The present invention relates to methods of and apparatus for quenching a reactive medium containing gas or vapor phase in order to produce uniform and ultrasmall nanoparticles.
Gas or vapor phase particle production is an important technique for producing engineered nanoparticles. In a particle-producing reactor, basic product species are formed within extremely short time spans following ejection of a hot, reactive medium from an energy delivery zone. Following ejection from the delivery zone, further formation mechanisms determine the ultimate characteristics of the final product.
Although chemical reactions such as nucleation and surface growth within precursor materials occur largely during energy delivery, these formation mechanisms continue to be active in the first short moments following ejection. More prevalent in the post-ejection time period are bulk formation mechanisms such as coagulation and coalescence, which operate on already formed particles. Any proper conditioning of the hot, reactive medium following ejection from the energy delivery zone must account for these and other formation mechanisms to form a final product having desired characteristics. In some instances, maintaining a mixture at too high a temperature can lead to overly agglomerated particles in the final product.
In addition to particle formation, proper conditioning must account for post-formation processing of the product. Although particles, once formed, cool rapidly through radiative heat loss, the residual gas in which they are entrained after formation cools much more slowly, and especially so when confined. Confinement is necessary to some degree in any controlled-environment processing system, and economic concerns usually dictate relatively small, confining controlled environments. Therefore, such systems must provide efficient mechanisms for cooling of the entire gas-particle product, yet also provide for efficient transport of the product to collection points within the system.
Transport of particles within a gas stream relies on the entrainment of the particles, which is largely a function of particle properties, e.g., mass, temperature, density, and interparticle reactivity, as well as gas properties, e.g., density, velocity, temperature, density, viscosity, and composite properties, such as particle-gas reactivity. Cooling of a gas by definition affects gas temperature, but also may easily lead to changes in other properties listed above, exclusive of mass.
What is needed in the art is a method of and an apparatus for balancing efficient cooling and transport of a gas-particle product, which requires careful optimization of process parameters.
In the embodiments of the present invention, features and methods are included to ensure extremely rapid quenching of reactive mixtures from vapor phase to solid phase, thereby producing uniform nanoparticles.
In one aspect of the present invention, a particle production system is provided. The system comprises a plasma production chamber configured to produce a plasma stream. A reaction chamber is fluidly coupled to the plasma production chamber and has an ejection port. The reaction chamber is configured to receive the plasma stream from the plasma production chamber, vaporize a precursor material with the plasma stream to form a reactive mixture stream comprising the vaporized precursor material entrained within plasma stream, and supply the reactive mixture stream to the ejection port. The system also comprises a quench chamber having a wide end, a narrow end, a frusto-conical surface that narrows as it extends from the wide end to the narrow end away from the ejection port of the reaction chamber, a cooled mixture outlet formed at the narrow end, and a quench region formed within the quench chamber between the ejection port and the cooled mixture outlet. The quench region is fluidly coupled to the ejection port of the reaction chamber and is configured to receive the reactive mixture stream from the ejection port of the reaction chamber, to cool the reactive mixture stream to form a cooled mixture stream, and to supply the cooled mixture stream to the cooled mixture outlet. A conditioning fluid injection ring is disposed at the ejection port of the reaction chamber and configured to flow a conditioning fluid directly into the reactive mixture stream as the reactive mixture stream flows through the ejection port of the reaction chamber, thereby disturbing the flow of the reactive mixture stream, creating turbulence within the quench region and cooling the reactive mixture stream to form a cooled mixture stream comprising condensed nanoparticles.
In another aspect of the present invention, a method of producing uniform particles is provided. The method comprises producing a plasma stream within a plasma production chamber, applying the plasma stream to a precursor material, and vaporizing the precursor material with the plasma stream within a reaction chamber, thereby forming a reactive mixture stream comprising the vaporized precursor material entrained within the plasma stream. The reaction chamber is fluidly coupled to the plasma production chamber and has an ejection port. The reactive mixture stream flows through the ejection port and into a quench region of a quench chamber. The quench chamber has a wide end, a narrow end, a frusto-conical surface that narrows as it extends from the wide end to the narrow end away from the ejection port of the reaction chamber, a cooled mixture outlet formed at the narrow end, and the quench region formed within the quench chamber between the ejection port and the cooled mixture outlet. A conditioning fluid flows through an injection ring disposed at the ejection port of the reaction chamber. The conditioning fluid flows directly into the reactive mixture stream as the reactive mixture stream flows through the ejection port of the reaction chamber, thereby disturbing the flow of the reactive mixture stream and creating turbulence within the quench region. The reactive mixture stream is quenched within the quench region to form a cooled mixture stream comprising condensed nanoparticles. The cooled mixture stream flows through the cooled mixture outlet of the quench chamber.
