The present invention relates to mass spectrometry and mass spectrometers. More particularly, the present invention relates to spray-type ion sources for mass spectrometers.
In electrospray ionization, a liquid is sprayed through the tip of a needle-like capillary that is held at a high electric potential of a few kilovolts. Small multiply-charged droplets containing solvent molecules and analyte molecules are initially formed and then shrink as the solvent molecules evaporate. The shrinking droplets also undergo fission—possibly multiple times—when the shrinkage causes the charge density of the droplet to increase beyond a certain threshold. This process ends when all that is left of the droplet is a charged analyte ion that can be mass analyzed by a mass spectrometer. Some of the droplets and liberated ions are directed into the vacuum chamber of the mass spectrometer through an ion inlet orifice, such as an ion transfer tube that is heated to help desolvate remaining droplets or ion/solvent clusters. A strong electric field in the tube lens following the ion transfer tube also aids in breaking up solvent clusters. The smaller the initial size of the droplets, the more efficiently they can be desolvated, and eventually, the more sensitive the mass spectrometer system becomes. Electrospray ionization is often employed to generate ions for mass spectrometric studies in which samples are provided from a liquid chromatograph or in which there is a desire or requirement to analyze intact, non-fragmented ions.
As a result of the pressure difference between the ionization chamber 82 and the intermediate-vacuum chamber 83 (
In operation, the probe tip projects into the interior of the ionization chamber 82 with the remaining length of the probe 104 being disposed within the housing. A spray of charged droplets of a liquid sample is introduced into the spray chamber interior 82 from the end of needle capillary 113. In this process, a continuous stream of liquid sample is provided through the lumen of the needle capillary 113. The spray plume of charged droplets is formed at the end of the needle capillary 113 under the action of an electrical potential difference between the needle capillary and a counter electrode (not shown), as assisted by a flow of the nebulizing gas (also known as sheath gas). In operation, the nebulizing gas flows along the length of probe in the direction of the tip through a channel 118 of a heat-insulating enclosure 117, such as a tube, that encloses a portion of the length of the needle capillary 113. The flow of nebulizing gas is directed, as shown by the arrows in channel 118, from the heat-insulating enclosure 117 into a channel 120 of needle support structure 115 that encloses another portion of the length of the needle capillary 113. The heat-insulating enclosure 117 may be constructed of a heat-insulating material, such as a ceramic, that shields the transfer of heat from the heater 109 to the needle capillary 113.
Nano electrospray ionization (so-called “nanospray”) is a form of electrospray ionization that employs small-bore tips on the order of tens of micrometers in diameter. This small size limits the maximum solvent flow rates to the range of tens of microliters to nanoliters per minute. It is well known in the art that, of all the variants of electrospray ionization, nanospray ionization yields the highest current per analyte concentration. This result is attributed to the small bore of the electrospray emitter needles employed, which cause the diameter of the droplets formed at the Taylor cone to be the smallest, such that the combined effects of smaller initial droplet size and higher analyte concentration (as a result of less required solvent) promote a greater degree of solvent evaporation and analyte desolvation than is achieved by regular electrospray devices (e.g.,
U.S. Pat. No. 9,459,240, in the name of inventor Vorm, teaches an integrated system for liquid separation electrospray ionization comprising: a chromatographic separation column; and an electrospray emitter connected with the separation column. According to the teachings of U.S. Pat. No. 9,459,240, the separation column, a heating and/or cooling unit for controlling the temperature of the column and a nano-electrospray emitter (commonly referred to as a “needle”) are provided as an integral unit. Specifically, the various components are embedded within a plastic housing that is provided as a removeable and replaceable cartridge. Such replaceable cartridges are commercially available from Thermo Fisher Scientific of Waltham, Mass. USA under the EASY-Spray™ trade name. The cartridge format exploits the relative simplicity and small-size advantages of nanospray while also providing a rugged format that protects the fragile nanospray components. U.S. Pre-Grant Publ. No. 2018/0017534 teaches a modification of the apparatus taught by the Vorm patent, in which the emitter assembly is provided as a stand-alone unit, separate from any separation column.
