is extremely important when an EMI producing electronic component is coupled to a heat sink. The heat sink acts as an antenna to further radiate the electromagnetic radiation generated by the electronic component.
It is not uncommon for a heat sink coupled to an EMI producing electronic component to be grounded for EMI suppression. For example, a grounding spring having an aperture that surrounds the EMI producing electronic component may electronically couple the heat sink and to a ground plane of a printed circuit board (PCB) on which the electronic component is mounted.
Eight spring fingers 114 extend from grounding spring 110. The spring fingers 114 are formed by cutting and bending grounding spring 110. Two spring fingers 114 extend from each side of aperture 112 so that the module will be surrounded thereby. The assembly 100 is attached to the module by dispensing a thermally conductive adhesive between the top of surface of the module and central surface 104 of heat sink 102. When heat sink assembly 100 is attached to the module, the tips of spring fingers 114 contact solder pads on the surface of the PCB on which the module is mounted. The solder pads are electrically connected to a ground plane of the PCB, and thus heat sink 102 is grounded thereto through the grounding spring 110.
Conventional grounding springs with single-jointed spring fingers, such as grounding spring 110 having single-jointed spring fingers 114, exhibit a number of disadvantages. Spring fingers 114, which are fragile because their length is long relative to their width, can be damaged during handling of heat sink assembly 100. In addition, the relatively long length of spring fingers 114 makes them susceptible to sliding off the solder pads on the surface of the PCB on which the module is mounted, both during and subsequent to the card assembly process (i.e., the process by which the heat sink assembly 100 is installed onto the PCB).
Another disadvantage of conventional grounding springs with single-jointed spring fingers is shown in
It should therefore be apparent that a need exists for an enhanced mechanism for grounding a heat sink.
According to the preferred embodiments of the present invention, a grounding spring for electromagnetic interference (EMI) suppression is interposed between a heat sink and a printed circuit board (PCB). The grounding spring includes a plurality of multiple-jointed spring fingers, i.e., each spring finger has two or more joints. The grounding spring comprises a conductive material having an opening formed in a generally planar base portion thereof through which the heat sink makes thermal contact with an electronic module mounted on the PCB. The base portion of the grounding spring makes electrical contact with a peripheral surface of the heat sink, and the multiple-jointed spring fingers extend from the base portion of the grounding spring to make electrical contact with conductive pads on the PCB. Each multiple-jointed spring finger is configured so that movement of a tip thereof is substantially limited to the z-axis during compression. Accordingly, the final installed location of the tip can be precisely controlled even when the grounding spring must accommodate a wide variety of installed heights of the heat sink relative to the PCB. Preferably, the spring fingers terminate with a concave tip that makes it less susceptible to sliding off the conductive pads.
The foregoing and other features and advantages of the present invention will be apparent from the following more particular description of the preferred embodiments of the present invention, as illustrated in the accompanying drawings.
The preferred exemplary embodiments of the present invention will hereinafter be described in conjunction with the appended drawings, where like designations denote like elements.
1.0 Overview
In accordance with the preferred embodiments of the present invention, a grounding spring for electromagnetic interference (EMI) suppression is interposed between a heat sink and a printed circuit board (PCB). The grounding spring includes a plurality of multiple-jointed spring fingers, i.e., each spring finger has two or more joints. The grounding spring comprises a conductive material having an opening formed in a generally planar base portion thereof through which the heat sink makes thermal contact with an electronic module mounted on the PCB. The base portion of the grounding spring makes electrical contact with a peripheral surface of the heat sink, and the multiple-jointed spring fingers extend from the base portion of the grounding spring to make electrical contact with conductive pads on the PCB. Each multiple-jointed spring finger is configured so that movement of a tip thereof is substantially limited to the z-axis during compression. Accordingly, the final installed location of the tip can be precisely controlled even when the grounding spring must accommodate a wide variety of installed heights of the heat sink relative to the PCB. Preferably, the spring fingers terminate with a concave tip that makes it less susceptible to sliding off the conductive pads.
2.0 Detailed Description
With reference to the figures and in particular
A heat sink 310 includes a central surface 312, which is to be placed in thermal contact with a module having an electromagnetic interference (EMI) producing electronic component, such as a microprocessor. Heat sink 310 also includes a peripheral surface 314 on which is mounted grounding spring 302. Grounding spring 302 includes a central aperture 306, through which the module makes thermal contact with central surface 312 of heat sink 310. Preferably, four screws 320 extend through through-holes in grounding spring 302 and are threaded into threaded-holes in heat sink 310, to thereby secure and electrically connect grounding spring 302 to heat sink 310. Any number or arrangement of screws may be used, or, alternatively, other attachment mechanisms (e.g., adhesives, welds, clips, clamps, bolts, barbed push-pins, load posts, and the like) may be used to secure grounding spring 302 between heat sink 310 and the printed circuit board (PCB) on which the module is mounted. For example, grounding spring 302 may be secured between heat sink 310 and the PCB by barbed push-pins that pass through through-holes in heat sink 310, grounding spring 302 and the PCB. In another alternative, grounding spring 302 may be secured between heat sink 310 and the PCB by load posts projecting from heat sink 310 and passing through through-holes in grounding spring 302, the PCB, a backside bolster, and a loading spring. Numerous other attachment mechanisms known in the art may be used. Those skilled in the art will appreciate that the spirit and scope of the present invention is not limited to any one attachment mechanism.