In preferred embodiments, the quench chamber further comprises an annular supply portion disposed between the perimeter of the reaction chamber and the frusto-conical surface. The annular supply portion supplies a conditioning fluid into the quench region in an annular formation along a path different from the flow of the conditioning fluid through the conditioning fluid injection ring. In some embodiments, the annular supply portion comprises a plurality of supply ports disposed in an annular formation around the reaction chamber. In other embodiments, the annular supply portion comprises one continuous supply port disposed in an annular formation around the reaction chamber.
In preferred embodiments, the conditioning fluid injection ring flows the conditioning fluid directly into the reactive mixture stream at an angle substantially perpendicular to the flow of the reactive mixture stream.
In some embodiments the conditioning fluid is a gas. In some embodiments, the conditioning fluid is super-cooled gas or liquid gas, including, but not limited to, liquid nitrogen and liquid helium. The type and form of the conditioning fluid flowing through the injection ring can be the same or different from the conditioning fluid flowing through the annular supply portion.
It is contemplated that the plasma stream can be produced in a variety of ways. However, in a preferred embodiment, the plasma production chamber produces the plasma stream by energizing a working gas.
In some embodiments, the precursor material flows directly into the plasma production chamber via a precursor supply port on the plasma production chamber prior to its vaporization. Additionally or alternatively, the precursor material can flow directly into the reaction chamber via a precursor supply port on the reaction chamber prior to its vaporization.
In preferred embodiments, the reaction chamber comprises an insulating material, thereby forming a enthalpy maintenance region within the reaction chamber. In this respect, the enthalpy of the reactive mixture stream can be maintained at a predetermined threshold level for a period of time within the enthalpy maintenance region of the reaction chamber. Preferably, the reaction chamber comprises a ceramic material.
In preferred embodiments, a collection device is fluidly coupled to the cooled mixture outlet of the quench chamber via a conduit. The conduit preferably has substantially the same diameter as the cooled mixture outlet. The collection device receives the cooled mixture stream from the quench region and separates condensed particles from the cooled mixture stream. Ideally, these condensed particles are nanoparticles.
The description below concerns several embodiments of the invention. The discussion references the illustrated preferred embodiment. However, the scope of the present invention is not limited to either the illustrated embodiment, nor is it limited to those discussed. To the contrary, the scope should be interpreted as broadly as possible based on the language of the Claims section of this document.
In the following description, numerous details and alternatives are set forth for purpose of explanation. However, one of ordinary skill in the art will realize that the invention can be practiced without the use of these specific details. In other instances, well-known structures and devices are shown in block diagram form in order not to obscure the description of the invention with unnecessary detail.
This disclosure refers to both particles and powders. These two terms are equivalent, except for the caveat that a singular “powder” refers to a collection of particles. The present invention may apply to a wide variety of powders and particles. Powders that fall within the scope of the present invention may include, but are not limited to, any of the following: (a) nano-structured powders (nano-powders), having an average grain size less than 250 nanometers and an aspect ratio between one and one million; (b) submicron powders, having an average grain size less than 1 micron and an aspect ratio between one and one million; (c) ultra-fine powders, having an average grain size less than 100 microns and an aspect ratio between one and one million; and (d) fine powders, having an average grain size less than 500 microns and an aspect ratio between one and one million.
The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like elements.
Preferably, the dimensions of the quench chamber of the present invention have the following general relationships: the diameter of the wide end is substantially greater than that of the ejection port of the reaction chamber, the diameters of the one or more conditioning fluid supply ports are substantially smaller than that of the injection port, the diameter of the narrow end of the constricting chamber is substantially smaller than the diameter of the wide end and substantially equal to the diameter of the ejection port. Additionally, because of the inclusion of the annulus of smaller ports, the diameter of the ejection port is necessarily smaller than that of the wide end of the quench chamber. More specifically, the constricting chamber preferably has a first dimension of approximately 12 inches, constricting to a second dimension of approximately two inches over a distance of 24 inches. Preferred aspect ratios, i.e., ratios of the first diameter to the distance between the first and second ends, range between one to three and one to two.
Flow of the conditioning fluid into the one or more supply ports is preferably caused by formation of a negative pressure differential with the cooled mixture outlet, which also aids in maintaining flow of the mixture through the chamber. This negative pressure differential is preferably formed by fluidly coupling a suction generator or vacuum formation system with the cooled mixture outlet. In alternative embodiments, active injection of conditioning fluid is contemplated, but this scheme has many disadvantages when compared to passively drawing conditioning fluid into the system by vacuum.
