1. Field of the Invention
The present invention relates to electronic keypads and remote controls, and particularly to a method and apparatus for input to electronic devices.
2. Description of the Related Art
Input devices, such as computer keyboards, can be designed for use at a desk or at a workstation. These input devices are generally of such a size and shape to allow for relatively large-size keys. These relatively larger keys can be easier for a user to interact with and manipulate. On the other hand, certain input devices, for example those found in cellular phones, are generally smaller in size. These relatively smaller input devices can be considered to have diminished usability, because their size and shape may not allow for relatively appropriate size keys. Further, it may not be possible to place a large number of keys on a smaller input device without making keys so small that they are difficult to operate. Additionally, speed of operation can reduced in these smaller input devices, since it can be easy to press the wrong key by accident. In addition, for these smaller input devices, users may need to look down continually at the electronic device in order to operate it.
Thus, a method and apparatus for input to electronic devices solving the aforementioned problems is desired.
The apparatus for input to electronic devices has control circuitry including a gyro module, where the control circuitry further includes a microcontroller. The microcontroller includes such structures as a digital bus, a receiver/transmitter module, a plurality of digital input pins, and an analog input pin. The gyro module is connected to the microcontroller through the digital bus. The apparatus further includes a plurality of tactile switches, where the tactile switches can interact with the control circuitry by connection to the digital input pins. Further, a force sensitive resistor and a vibration motor interact with the control circuitry. The force sensitive resistor is connected to the analog input pin of the microcontroller through a voltage divider, and the vibration motor is connected to the digital bus of the microcontroller through a motor controller. Additionally, the apparatus for input includes a communications antenna, where the communications antenna is connected to the receiver/transmitter module of the microcontroller through a wireless module. A method for inputting into an electronic device includes the steps of pressing a key on the electronic device to highlight a character, and holding the key to maintain engagement of the highlighted character. Further, the method includes the steps of moving the electronic device in a field of direction, where each movement corresponds to character selection so that the highlighted character continues to be highlighted or so that a different character is highlighted. An additional step involves releasing the key to select the character.
These and other features of the present invention will become readily apparent upon further review of the following specification and drawings.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
The method and apparatus for input to electronic devices provides a mechanism for a user to operate and control various electronic devices. For example, the method and apparatus allows a user to input text and control a handheld device, such as a mobile phone. The method and apparatus can allow for typing using a reduced number of keys, for example, as compared to a traditional keyboard. The method and apparatus operate by allowing keys to move along with fingers, rather than moving the fingers to the position of the keys. Thus, the fingers and keys are moved together using simple movements of the hand. Each finger remains positioned over and operates one key during interaction with the input apparatus, Additionally, the method and apparatus for input depends on movement generated by the user. These movements can be accomplished in various manners by the user, for example by the bending or the rotation of the user's wrist.
Specific press and rotate movements are assigned coded character values such that the same movement always results in the same character being generated or selected. Through repetition these movements can be committed to muscle memory, which is generally the same mechanism that allows rapid touch typing on a standard keyboard. The method and apparatus for input to electronic devices can be implemented to control not only smart TV remotes and mobile phones, but also to provide input and control for tablets, desktop computers, game consoles, media streaming devices, smart glasses, home automation, hand scanners, smart wearables, two-way texters, and handheld computers, among other electronic devices.
Referring to
Referring to
Table 1 below shows a possible mapping of all the letters of the Latin alphabet, plus the space character to three keys using two distances of eight movements. The values can represent character symbols, command actions, or any other selectable items.
The method and apparatus for input to electronic devices can operate by tracking changes in the orientation of the user's hand while a force is being applied by the user to a button. This button can be a physical button or a virtual button, depending on the user's needs. For virtual buttons, finger movement can imply the button force. This information can be converted into numeric codes that are sent as an input to a computer, processor, controller, or other intelligent device. The application of force on a button in combination with a change of orientation of the electronic device can constitute what is referred to as a press gesture. Press gestures can be closed or open-ended. Both closed and open-ended press gestures can be initiated by an increase of force applied to a button.
A closed gesture is complete when a press force is released and results in a coded value being sent to the host computer or computer application. A closed gesture can allow a single button to replace multiple keys of a computer board. On the other hand, an open-ended gesture is paused when the press force is released and resumes when a force is reapplied. Open-ended gestures can provide a superset of the functionality of pointing mechanisms, such as computer mice and touch screens. Open-ended gestures can result in a range of numeric values being sent to the host while the button remains in a pressed state. Multiple value sets are sent, which can represent the amount of force applied to any force-sensing button, plus the distance in direction and degree of the difference in orientation of the hand from its orientation at the time of a controlling button press.
