The present disclosure relates to an upper coupler assembly for use with a semi-trailer. More particularly, the present disclosure relates to the configuration and method of making a galvanized upper coupler assembly.
Cargo vehicles, such as semi-trailers, van-type trailers, flatbed or platform type trailers, container chassis and cargo containers, are known. Cargo vehicles include articulated vehicles which have a permanent or semi-permanent pivoting joint as part of the vehicle's structure. The forward underbody of a trailer includes an upper coupler assembly having a kingpin configured to couple the trailer to a fifth wheel (also known as a lower coupler) of the tractor.
When in motion, the upper coupler assembly of a trailer is subjected to a spray of road debris from the tractor's tires which may include sand, gravel, ice and snow, as well as the chemicals used to remove snow and ice. This spray of various materials promotes corrosion of the upper coupler assembly which acts on both its external and internal surfaces. Historically, trailer upper coupler assemblies have been coated externally and internally with a variety of well known materials and methods (the usual coatings are alkyd and epoxy paints and “undercoating s” such as sulfonated wax systems or water emulsified asphaltic coatings).
Galvanizing is a well-known method to protect against corrosion. However, the kingpin used in semi-trailers is typically made of alloy steel heat treated by quenching and subsequent tempering to achieve appropriate strength and wear resistance. If subjected to the galvanization process, a kingpin may lose its strength and wear resistance or become subject to hydrogen embrittlement as a result of the plating process.
It is the purpose of this invention to provide a partially galvanized upper coupler, which is also usable with the lower coupler on the truck tractor.
The present disclosure includes a method of making a partially galvanized upper coupler assembly for use in a trailer. The method comprises the steps of providing a frame, covering at least one area of the frame with a mask, galvanizing the portions of the frame that are not covered by the mask, removing the mask, providing a kingpin, and attaching the kingpin to the frame. After attachment of the kingpin to the frame, the combined assembly can be coated with a rust resistant coating. If desired, a cover plate can be attached to the frame, over the kingpin.
The present disclosure also includes an upper coupler assembly for a trailer. The upper coupler assembly comprises a frame including a wall having an upper surface, a lower surface, and an aperture extending therethrough, and a kingpin received in the aperture. The intersection of the kingpin and the wall define an upper surface area adjacent the kingpin and a lower surface area adjacent to the kingpin. The upper surface is substantially covered with a galvanizing coating, leaving the upper surface area uncovered by the galvanizing coating.
The above-mentioned and other features of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of the present invention, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate and explain the present invention.
While the invention may be susceptible to embodiment in different forms, there is shown in the drawings, and herein will be described in detail, a specific embodiment with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention, and is not intended to limit the invention to that as illustrated and described herein.
As best shown in
The lower walls 26, 28, 30 are adjacent to each other, and wall 28 is positioned between walls 26 and 30. Wall 26 is connected to the lower surfaces of the front channel 24 and the side bars 22; walls 28, 30 are connected to the lower surfaces of the side bars 22. Wall 28 has an aperture 32 therethough which receives kingpin spool 16a therethrough as described herein.
Bolsters 34, 36 are mounted on plate 28. Additional bolsters may be provided on the other plates 26, 30, if desired. The bolsters 34, 36 extend across plate 28 and are connected to side bars 22.
As best shown in
Bolster 36 has first and second spaced apart vertical walls 36a, 36b and a third horizontal wall 36e. The first and second walls 36a, 36b are attached to and extend upwardly from plate 28 and are parallel to the front channel 24, such that the first and second walls 36a, 36b are perpendicular to the plate 28. The third horizontal wall 36c connects the first and second walls 36a, 36b at the top ends thereof. The third horizontal wall 36c includes a horizontal main portion 46 and a stepped down- or offset portion 48 which is horizontal, but offset from the main portion 46. The main portion 46 commences at the first wall 36a and extends therefrom to the stepped down or offset portion 48. The stepped down or offset portion 48 terminates at the second wall 36b.
Walls 34b and 36b and stepped down or offset portions 44 and 48 are proximate to each other, but are spaced apart from. each other. As a result, a U-shaped channel 50 is defined by walls 34b, 36b and the portion of the wall 28 provided therebetween. The aperture 32 in the wall 28 is positioned entirely between the walls 34b, 36b.
The ribs 40 conform to the shape of the channel 50 and span distance between walls 34b, 36b to rigidify the structure. The ribs 40 are attached to walls 34b, 36b and wall 28. The ribs 40 are spaced apart from each other and do not overlap the aperture 32.
The cover plate 20, if one is provided, extends over the channel 50 and is attached by suitable means, such as welding, as described herein.
A method of assembly of the upper coupler assembly 14, including the galvanization of the upper coupler assembly 14 and the attachment of kingpin 16 will now be described. It should be understood that while one embodiment of the upper coupler assembly 14 will be described, that multiple other possible embodiments exist, which could be manufactured according to the following method.
The upper coupler assembly 14 is manufactured by assembling the frame 18 as described hereinabove as shown in
A mask 54, which in the embodiment shown in
As best shown in
With the masks 54, 56, 58, 64 applied to the frame 18, the frame 18 is then galvanized according to well-known commercial means to substantially cover the frame 18 with a zinc solution plating (shown in partial form (in stippling) as galvanized coating 100 in
After galvanization, the masks 54, 56, 58, 64 are removed from the frame 18 to expose the ungalvanized steel of the frame 18 underneath the masks 54, 56, 58, 64.
With reference now to
The kingpin 16 is then positioned within kingpin receiving area 60, see
As best shown in
As best shown in
With reference again to
With reference now to
While the frame 18 is shown in a particular configuration, it would be obvious to one of ordinary skill in the art that other frame designs can be provided.
While preferred embodiments of the present invention are shown and described, it is envisioned that those skilled in the art may devise various modifications of the present invention without departing from the spirit and scope of the appended claims.
This application is a division of U.S. patent application Ser. No. 12/703,436 filed Feb. 10, 2010, which claims the domestic benefit of U.S. Provisional Application Ser. No. 61/214,242 filed on Apr. 21, 2009, which disclosures are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2897588 | Chapman | Aug 1959 | A |
3149987 | Crandall | Sep 1964 | A |
3612569 | Marinelli | Oct 1971 | A |
3633941 | Pleier | Jan 1972 | A |
3990720 | Schwartz | Nov 1976 | A |
4946184 | Laroco | Aug 1990 | A |
6623868 | Shindou et al. | Sep 2003 | B1 |
20070007794 | Bertoch et al. | Jan 2007 | A1 |
20070194564 | Garceau et al. | Aug 2007 | A1 |
20070210614 | Chandler | Sep 2007 | A1 |
20080202211 | Wetzig | Aug 2008 | A1 |
20080258429 | Lefebvre | Oct 2008 | A1 |
20090020577 | Johnson et al. | Jan 2009 | A1 |
20090049673 | Xammar | Feb 2009 | A1 |
20090224512 | Winter et al. | Sep 2009 | A1 |
20100148475 | Serre | Jun 2010 | A1 |
Entry |
---|
Office Action dated Jun. 5, 2012 for corresponding U.S. Appl. No. 12/703,436. |
Response to Office Action dated Jun. 5, 2012 for corresponding U.S. Appl. No. 12/703,436. |
Final Office Action dated Dec. 3, 2012 for corresponding U.S. Appl. No. 12/703,436. |
Response to Final Office Action dated Dec. 3, 2012 for corresponding U.S. Appl. No. 12/703,436. |
Number | Date | Country | |
---|---|---|---|
20130067722 A1 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
61214242 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12703436 | Feb 2010 | US |
Child | 13677981 | US |