Because the present invention preferably uses a pressure differential to motivate flow of the conditioning fluid through the one or more supply ports, variation of the combined surface area of the one or more supply ports allows variation of the flow rate of conditioning fluid. As described below, in some configurations a difference in flow rates between the conditioning fluid sheath and the reactive gas vapor contributes to a conditioning effect of the fluid. Therefore, adjustment of the flow rate of the conditioning fluid permits optimization of the conditioning effect that a flow rate differential provides.
Within the present invention, many configurations of the smoothly varying constrictions of the chamber are contemplated. In the preferred embodiments, these constrictions will smoothly vary in such a way so as to accelerate fluid flow and provide a Venturi-effect pressure differential within the quench chamber. In general, the constriction shape is determined while accounting for several factors affecting the conditioning of the reactive gas-vapor. Two factors are of major concern. First, adequate space must be provided within the region proximal to the first end of the constricting chamber to accommodate rapid expansion of the hot gas-vapor following its flowing into the chamber. Second, constriction of the chamber within the region proximal to the narrow end of the constricting chamber must not occur so rapidly that undue turbulence is introduced into the gas-vapor as it flows to the cooled mixture outlet. For any chamber having fixed length between the wide and narrow ends, these requirements present contradictory design concerns. However, the several embodiments of the present invention include designs that accommodate both concerns.
In a preferred configuration for constrictions within the quench chamber, a cone like (frusto-conical) surface constricts, at a constant rate or otherwise, from the wide end to the cooled mixture outlet at the narrow end. The quench chamber of the present invention preferably comprises a thin shell. The exterior of the quench chamber is can be cooled by a fluid cooling system, to dissipate heat absorbed into the body of the quench chamber from the gas particle mixture. As mentioned above, this heat will primarily be supplied to the quench chamber body in the form of radiation from the newly formed particles as the rapidly cool within the quench chamber. In order to avoid overheating of the chamber body, the fluid cooling system is preferably included.
The present invention considers a wide variety of gas phase particle production systems including combustion-based systems, plasma based systems, laser ablation systems and vapor deposition systems. The preferred systems take material inputs in a broad range of forms, including solid phase inputs, and provide product in high surface area forms, including nanopowders. In addition, the process controls preferably provide a fine degree over a plurality of reaction parameters, permitting fine gradients of product composition ratios to be produced.
A wide variety of material types and forms can be processed in preferable particle production reactors used in the present invention. Without prejudice, the present invention specifically considers the provision of materials in the following forms: solid, liquid and gas. An exemplary particle production system is a plasma powder production reactor, which is included within several of the exemplary embodiments discussed below. The plasma reactors considered within the present invention can have many means of energy delivery, including the following: DC coupling, capacitive coupling, inductive coupling, and resonant coupling. In general, vapor phase nanopowder production means are preferred. The embodiments of the present invention can use elements of nano-powder production systems similar to those disclosed in U.S. patent application Ser. No. 11/110,341, filed on Apr. 19, 2005 and entitled, “HIGH THROUGHPUT DISCOVERY OF MATERIALS THROUGH VAPOR PHASE SYNTHESIS”, which is currently published as U.S. Publication No. 2005-0233380-A. In such a nano-powder production system, working gas is supplied from a gas source to a plasma reactor. Within the plasma reactor, energy is delivered to the working gas, thereby creating a plasma. A variety of different means can be employed to deliver this energy, including, but not limited to, DC coupling, capacitive coupling, inductive coupling, and resonant coupling. One or more material dispensing devices introduce at least one material, preferably in powder form, into the plasma reactor. The combination within the plasma reactor of the plasma and the material(s) introduced by the material dispensing device(s) forms a highly reactive and energetic mixture, wherein the powder can be vaporized. This mixture of vaporized powder moves through the plasma reactor in the flow direction of the working gas.
Referring now to
The plasma production unit 120 is configured to produce a plasma stream within the plasma production chamber 125. It is contemplated that the plasma stream can be produced in a variety of ways. However, in a preferred embodiment, a working gas flows from a working gas supply device 110 into the plasma production chamber 125, where energy is delivered to it, thereby forming the plasma stream. Preferably, an overall system controller provides control signals to the working gas supply device 110. Additionally, a power supply system (not shown) can also be coupled to the plasma production chamber 125. Preferably, the overall system controller provides control signals to the power supply system as well.
A reaction chamber 140 is fluidly coupled to the plasma production chamber 125 and configured to receive the plasma stream from the plasma production chamber 125. In a preferred embodiment, the reaction chamber 140 has a larger diameter than the plasma production chamber 125.