A power supply 31 provides a voltage, V, between a counter-electrode and the emitter. That is, V=Ec−Ee, where Ec and Ee are electrical potentials at the counter electrode and the emitter, respectively and where one of these electrical potentials may be ground potential. If positively-charged ions are being generated, then V<0; if negatively-charged ions are being generated, then V>0. To cover both such possibilities, this document generally refers to refers to the absolute magnitude of the voltage, |V| with the understanding that V<0 if positive ions are being generated and mass analyzed and V>0 if negative ions are begin generated and mass analyzed. Generally, the counter electrode is at (or is) an ion inlet of a mass spectrometer. At the emitter or elsewhere within a fluid-transporting conduit, an electrical lead is in contact with an internal sample-bearing liquid, through internal electrical connections as described further below. Note that, in this document, the terms “magnitude” and “absolute magnitude” are used interchangeably.
The mounting assembly includes a moveable translation stage 65 on which the cartridge 61 is disposed and that may be used to position the emitter tip in alignment with an ion inlet 85 of the mass spectrometer. During the positioning, the protective sleeve 240 partially retracts upon engagement with a seating surface of the ion inlet 85 to expose the tip of the emitter. The alignment may be performed either automatically or manually. Charged particles emitted by the nanospray needle are directed into an intermediate-vacuum chamber 83 of the mass spectrometer. Other downstream components of the mass spectrometer are not shown in
At or near the inlet of the emitter 230, a stop 201 is integrated into the union 220 with a defined through hole to ensure a proper electrical connection to the liquid entering the emitter. The other side of the union 220 is a fitting for receiving a number of standard capillary connections. The union 220 includes an externally threaded side 233 and a threaded inlet side 222. Alternatively, the electrical connection may be made elsewhere within or on a conduit that transports liquid sample to the emitter, such as at the outside of a metal or metallized fused silica emitter. As another example, the voltage may be applied through an electrical connection at or adjacent to the chromatography column, such as at the entrance to the column. This type of electrical connection is applicable in the case of so-called “packed-tip emitters”, in which the emitter and the chromatographic column are a single entity.
A protective sleeve 240 of generally cylindrical form is slidably located on the emitter 230. The sleeve 240 has a main body 210 and a base 211 of a wider diameter than the main body. The protective sleeve 240 is generally made of plastic. A PEEK sleeve 235 covers at least a central portion of the emitter 230 and is adapted to closely fit between an outer diameter of the emitter 230 and the protective sleeve 240. Mounted around the protective sleeve 240, in one embodiment, is an electrically conductive sheath 250. The conductive sheath is supported at one end by the cap nut 270. The sheath may be detached from the column fittings at that end. The conductive sheath 250 has an internal diameter such as to accommodate therein the protective sleeve 240 and permit the protective sleeve 240 to slidably move in a reciprocating manner inside the sheath, described in further detail below.
A resilient member or spring 260 is provided inside the electrically conductive sheath 250, positioned in a space between the emitter fittings and the protective sleeve 240, thereby to act upon the base of the protective sleeve. In this way, the spring 260 biases the sleeve 240 to force it out of the conductive sheath 250. The length of the sleeve 240 and its extension out of the sheath is sufficient to cover the tip of the emitter 230 and act to protect it against damage. A part of the main body 210 of the protective sleeve 240 protrudes outside the sheath 250 and thereby covers the emitter. The extent of travel of the sleeve 240 out of the sheath 250 is restricted by a reduced internal diameter part 290 at the end of the sheath 250 that stops the wider diameter base 211 of the sleeve. If a force is applied to the sleeve to push the sleeve backwards into the sheath 250 the spring 260 becomes compressed and the tip of the emitter becomes exposed and ready for use. The electrically conductive sheath 250 has a recess in the form of a circumferential groove 249 in its outer surface for the purpose of making contact with an electrode, e.g. a contact ball.