Continuing with closed gestures, closed gestures select a single value from a finite set of values. A closed gesture is similar in function to the pressing of a key on a keyboard. The selected value represents some abstraction, such as a character, symbol, or command action. An abstract software object called a selector translates press gestures into the coded values. The values generated depend on which button is pressed and the difference in orientation of the device between the press and release of a button, and optionally, the amount of force applied to the button. Selectors have both visual and tactile representations that guide their use. A visual graphic presents a set of choices arranged around a central point. Using a selector to make a selection involves pressing a key, such as key 306 and 406, while moving the device in the direction of the desired choice, as visually represented. Therefore, as a user's hand moves, choices in the graphic representation are highlighted one at a time. Releasing the button while the choice is highlighted causes a coded value corresponding to that choice to be communicated to a host application.
Referring to
Continuing with
As just mentioned, selectors can use tactile clues to allow them to be operated by feel. Tactile feedback can tell the user how far to rotate the device, and can also guide movements by the user into “tracks.” One click from the vibration motor, such as vibration motor 418, signals the highlighting of a choice adjacent to the origin point, while the next choice away is signaled by a double click. Tactile feedback can allow for faster operation than visual feedback by the same principle that makes touch typing on a computer keyboard faster than using a touch screen. Frequently repeated operations, such as typing characters, can become committed to muscle memory, which can facilitate relatively quicker operation. In addition, with practice, the graphical display of selectors may be considered unnecessary, and typing, as well as command execution, can be done by feel alone. Additional selector types can use more sophisticated haptic cues to guide operation.
Continuing with keyboards 200a and 200b, the letter highlighted depends on the degree and direction of rotation. If the electronic device is not rotated, such as electronic device 302 and 402, the letter of the selector remains highlighted. A decreased press force on the button commits the highlighted letter, which is then communicated to a local or remote application. Since only two degrees of freedom are used for the typing function, the third degree of freedom, which involves moving the device in the third perpendicular dimension, is used to switch between alternate keyboards 200a and 200b.
Shifting to an alternative character set can be accomplished by pressing a key, such as key 306 or 406, and at the same time moving the wrist up and down. Selecting an alphabetic character while shifting selects the upper case form of the character. Selecting space and shifting selects an alternate keyset. The next available keyset is displayed as being greyed out in each selector. When shifted, the alternate characters take the place of the characters on the active axes, as illustrated in
Concerning selectors and selector types, press and rotate selection has other uses beyond typing. The same method can be used for executing commands in a windowing environment or selecting values from a menu. A large variety of designs and configurations are possible for the selectors. For example, a target selector might serve as a color chooser for sixteen color choices, plus black and white. A crosshair box selector might be used for selecting a tool in place of a toolbar. The crosshair box selector can work by highlighting a choice at the intersection of crosshairs that is moved by the bending and rotation of the wrist. The list selector can provide a cascading popup menu. An icon grid selector can be used for selecting an application to run on a computer home screen, or for selecting program content from a streaming service on a TV screen. Selectors are very intuitive to use, like graphical user interface (GUI) widgets, but are relatively much faster. They can be considered much faster, since it is not required to move a mouse cursor across the screen to operate it, since pressing a key always positions the highlight at the center of the graphic.
Referring to
Continuing with
Referring to
Continuing with the keys 406, the tactile switches 408 are activated when a force is applied to any of the keys 406. The tactile switches 408 can be Dual Action Tactile Switches, which allows them the capability of sensing two levels of press force. The tactile switches 408 can allow a second set of symbols or commands to be mapped by the same buttons. For example, a firmer press of the keys 406 by the user can activate a second set of symbols. Further, selections can represent commands similar to those invoked with the control (ctrl) key two key combination shortcuts designed to speed up a graphical user interface (GUI) operations. The commands can be assigned so that there is a mnemonic relationship between the letter selected by a light press gesture, and a command is selected by the same gesture with a firm press. For example, a firm press after selecting the letter ‘c’ will invoke the copy function.