In some embodiments, the plasma production chamber 125 is fluidly coupled with a material supply device 130, thereby allowing precursor material, such as powder, from the material supply device 130 to be delivered directly into the plasma production chamber 125. Precursor material is stored within the material supply 130. A material supply conduit preferably passes from the material supply device 130 to the plasma production chamber 125. The material supply device 130 preferably includes a controllable delivery system that provides material to the conduit. Preferably, the conduit enters though airtight seals and terminates within the plasma production unit 120 at a selected location. Furthermore, an overall system controller is preferably configured to supply control signals to the material supply device 130. Additionally or alternatively, the material supply device 130 can be fluidly coupled directly to the reaction chamber 140, thereby allowing precursor material from the material supply device 130 to be delivered directly into the reaction chamber 140.
In embodiments where the precursor material is delivered into the plasma production chamber 125, the plasma stream mixes with the precursor material, forming a reactive mixture stream. The coupling between the plasma production chamber 125 and the reaction chamber 140 permits delivery of the mixture stream from the plasma production unit 120 into the reaction chamber 140.
In some embodiments, portions of the reaction chamber 140 are constructed of an insulating material configured to maintain the enthalpy of a plasma stream within a portion thereof above a predetermined threshold. Preferably, maintaining the enthalpy of the plasma extends a resonance time of the plasma within the reaction chamber 140. In some embodiments, portions of the reaction chamber 140 are constructed of a material with high thermal durability. In these embodiments, the portions so constructed are configured to attain a high temperature during operation of the reaction chamber 140. In some embodiments, portions of the reaction chamber 140 are constructed of a ceramic material. Preferably, the material used is boron nitride.
Within the reaction chamber 140, the plasma stream preferably vaporizes the precursor material, thereby forming a reactive mixture stream comprising the vaporized precursor material entrained within the plasma stream. In some embodiments, this vaporization of precursor material can begin in the plasma production chamber 125 if the precursor material is introduced into the plasma production chamber 125.
Preferably, reaction chamber 140 is shaped and the operational parameters of the system 100 are controlled so that as the mixture stream enters the reaction chamber 140, it is maintained above an enthalpy threshold. This maintenance takes place within an enthalpy maintenance region somewhere within the reaction chamber 140. Preferably, the average enthalpy of the mixture stream falls as it moves away from the enthalpy maintenance region with its minimum enthalpy (within the reaction chamber 140) coming at the ejection port to the quench region 155. In some embodiments, the resonance time of the mixture within the chamber 140 is above a threshold length of time controlled by an overall system controller.
Furthermore, in some embodiments of the present invention, the reaction chamber 140 is constructed and the operational parameters of the apparatus 100 are chosen so that the vaporized precursor material begins to condense within the mixture stream while it is within the reaction chamber 140. In some other embodiments, construction and operational parameters of the system 100 are chosen so that the vaporized precursor material begins to condense within the mixture stream while it is within the quench region 155.
A quench chamber 150 is fluidly coupled to the reaction chamber 140 through an ejection port at the end of the reaction chamber 140. The ejection port is configured to supply the reactive mixture stream from the reaction chamber 140 into a quench region 155 of the quench chamber 150. In a preferred embodiment, the reaction chamber 150 has a frusto-conical shape, narrowing as it extends away from the ejection port and towards a cooled mixture outlet. Although the figures show quench chamber 150 substantially open at the wide end, preferably the wide end of the quench chamber 150 is substantially closed except for fluid ports through which a fluid can be received. The cooled mixture outlet is disposed at the narrow end of the quench chamber 150 that preferably leads into a cooling conduit 160. The quench region 155 is formed within the quench chamber 150 between the ejection port of the reaction chamber 140 and the cooled mixture outlet. In a preferred embodiment, an annular supply portion is formed between the perimeter of the reaction chamber 140 and the quench chamber 150. This annular supply portion can comprise a plurality of supply inlets or one continuous supply inlet disposed in an annular formation around the ejection port of the reaction chamber 140. The annular supply portion is configured to supply a conditioning fluid, preferably from a conditioning fluid supply device, to the quench region 155. In a preferred embodiment, these supply inlets are channels of adjustable size that directly couple the conditioning fluid supply to the quench region 155, yet permit for controlled flow of the conditioning fluid to the quench region 155. In
Motive fluid flow within the system can be motivated by a suction generator 180, such as a motive vacuum pump, pulling a negative pressure on a cooling conduit 160 that is fluidly coupled to the cooled mixture outlet of the quench chamber 150, thereby motivating mass flow through the outlet of the quench region 155. However, the flow rate of the motive fluid into the quench region 155 is preferably controlled by the overall control system.