The column and the emitter, or cartridge containing both components, is a consumable with limited lifetime. Ideally, hundreds of samples can be processed but the lifetime is principally dependent on the type of samples analyzed. It has been found that, during electrospray ionization, material from the sample routinely deposits on the external surface of the emitter—presumably, resulting from evaporation of solutes after the eluent has wicked-back onto the external emitter surface. This fouling of the emitter may be particularly problematic when using nanospray emitters. For example,
Material deposited on an electrospray emitter can ultimately cause degradation of several analytical figures-of-merit (e.g., reduced sensitivity and/or reproducibility). For example,
From the above observations of progressive emitter fouling and a corresponding loss of mass spectral quality, the inventors have realized that, instead of implementing a single emitter wash step at the end of a long series of sample injections, a more favorable washing sequence would be to perform several regular emitter washing steps during an experimental sequence. Accordingly, this disclosure teaches methods and apparatuses for performing regular emitter washings that do not require removal of the emitter (or a cartridge containing the emitter from) a mass spectrometer. Methods and apparatus in accordance with the present teachings instead make use of the non-emitting electrospray modes (specifically, dripping and pulsating) for implementing emitter washing steps.
In accordance with a first aspect of the present teachings, a method for cleaning an electrospray emitter of a mass spectrometer is provided, the method comprising: (a) changing a mode of operation of the electrospray emitter from a stable jet mode of operation to a dripping mode or pulsating mode of operation by lowering a magnitude of a voltage, |V|, applied between a counter electrode and the electrospray emitter; (b) causing a cleaning solvent to flow through the electrospray emitter at least until a droplet of the cleaning solvent forms on an exterior surface of the electrospray emitter while operating the electrospray emitter in the dripping mode or pulsating mode of operation; and (c) causing the droplet to dislodge from the electrospray emitter exterior. Generally, the value of |V| below which the mode of operation of any electrospray emitter changes from a stable jet mode of operation to a pulsating mode of operation (indicated at 168 in
In some instances, or in some apparatus embodiments, it may be necessary to include an additional step of moving the emitter away from its normal operating position prior to the step (a) of changing the mode of operation the emitter or at least prior to the step (b) of causing the cleaning solvent to flow through the emitter. Such movement of the emitter away from a mass spectrometer inlet during portions of the cleaning procedure prevents the ingestion of neutral gas molecules, liquid droplets or contaminant substances into the mass spectrometer inlet. In such instances, the electrospray emitter must be returned to its normal operating position prior to returning to normal operation. The movements away from and back to the normal operating position may controlled by a motorized moveable stage or platform onto which the emitter is mounted.
The dislodging of the droplet of cleaning solvent from the emitter exterior removes any formerly-contaminating substances that were dissolved by the droplet while it was in contact with the exterior surface of the emitter. The dislodging may occur under the action of gravity. Alternatively, the dislodging of the droplet may be caused or assisted by directing a pulse of gas towards the droplet. The pulse of gas may be supplied by a nebulizing gas orifice of the electrospray emitter. Alternatively, if the electrospray emitter does not comprise a nebulizing gas orifice, the gas pulse may be provided by an auxiliary gas line provided for the purpose of supplying the gas pulse. As a yet further alternative, the droplet may be dislodged by providing a voltage pulse to either the electrospray emitter or a counter electrode at or near an ion inlet of the mass spectrometer.
According to some embodiments, the electrospray emitter that is being cleaned may be fluidically coupled to a liquid chromatographic column. In some instances, the cleaning solvent may comprise a same mobile phase liquid that is used to transport dissolved samples to the emitter under normal operating conditions. In such instances the cleaning solvent may be provided to the emitter directly through the chromatographic column. In some other instances, the cleaning solvent may comprise a cleaning compound that would be detrimental to the column were it to be passed through the column. In such latter instances, provision may be made to supply the cleaning solvent and the cleaning solvent may be supplied at a point in a fluid supply line that is downstream from the column but upstream from the emitter. If the emitter and column are housed together within a removable cartridge, the cleaning solvent may be introduced into an auxiliary fluid inlet port of the cartridge that is configured such that the cleaning solvent does not pass through the column.
Certain embodiments of the method may include the further steps of: (d) causing a second cleaning solvent, comprising a composition different than a composition of the first cleaning solvent, to flow through the electrospray emitter at least until another droplet forms on the exterior surface of the electrospray emitter while operating the electrospray emitter in the dripping mode of operation; and (e) causing the other droplet to dislodge from the electrospray emitter exterior. According to some embodiments, either the steps (b) and (c) or the steps (d) and (e) may need to be repeated one or more times until a targeted contamination substance is adequately removed from the emitter. The repetitions may continue until an operator, visually observing the cleaning process, determines that the electrospray emitter is sufficiently clean to be put back into service. Alternatively, the repetitions may continue for a duration of time corresponding to a pre-determined cleaning time period.