As illustrated, peripheral surface 314 of heat sink 310 is preferably recessed relative to central surface 312 of heat sink 310 to provide clearance for the heads of screws 320. However, those skilled in the art will appreciate that the mechanisms and apparatus of the preferred embodiments of the present invention apply equally regardless of the configuration of the heat sink.
Heat sink 310 is formed of a metal, such as aluminum, copper, or the like. As is typical, heat sink 310 is formed with fins, pins or other similar structures to increase the surface area and thereby enhance heat dissipation as air passes over the heat sink. In addition, heat sink 310 may contain high performance structures, such as vapor chambers and/or heat pipes, to further enhance heat transfer.
Grounding spring 302 is made of an elastically deformable and electrically conductive material, such as stainless steel, beryllium copper, phosphor bronze, hardened steel, spring steel, and the like. Preferably, grounding spring 302 is cut and bent from a sheet of 0.004″ half-hard “301” stainless steel.
Preferably, eight double-jointed spring fingers 304 extend from grounding spring 302. Two double-jointed spring fingers 304 preferably extend form each side of central aperture 306 in grounding spring 302 so that the module will be surrounded thereby. However, any number or arrangement of double-jointed spring fingers 304 may be used. When heat sink assembly 300 is attached to the module, the tips of double-jointed spring fingers 304 contact conductive pads on the surface of the PCB on which the module is mounted. The conductive pads are electrically connected to a ground plane of the PCB, and thus heat sink 310 is grounded thereto through the grounding spring 302.
The heat sink assembly 300 is preferably attached to the module by dispensing a conventional thermally conductive adhesive between the top surface of the module and central surface 312 of heat sink 310. However, a thermally conductive adhesive need not be used. Instead, a thermally conductive interface such as a thermal gel, grease, paste, oil, pad or other high thermal conductivity material may be interposed between heat sink 310 and the module in the case where another attachment mechanism is used in lieu of thermally conductive adhesive to secure heat sink 310 relative to the PCB on which the module is mounted. For example, heat sink 310 may be secured relative to the PCB using barbed push-pins or load posts attachment mechanisms, as discussed above. However, because of the additional labor and parts required to utilize the other attachment mechanisms, electronics device manufacturers often prefer utilizing adhesive-mounted heat sinks in order to minimize production costs.
Preferably, distal finger portion 410 and concave finger tip 416 are about 2.0 mm wide, which is about the same width as the conventional grounding spring's single-jointed spring finger. Central finger portion 406 is preferably about 5.0 mm wide, which is much wider than the width of the conventional grounding spring's single-jointed spring finger. As discussed below, this wider stance makes the double-jointed spring finger in accordance with the preferred embodiments of the present inventions less fragile and more robust and stable than the conventional grounding spring's single-jointed spring finger.
Grounding springs in accordance with the preferred embodiments of the present invention exhibit several other advantages over conventional grounding springs. For example, a conventional grounding spring's spring fingers, which are fragile because their length is long relative to their width, can be damaged during handling of the heat sink assembly. Grounding springs in accordance with the preferred embodiments of the present invention are less susceptible to being damaged during handling of the heat sink assembly because the double-jointed spring fingers are not as fragile as the single-jointed spring fingers. For example, the narrowest portions of double-jointed spring fingers (i.e., distal finger portion 410 and concave finger tip 416) are shorter relative to their width as compared to the length of single-jointed spring fingers relative to their width. This also makes the tip of the double-jointed spring finger less susceptible to sliding off the conductive pads on the PCB. The relatively long length of a conventional grounding spring's single-jointed spring fingers makes them susceptible to sliding off the conductive pads, both during and subsequent to the card assembly process. For example, a conventional grounding spring's single-jointed spring fingers may slide off the conductive pads in the field subsequent to the card assembly process as the result of being subjected to shock or vibration, or as the result of being bumped by a human finger during maintenance. In this regard, the preferred embodiments of the present invention incorporate concave finger tip 416 that makes it even less susceptible to sliding off the conductive pads of the PCB.
One skilled in the art will appreciate that many variations are possible within the scope of the present invention. For example, the heat sink may be mounted by utilizing another attachment mechanism in lieu of a thermally conductive adhesive. Moreover, the grounding spring may be held in place between the heat sink and the PCB using another attachment mechanism in lieu of fastening the grounding spring to the heat sink with screws. In addition, other multiple-jointed spring fingers, such as triple-jointed spring fingers, may be utilized in lieu of double-jointed spring fingers. Thus, while the present invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that these and other changes in form and detail may be made therein without departing form the spirit and scope of the present invention.
This patent application is a continuation application of U.S. patent application Ser. No. 11/266,743 (docket no. ROC920050163US1), filed Nov. 3, 2005, entitled “METHOD AND APPARATUS FOR GROUNDING A HEAT SINK IN THERMAL CONTACT WITH AN ELECTRONIC COMPONENT USING A GROUNDING SPRING HAVING MULTIPLE-JOINTED SPRING FINGERS”, which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11266743 | Nov 2005 | US |
Child | 11853418 | Sep 2007 | US |