The cooling conduit 160 receives the particle and gas mixture from the quench region 155. Preferably, the mixture is pulled into the cooling conduit 160 by the suction generator 180. However, in some embodiments, a motive pump or other system within a sampling or collection device 170 provides some motive force to pull the mixture. Of course, to some extent, pressure provided by the plasma production chamber 125 and the conditioning fluid supply can motivate the flow of the mixture into the cooling conduit 160.
In some embodiments, the cooling conduit 160 is equipped with an active cooling system. In some embodiments, a conditioning fluid, such as argon, is supplied into the gas input couplings of the cooling conduit 160. In some of these embodiments, the conditioning fluid is a cooling and entraining gas. In some of these embodiments, the conditioning fluid is a passivating gas.
The cooling conduit 160 fluidly connects the quench region 155 with a sampling or collection device 170. The conduit 160 is preferably coupled to the quench region 155 through airtight means. The collection device 170 is preferably positioned between the cooling conduit 160 and the suction generator 180. The collection device 170 is configured to receive the cooled mixture via the cooling conduit 160, sample or collect material, such as condensed particles, having appropriate characteristics from the mixture, and permit remains of the mixture to flow to the suction generator 180, which is fluidly coupled through a conduit. Furthermore, the collection device 170 can take multiple samples, at selected times, and can sample discontinuously, which allows for sampling from a gas-particle streams whose composition may vary from time to time without contamination from previous product.
It is contemplated that the collection device 170 can be configured in a variety of ways. In one embodiment, the collection device 170 comprises a sampling structure, at least one filled aperture formed in the sampling structure, and at least one unfilled aperture formed in the sampling structure. Each filled aperture is configured to collect particles from the mixture stream, such as by using a filter. The sampling structure is configured to be adjusted between a pass-through configuration and a collection configuration. The pass-through configuration comprises an unfilled aperture being fluidly aligned with a conduit, such as the cooling conduit 280, thereby allowing the unfilled aperture to receive the mixture stream from the conduit and the mixture stream to flow through the sampling structure without substantially altering the particle content of the mixture stream. The collection configuration comprises a filled aperture being fluidly aligned with the conduit, thereby allowing the filled aperture to receive the mixture stream and collect particles while the mixture stream is being flown through the filled aperture.
It is contemplated that the sampling structure can be adjusted between the pass-through configuration and the collection configuration in a variety of ways. In one embodiment, the sampling structure is a disk-shaped structure including an annular array of apertures, wherein the annular array comprises a plurality of the filled apertures and a plurality of the unfilled apertures. The sampling structure is rotatably mounted to a base, wherein rotational movement of the sampling structure results in the adjustment of the sampling structure between the pass-through configuration and the collection configuration. In another embodiment, the sampling structure is a rectangular-shaped structure including a linear array of apertures, wherein the linear array comprises a plurality of the filled apertures and a plurality of the unfilled apertures. The sampling structure is slideably mounted to a base, wherein sliding of the sampling structure results in the adjustment of the sampling structure between the pass-through configuration and the collection configuration.
As mentioned above, the collection device 170 preferably permits the suction generator 180 to provide a motive force therethrough. However, in some embodiments, the collection device 170 provides additional motive force. In some embodiments, a collection device 170 supplants the motive force provided by the suction generator 180 and provides a substitute motive force to the cooling conduit 160.
The overall control system (not shown) sends signals to the working gas supply 110 and power supply to set operational parameters. Parameters for the working gas supply 110 determine the rate at which the working gas feeds into the plasma production chamber 125. Power supply parameters determine the voltage and amperage at which power is supplied to the plasma production chamber 125. In combination, these parameters determine the characteristics of the plasma produced within the plasma production chamber 125. Furthermore, the material supply device 130 provides a metered stream of material through the material supply conduit to the conduit's terminus location within the plasma production chamber 125. This exposes the material to plasma within the chamber. The rate at which material is provided into the chamber 125 preferably is determined by the overall control system. This rate, and other system parameters, determines characteristics of the mixture stream formed within the plasma production chamber 125. Furthermore, although the material supply device 130 is described as providing only a single material into the plasma production chamber 125 at a single location, in some embodiments of the present invention, the material supply device 130 supplies a plurality of materials into the plasma production chamber 125 and/or the reaction chamber 140 at one or more locations.