The initiation of the steps (listed herein) of the various embodiments of electrospray emitter cleaning methods that are in accordance the first aspect of the present teachings may be performed automatically, at regular time intervals, during the service lifetime of an electrospray emitter. Alternatively, the initiation of the steps listed herein may occur, automatically, each time a new mass analysis or a new set of mass analyses is performed, such as at the start of the new mass analysis or new set of mass analyses.
In accordance with a second aspect of the present teachings, a method for cleaning a first electrospray emitter of a mass spectrometer is provided, the method comprising: (a) changing a mode of operation of the first electrospray emitter from a stable jet mode of operation to a dripping mode or a pulsating mode of operation by lowering a magnitude of a voltage, |V|, applied between a counter electrode and the electrospray emitter; (b) moving the first electrospray emitter from a first position from which electrospray particles are delivered to an inlet of a mass spectrometer to a second position; (c) moving a second electrospray emitter to the first position; (d) causing a cleaning solvent to flow through the first electrospray emitter at least until a droplet of the cleaning solvent forms on an exterior surface of the first electrospray emitter while operating the first electrospray emitter in the dripping mode of operation; and (e) causing the droplet to dislodge from the first electrospray emitter exterior.
Generally, the magnitude of the lowering of |V| that is required to change the mode of operation of the first electrospray emitter from a stable jet mode of operation to a dripping mode or pulsating mode of operation may be determined by a prior mapping of the electrospray modes of that emitter in terms of applied |V|. The dislodging of the droplet of cleaning solvent from the first electrospray emitter exterior removes any formerly-contaminating substances that were dissolved by the droplet while it was in contact with the exterior surface of the emitter. The dislodging may occur under the action of gravity. Alternatively, the dislodging of the droplet may be caused or assisted by directing a pulse of gas towards the droplet. The pulse of gas may be supplied by a nebulizing gas orifice of the first electrospray emitter. Alternatively, if the first electrospray emitter does not comprise a nebulizing gas orifice, the gas pulse may be provided by an auxiliary gas line provided for the purpose of supplying the gas pulse. As a yet further alternative, the droplet may be dislodged by providing a voltage pulse to either the first electrospray emitter or a counter electrode at or near an ion inlet of the mass spectrometer. Such a voltage pulse may cause a temporary discharge of liquid from an internal channel of the first electrospray emitter that physically dislodges the droplet of cleaning solvent.
According to some embodiments, the electrospray emitter that is being cleaned (e.g., the first electrospray emitter) may be fluidically coupled to a liquid chromatographic column. In some instances, the cleaning solvent may comprise a same mobile phase liquid that is used to transport dissolved samples to the emitter under normal operating conditions. In such instances the cleaning solvent may be provided to the first electrospray emitter directly through the chromatographic column. In some other instances, the cleaning solvent may comprise a cleaning compound that would be detrimental to the column were it to be passed through the column. In such latter instances, provision may be made to supply the cleaning solvent and the cleaning solvent may be supplied at a point in a fluid supply line that is downstream from the column but upstream from the first electrospray emitter. If the first electrospray emitter and column are housed together within a removable cartridge, the cleaning solvent may be introduced into an auxiliary fluid inlet port of the cartridge that is configured such that the cleaning solvent does not pass through the column.
Certain embodiments of the method may include the further steps of: (f) causing a second cleaning solvent, comprising a composition different than a composition of the first cleaning solvent, to flow through the first electrospray emitter at least until another droplet forms on the exterior surface of the first electrospray emitter while operating that emitter in the dripping mode of operation; and (g) causing the other droplet to dislodge from the exterior of the first electrospray emitter. According to some embodiments, either the steps (d) and (e) or the steps (f) and (g) may need to be repeated one or more times until a targeted contamination substance is adequately removed from the first electrospray emitter. The repetitions may continue until an operator, visually observing the cleaning process, determines that the first electrospray emitter is sufficiently clean to be put back into service. Alternatively, the repetitions may continue for a duration of time corresponding to a pre-determined cleaning time period.