The button 410 can activate the pointer function. While the button 410 is pressed, hand movements can cause movement of a cursor on the display device and cause the three keys to function as mouse buttons. The resolution of the pointer movement is controlled by the firmness of the press of the thumb button. With a firmer press, the speed of the cursor can increase, while the resolution decreases correspondingly. A relatively lighter press can lock the cursor position while still leaving the mouse buttons active.
It should be noted that the remote control and input apparatus combination 400 is backwards compatible with existing command line and graphical user interfaces. Further, the remote control and input apparatus combination 400 can act as a human interface device (HID) and serve as a replacement for a keyboard and mouse. The ability to type via character selectors provides the ability to type commands. Additionally, open-ended press gestures can be used to position a pointer on a display. It should also be noted that detecting press amount and press rotation for the remote control and input apparatus combination 400 can be accomplished using a variety of means. For example, rotation can be calculated by sampling rotational force values provided by a gyro module, such as gyro module 512. Press amounts can be determined by sensors that convert press force into changes in resistance, capacitance, or inductance. Both rotation and press distance can be detected with a camera.
Continuing with
As shown in
Moving on to
Continuing with
Various further embodiments may be provided for the method and apparatus for input to electronic devices. One embodiment involves a “texter”, in which an input apparatus can provide text input capability to a two-way texting device. This texter device can function as a two-way pager that communicates through a cell phone network using short message service (SMS) text messages. These cell phone service providers would be able to offer a service for a text-only device.
Another embodiment involves an input apparatus being integrated into the arm of a mobility chair. For example, a grip protrudes out of the front of a chair arm that is operated by one hand, while the forearm rests on the arm of the chair. Three potentiometers that control voltage dividers serve as the rotation sensors. A rotary potentiometer attached to a rod that is free to rotate in a bearing detects wrist rotations, while two linear potentiometers are attached to hinges that detect the bending of the wrist in the two directions. The base attaches to the bottom of the chair arm. The hinges and bearing are enclosed in a housing.
Another embodiment involves a wearable input device that integrates press gesture technology into a wearable device. In this embodiment, computer vision software uses images from a camera aimed at the fingers to sense press motions of the index, middle, and ring fingers and the thumb. It also serves as the hand movement sensor to detect the bending of the wrist. A piezoelectric actuator provides tactile feedback both for finger presses and hand movements. For example, a smart watch can have an input apparatus implemented. In this embodiment, a virtual press with the index finger initiates highlighting of the center selection. Movement of the wrist moves highlighting to selections for the setting of an alarm time and state. Releasing the virtual press toggles the highlighted selection. Selecting ‘OK’ commits the settings.
It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
20020140668 | Crawford | Oct 2002 | A1 |
20030107547 | Kehlstadt et al. | Jun 2003 | A1 |
20050009481 | Bushner | Jan 2005 | A1 |
20060202954 | Ho | Sep 2006 | A1 |
20060282791 | Bogomolov | Dec 2006 | A1 |
20080079609 | Kallqvist | Apr 2008 | A1 |
20100306691 | Ardhanari | Dec 2010 | A1 |
20110132181 | Kockovic | Jun 2011 | A1 |
20110161889 | Scheer | Jun 2011 | A1 |
20110199305 | Suh | Aug 2011 | A1 |
20120075168 | Osterhout | Mar 2012 | A1 |
20120105358 | Momeyer | May 2012 | A1 |
20120206248 | Biggs | Aug 2012 | A1 |
20120293551 | Momeyer | Nov 2012 | A1 |
20130135220 | Alameh | May 2013 | A1 |
20130335373 | Tomiyasu | Dec 2013 | A1 |
20130336138 | Venkatraman | Dec 2013 | A1 |
20140004548 | Gordon | Jan 2014 | A1 |
20140181163 | Pang | Jun 2014 | A1 |
20140195985 | Yoon | Jul 2014 | A1 |
20140206253 | Huyck | Jul 2014 | A1 |
20140223553 | Gupta | Aug 2014 | A1 |
20140267104 | Ahmed | Sep 2014 | A1 |
20140300571 | Tomizu | Oct 2014 | A1 |
20140308973 | Garin | Oct 2014 | A1 |
20150124396 | Ivanchenko | May 2015 | A1 |
20150279589 | Park | Oct 2015 | A1 |
20160048266 | Smith | Feb 2016 | A1 |
20160235239 | Patadia | Aug 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20160328024 A1 | Nov 2016 | US |