In the system 100, the mass flow rate of material through the system is controlled to permit effective quenching at achievable conditioning fluid flow rates. Preferably, this rate is controlled via the mass flow rate of material into the plasma production chamber 125. Specifically, the material supply device 130 and the control system are configured to control a mass flow rate delivery of the precursor material into the plasma stream to achieve a rate that permits cooling of the mixture stream to one quarter of the melting point of the material extremely rapidly. Preferably, this flow rate is selected with reference to achievable conditioning fluid flow rates within the quench region 155 and with reference to achievable turbulence within the quench region 155.
While the configuration of system 100 provides an improvement in terms of quench rate over the prior art, the quench rate can be further improved.
It is contemplated that the injection ring can be configured in a variety of ways. In preferred embodiments, the injection ring flows the conditioning fluid directly into the reactive mixture stream at an angle substantially perpendicular to the flow of the reactive mixture stream. However, it is contemplated that other injection angles are within the scope of the present invention as well. Furthermore, in a preferred embodiment, the injection ring comprises a plurality of injection ports, such as nozzle structures 352 and 354, disposed in an annular configuration around flow of the reactive mixture. The injection ring is configured to induce a high degree of turbulence within the conditioning fluid and the reactive mixture, and ultimately the quench region 155.
As the reactive mixture moves out of the reaction chamber 140, it expands and mixes with the conditioning fluid. Parameters related to conditioning fluid supply are controlled to permit the nozzles 352 and 354 to produce a high degree of turbulence and promote mixing with the reactive mixture. This turbulence can depend on many parameters. Preferably, one or more of these parameters are adjustable to control the level of turbulence. These factors include, but are not limited to, the flow rates of the conditioning fluid and any modification to the flow path of the fluid.
After entering the quench region 155, particle formation mechanisms are active. The degree to which the particles agglomerate depends on the rate of cooling. The cooling rate depends on the turbulence of the flow within the quench region. Preferably, the system is adjusted to form a highly turbulent flow, and to form very dispersed particles. For example, in preferred embodiments, the turbidity of the flow within the quench region is such that the flow has a Reynolds Number of at least 1000. Preferably, the turbulence is controlled to achieve a rate of cooling of the mixture stream that moves the mixture stream temperature to one quarter of the melting point of the material within a very short time after the reactive mixture exits the reaction chamber 140.
Following injection into the quench region, cooling, and particle formation, the mixture flows from the quench chamber 150 into the cooling conduit 160. Suction generated by an external device, such as the suction generator previously discussed, preferably moves the cooled mixture from the quench region 155 into the conduit 160. The cooled mixture can flow to a collection or sampling device, such as described above with respect to
In
It is contemplated that in addition to a gas being used as the conditioning fluid, a super-cooled gas, or liquid gas, can be used as the conditioning fluid. Such conditioning fluids include, but are not limited to, liquid nitrogen and liquid helium. In
Preferably the temperature of the liquid and the flow rate thereof are configured to achieve a rate of cooling of the mixture stream that moves the mixture stream temperature to one quarter of the melting point of the material within an extremely short time after the reactive mixture leaves the reaction chamber 140. The hot reactive mixture absorbs the moisture from the quench liquid, thus resulting in an increased quench rate above that achieved by only using a quench gas. Preferably the temperature and conditioning liquid flow rate are selected with reference to desired mass flow rates within the system.
At step 510, a plasma stream is produced within a plasma production chamber. It is contemplated that the plasma stream can be produced in a variety of ways. However, in a preferred embodiment, the plasma production chamber produces the plasma stream by energizing a working gas that flows through the chamber.
At step 520, the plasma stream is applied to a precursor material, thereby vaporizing the precursor material. This application of the plasma stream to the precursor material can tale place in the plasma production chamber and/or in a reaction chamber fluidly coupled to the plasma production chamber. Either way, the plasma stream flows into the reaction chamber and a reactive mixture stream is formed within the reaction chamber. The reactive mixture stream preferably comprises the vaporized material entrained within the plasma stream.
At step 530, the reactive mixture stream flows through the ejection port of the reaction chamber and into a quench region of a quench chamber. The quench chamber has a wide end, a narrow end, a frusto-conical surface that narrows as it extends from the wide end to the narrow end away from the ejection port of the reaction chamber, a cooled mixture outlet formed at the narrow end, and the quench region formed within the quench chamber between the ejection port and the cooled mixture outlet.
At step 540, a conditioning fluid flows through an injection ring disposed at the ejection port of the reaction chamber. The conditioning fluid flows directly into the reactive mixture stream as the reactive mixture stream flows through the ejection port of the reaction chamber, thereby disturbing the flow of the reactive mixture stream and creating turbulence within the quench region. As discussed above, the conditioning fluid is preferably a gas or a liquid gas. Additionally, or alternatively, the conditioning fluid can be supplied through the annular supply portion disposed between the perimeter of the reaction chamber and the quench chamber.