According to some embodiments, the first and second electrospray emitters may be housed in separate cartridges, where each cartridge comprises: the respective electrospray emitter; and a respective chromatographic column. Both such cartridges may be mounted onto a motorized moveable stage or platform the moves both cartridges simultaneously in accordance with the steps of the method. Alternatively, both the first and second electrospray emitters may be housed in a same cartridge. That single cartridge may be disposed upon a motorized moveable stage or platform that moves the single cartridge, thereby moving both electrospray emitters simultaneously in accordance with the steps of the method. The use of two separate electrospray emitters beneficially provides improved analysis efficiency in that, in the absence of the second electrospray emitter, instrument analysis time would be lost while the first emitter is being cleaned. The step (b) of moving of the first electrospray emitter from the first position to the second position may comprise: (i) moving the first electrospray emitter away from the inlet parallel to a longitudinal axis of the emitter or of the inlet; and (ii) moving the first electrospray emitter in a direction orthogonal to the aforementioned longitudinal axis. The step (c) of moving the second electrospray emitter to the first position may comprise: (iii) moving the second electrospray emitter in a direction orthogonal to a longitudinal axis of the emitter or of the inlet; and (iv) moving the first electrospray emitter towards the inlet in a direction parallel to the longitudinal axis.
In accordance with a third aspect of the present teachings, a sample introduction system for a mass spectrometer is provided, the system comprising: (i) a source of sample; (ii) a chromatographic column comprising a column inlet that is fluidically coupled to the source of sample and a column outlet; (iii) and electrospray emitter comprising an emitter inlet that is fluidically coupled to the column outlet; (iv) a source of cleaning solvent that is fluidically coupled to the emitter inlet; (v) a voltage supply electrically coupled to the electrospray emitter and to a counter electrode; and (vi) a computer or electronic controller comprising computer-readable instructions that are operable to: (a) cause the voltage supply to lower a magnitude of a voltage, |V|, applied between the counter electrode and the electrospray emitter, wherein the lowering of |V| causes a change of a mode of operation of the electrospray emitter from a stable jet mode of operation to a dripping mode or a pulsating mode of operation; (b) cause at least a portion of the cleaning solvent to flow from the source of cleaning solvent to and through the electrospray emitter at least until a droplet of the cleaning solvent forms on an exterior surface of the electrospray emitter while operating the electrospray emitter in the dripping mode of operation; and (c) cause the droplet to dislodge from the electrospray emitter exterior.
According to some embodiments, the sample introduction system may further comprise a source of gas, wherein the computer-readable instructions that are operable to cause the droplet to dislodge from the electrospray emitter exterior are operable to cause the dislodgement by causing the source of gas to apply a pulse of gas to the droplet. According to some embodiments, the sample introduction system may comprise a coupling union fluidically coupled between the chromatographic column outlet and the electrospray emitter inlet, the coupling union further fluidically coupled to the source of cleaning solvent. According to some embodiments, the chromatographic column and the electrospray emitter may be housed within a same cartridge. In accordance with some embodiments, the computer-readable instructions are further operable to automatically execute the steps (a) through (c) upon the occurrence of a pre-determined number of injections of a sample or samples into the electrospray emitter subsequent to a prior cleaning of the electrospray emitter.
According to some embodiments, the computer-readable instructions are further operable to: (d) cause a cessation of the flow of cleaning solvent to and through the electrospray emitter; (e) cause a flow of liquid sample to flow from the source of sample to the column inlet; and (f) increase the magnitude of the voltage, |V|, applied between the counter electrode and the electrospray emitter by the voltage supply, wherein the increase of |V| causes a change of a mode of operation of the electrospray emitter from the dripping mode of operation to the stable jet mode of operation.