At step 550, the reactive mixture stream is rapidly quenched within the quench region to form a cooled mixture stream. The cooled mixture stream preferably comprises condensed nanoparticles.
At step 560, the cooled mixture stream flows through the cooled mixture outlet of the quench chamber to a collection device, preferably via a conduit. In a preferred embodiment, the conduit has substantially the same diameter as the cooled mixture outlet.
At step 570, the collection device separates condensed particles from the cooled mixture stream as the cooled mixture stream flows through the collection device. In a preferred embodiment, the collection device separates the condensed particles from the cooled mixture stream by using one or more filters.
The vertical axis of the graph charts mixture temperature. The oval legends denote phases of matter for the material being operated on by the apparatus. Vapor is on top, below that liquid, and below that solid. The dashed lines indicate critical temperatures relative to the material concerned. The ‘bp’ line denotes boiling point, the ‘mp’ line denoted melting point. The ‘mp/4’ line denotes one quarter of the material melting point.
Within the plasma production chamber 125, the temperature rapidly increases, causing sublimation of the material from solid phase to vapor phase. As the mixture moves into the reactor chamber, 140 the temperature and enthalpy of the mixture remain substantially constant, staying within the vapor phase of the material. However, as the mixture moves to the end of the reaction chamber 140, the temperature decreases, reaching a minimum (within the reaction chamber) at the downstream edge of the reaction chamber 140.
Once ejected, the mixture enters the quench region 155, where it expands and cools rapidly. One or more of highly turbulent flow, sufficiently low mass flow rate, and liquid quenching with super cooled gas forms sufficient mixing of the mixture with conditioning fluid to cool the mixture smoothly and rapidly through ‘bop’, liquid phase, ‘mp’ and part of solid phase to ‘mp/4’ within a short enough time to avoid undesired agglomeration and promote the production of uniform nanoparticles. The supply of conditioning fluid through the annular supply portion results in the quench rate illustrated as line 210. While this quench rate is a substantial improvement over the prior art, the use of the injection ring and/or the liquid gas results in an even faster quench rate illustrated as line 210′.
During resonance within the reaction chamber and quench region, particles form. Because the mixture is cooled rapidly, there is a short time period during which agglomeration occurs. As the mixture of particles and hot gas continues to mix with the conditioning fluid, the mixture of gas and particles moves out of the narrow end into the conduit. Overall, the quench period within a highly turbulent quench region and/or a quench region fed by a super-cooled gas conditioning liquid as in some embodiments of the present invention is much shorter than with standard quenching. Eventually the conditioning fluid and the mixture reach thermal equilibrium, preferably at room temperature.
Thus, features of the embodiments of the present invention decrease the period during which particles formed can agglomerate with one another. Ultimately, this decrease in potential agglomeration produces particles of more uniform size, and in some instances produces smaller-sized particles. Both of these features lead to particles with increased dispersiblity and increased ratio of surface area to volume.
The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention. As such, references herein to specific embodiments and details thereof are not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications can be made to the embodiments chosen for illustration without departing from the spirit and scope of the invention.