The above noted and various other aspects of the present invention will become apparent from the following description which is given by way of example only and with reference to the accompanying drawings, not necessarily drawn to scale, in which:
The following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the described embodiments will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiments and examples shown but is to be accorded the widest possible scope in accordance with the features and principles shown and described. To fully appreciate the features of the present invention in greater detail, please refer to
In the description of the invention herein, it is understood that a word appearing in the singular encompasses its plural counterpart, and a word appearing in the plural encompasses its singular counterpart, unless implicitly or explicitly understood or stated otherwise. Furthermore, it is understood that, for any given component or embodiment described herein, any of the possible candidates or alternatives listed for that component may generally be used individually or in combination with one another, unless implicitly or explicitly understood or stated otherwise. Moreover, it is to be appreciated that the figures, as shown herein, are not necessarily drawn to scale, wherein some of the elements may be drawn merely for clarity of the invention. Also, reference numerals may be repeated among the various figures to show corresponding or analogous elements. Additionally, it will be understood that any list of such candidates or alternatives is merely illustrative, not limiting, unless implicitly or explicitly understood or stated otherwise.
In this document, the term “online emitter cleaning” is used to refer to cleaning of an electrospray emitter without removal of the emitter from a mass spectrometer. The present inventors have realized that online emitter cleaning may be facilitated by making use of certain electrospray spray modes that are not generally employed during normal mass spectrometric operation. Early work by Zeleny (Zeleny, John. “The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces.” Physical Review 3, no. 2 (1914): 69.) indicated that electrospray ionization could be operated in various modes including dripping, pulsating, and a stable jet mode. For example,
In the dripping mode 162, which corresponds to plot graph segment 167 (
The present inventors have realized that online emitter cleaning may be readily achieved by temporarily switching emitter operation to the dripping mode or, less desirably, the pulsating mode of operation while causing a cleaning solvent to flow through the emitter. Such operation permits droplets of an appropriate liquid cleaning solvent to accumulate on the emitter surface. Accumulated unwanted solid residue that comes into contact with the solvent on the emitter surface will be dissolved into the droplet. Subsequent removal or expulsion of the droplet from the emitter surface then removes the dissolved residues from the emitter.
In step 304 of the method 300, a cleaning solvent is caused to flow through the electrospray emitter, while the emitter is operated in dripping mode or pulsating mode. The flow of cleaning solvent through the so-operated emitter continues at least until a droplet of the cleaning solvent forms on the emitter exterior. In step 306, the droplet is caused to dislodge from the emitter exterior, thereby removing any solid residue that dissolved into the droplet during the time that the droplet was suspended on the emitter. Because it is generally unlikely that a single droplet will dissolve all residue, the steps 304 and 306 may need to be repeated one or more times, with the emitter continuously operating in dripping are pulsating mode during the repetitions.
The dislodging of the droplet of cleaning solvent in step 306 may occur under the action of gravity. In such instances, the step 306 consists simply of waiting for the droplet to fall from the emitter surface. Alternatively, the dislodging of the droplet in step 306 may be caused or at least assisted by directing a pulse of gas towards the droplet. The pulse of gas may be supplied by a nebulizing gas orifice of the electrospray emitter, if present. Alternatively, if the first electrospray emitter does not comprise a nebulizing gas orifice, the gas pulse may be provided by an auxiliary gas line provided for the purpose of supplying the gas pulse. As a further alternative, the droplet may be dislodged by providing a voltage pulse to either the first electrospray emitter or the associated counter-electrode. Such a voltage pulse may cause a temporary discharge of liquid from an internal channel of the first electrospray emitter that physically dislodges the droplet of cleaning solvent. As a yet further alternative, voltage pulses may be applied simultaneously with the application of gas pulses.
The next three steps, comprising steps 355, 357 and 359 are then repeated a plurality of times, the repetitions preferably occurring with an approximately constant frequency. For example, the repetition frequency may be in the range of 0.01-100 Hz. The optimal frequency for any experimental configuration will depend on the liquid flow rate, the emitter internal diameter, and the liquid properties (e.g., viscosity, density, etc.) which may be functions of liquid composition and temperature.
In step 355, the magnitude of the voltage applied between the counter electrode and the emitter, |V|, is adjusted so as to establish a stable jet mode of operation. The change in |V| that is necessary for such operation may be determined by reference to a previously-determined signal versus |V| or current versus |V| map of the type depicted in
The execution of the method 350 may terminate after a certain predetermined number of repetitions of the steps 355, 357 and 359 or after a certain predetermined time duration. Alternatively, an inlet of the electrospray emitter is fluidically coupled to a source of a second cleaning solvent, having a composition that is different than that of the first cleaning solvent, in step 361. The iterative process of steps 355, 357 and 359 may then be repeated with the second cleaning solvent being caused to flow through the emitter. Cleaning with a second solvent may be necessary if more than one contaminant compound is adhered to the emitter, as indicated in
One or more cleaning solvents are supplied to electrospray emitters during execution of the cleaning methods described herein. In some instances, the cleaning solvent may be identical to a mobile phase solvent that is employed during chromatographic fractionation of samples. In such instances, if an emitter that is being cleaned is fluidically coupled to a chromatographic column, then the mobile phase solvent (being used as a cleaning solvent) may be supplied to the emitter through the coupled column. In other instances, the cleaning solvent may comprise a composition that reacts with column components in a way that either damages the column or is detrimental to the continued operation of the column. In such latter instances, the emitter should be fluidically isolated from the associated column during the cleaning. This isolation may be achieved by physically de-coupling and removing the column or its fixture from a union that otherwise joins the column and the emitter.
Unfortunately, physical removal of a column may be difficult or inconvenient if both the column and emitter are embedded within a common cartridge. To facilitate the cleaning procedure with a solvent that is incompatible with the embedded column, the cartridge may be provided with an auxiliary fluid inlet port, in accordance with certain implementations of the present teachings. Alternatively or in addition, it may be desirable to main some flow of solvent or mobile phase through the column to prevent backflow from the auxiliary port into the column.
The procedure for cleaning the emitters of the emitter cartridges 61a, 61b is as described supra. As previously noted herein, a cleaning procedure may comprise directing a pulse of gas at or towards a pendant droplet of cleaning solvent. If an emitter assembly within a cartridge comprises a nebulizing gas channel, such as the channels 118 shown in
Mechanisms for effecting the movement of the stage or platform 65 (
In step 406 of the method 400 (
Returning to the discussion of
With the first emitter being operated in either dripping mode or pulsating mode, one or more droplets or films of liquid will adhere to the emitter exterior. Such droplets are caused to dislodge from the emitter in step 416. The dislodging may occur under the action of gravity. Alternatively, the dislodging of the droplet may be caused or assisted by directing a pulse of gas towards the droplet. The pulse of gas may be supplied by a nebulizing gas orifice of the electrospray emitter or, if the electrospray emitter does not comprise a nebulizing gas orifice, by an auxiliary gas line that is directed towards the position of the first emitter in its cleaning position. As a yet further alternative, the droplet may be dislodged by providing a voltage pulse to either the electrospray emitter or its associated counter electrode or by providing both a gas pulse and a voltage pulse, either simultaneously or in sequence. The steps 414 and 416 may be repeated one or more times in order to thoroughly clean the first emitter of all contaminants. In alternative embodiments, the steps 414 and 416 may be replaced by steps similar to the steps 355, 357 and 359 of method 350 (
The emitter cleaning methods taught herein may be initiated by a decision of an instrument operator or user such as, for example, when visual inspection of the emitter or of the spray jet suggests a buildup of contaminant materials. Alternatively, these cleaning methods may be initiated executed automatically, upon an automatic check for spray stability. The check for spray stability may automatically check the signal-to-noise ratio of mass spectra of one or more standard samples relative to a first threshold value or may automatically check the relative standard deviations of peak areas of such standard samples relative to a second threshold value. The cleaning methods described herein are ideally performed when an associated chromatographic system is performing ancillary tasks, such as during a wash step of a chromatography gradient program or during a blank injection.
Methods and apparatus for improving electrospray emitter lifetimes have been herein disclosed. The discussion included in this application is intended to serve as a basic description. The present invention is not intended to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention. Instead, the invention is limited only by the claims. Various other modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. All such variations and functionally equivalent methods and components are considered to be within the scope of the invention. Any patents, patent applications, patent application publications or other literature mentioned herein are hereby incorporated by reference herein in their respective entirety as if fully set forth herein, except that, in the event of any conflict between the incorporated reference and the present specification, the language of the present specification will control.
This application is a continuation of co-pending U.S. application Ser. No. 16/690,710, now U.S. Pat. No. XX,XXX,XXX, which was filed on Nov. 21, 2019, the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 16690710 | Nov 2019 | US |
Child | 17371702 | US |