The present application is a division of U.S. patent application Ser. No. 12/152,096, filed May 9, 2008 which claims priority to U.S. Provisional Application Ser. No. 60/928,946, filed May 11, 2007, entitled ‘MATERIAL PRODUCTION SYSTEM AND METHOD,” all of which are hereby incorporated by reference in their entirety as if set forth herein. The co-pending U.S. patent application Ser. No. 11/110,341, filed on Apr. 10, 2005, entitled “HIGH THROUGHPUT DISCOVERY OF MATERIALS THROUGH VAPOR PHASE SYNTHESIS” is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2021936 | Johnstone | Nov 1935 | A |
2284554 | Beyerstedt | May 1942 | A |
2419042 | Todd | Apr 1947 | A |
2519531 | Worn | Aug 1950 | A |
2562753 | Trost | Jul 1951 | A |
2689780 | Rice | Sep 1954 | A |
3001402 | Koblin | Sep 1961 | A |
3042511 | Reding, Jr. | Jul 1962 | A |
3067025 | Chisholm | Dec 1962 | A |
3145287 | Siebein et al. | Aug 1964 | A |
3178121 | Wallace, Jr. | Apr 1965 | A |
3179782 | Matvay | Apr 1965 | A |
3181947 | Vordahl | May 1965 | A |
3235700 | Mondain-Monval et al. | Feb 1966 | A |
3313908 | Unger et al. | Apr 1967 | A |
3387110 | Wendler et al. | Jun 1968 | A |
3401465 | Larwill | Sep 1968 | A |
3450926 | Kiernan | Jun 1969 | A |
3457788 | Miyajima | Jul 1969 | A |
3520656 | Yates et al. | Jul 1970 | A |
3537513 | Austin | Nov 1970 | A |
3552653 | Inoue | Jan 1971 | A |
3617358 | Dittrich | Nov 1971 | A |
3667111 | Chartet | Jun 1972 | A |
3730827 | Matchen et al. | May 1973 | A |
3741001 | Fletcher et al. | Jun 1973 | A |
3752172 | Cohen et al. | Aug 1973 | A |
3761360 | Auvil et al. | Sep 1973 | A |
3774442 | Gustaysson | Nov 1973 | A |
3804034 | Stiglich, Jr. | Apr 1974 | A |
3830756 | Sanchez et al. | Aug 1974 | A |
3857744 | Moss | Dec 1974 | A |
3871448 | Vann et al. | Mar 1975 | A |
3892882 | Guest et al. | Jul 1975 | A |
3914573 | Muehlberger | Oct 1975 | A |
3959094 | Steinberg | May 1976 | A |
3959420 | Geddes et al. | May 1976 | A |
3969482 | Teller | Jul 1976 | A |
4008620 | Narato et al. | Feb 1977 | A |
4018388 | Andrews | Apr 1977 | A |
4021021 | Hall et al. | May 1977 | A |
4127760 | Meyer et al. | Nov 1978 | A |
4139497 | Castor et al. | Feb 1979 | A |
4146654 | Guyonnet | Mar 1979 | A |
4157316 | Thompson et al. | Jun 1979 | A |
4171288 | Keith et al. | Oct 1979 | A |
4174298 | Antos | Nov 1979 | A |
4189925 | Long | Feb 1980 | A |
4227928 | Wang | Oct 1980 | A |
4248387 | Andrews | Feb 1981 | A |
4253917 | Wang | Mar 1981 | A |
4260649 | Dension et al. | Apr 1981 | A |
4284609 | deVries | Aug 1981 | A |
4315874 | Ushida et al. | Feb 1982 | A |
4326492 | Leibrand, Sr. et al. | Apr 1982 | A |
4344779 | Isserlis | Aug 1982 | A |
4369167 | Weir | Jan 1983 | A |
4388274 | Rourke et al. | Jun 1983 | A |
4419331 | Montalvo | Dec 1983 | A |
4431750 | McGinnis et al. | Feb 1984 | A |
4436075 | Campbell et al. | Mar 1984 | A |
4440733 | Lawson et al. | Apr 1984 | A |
4458138 | Adrian et al. | Jul 1984 | A |
4459327 | Wang | Jul 1984 | A |
4505945 | Dubust et al. | Mar 1985 | A |
4506136 | Smyth et al. | Mar 1985 | A |
4513149 | Gray et al. | Apr 1985 | A |
4523981 | Ang et al. | Jun 1985 | A |
4545872 | Sammells et al. | Oct 1985 | A |
RE32244 | Andersen | Sep 1986 | E |
4609441 | Frese, Jr. et al. | Sep 1986 | A |
4610857 | Ogawa et al. | Sep 1986 | A |
4616779 | Serrano et al. | Oct 1986 | A |
4723589 | Iyer et al. | Feb 1988 | A |
4731517 | Cheney | Mar 1988 | A |
4751021 | Mollon et al. | Jun 1988 | A |
4764283 | Ashbrook et al. | Aug 1988 | A |
4765805 | Wahl et al. | Aug 1988 | A |
4780591 | Bernecki et al. | Oct 1988 | A |
4824624 | Palicka et al. | Apr 1989 | A |
4836084 | Vogelesang et al. | Jun 1989 | A |
4855505 | Koll | Aug 1989 | A |
4866240 | Webber | Sep 1989 | A |
4877937 | Müller | Oct 1989 | A |
4885038 | Anderson et al. | Dec 1989 | A |
4921586 | Molter | May 1990 | A |
4970364 | Müller | Nov 1990 | A |
4982050 | Gammie et al. | Jan 1991 | A |
4983555 | Roy et al. | Jan 1991 | A |
4987033 | Abkowitz et al. | Jan 1991 | A |
5006163 | Benn et al. | Apr 1991 | A |
5015863 | Takeshima et al. | May 1991 | A |
5041713 | Weidman | Aug 1991 | A |
5043548 | Whitney et al. | Aug 1991 | A |
5070064 | Hsu et al. | Dec 1991 | A |
5073193 | Chaklader et al. | Dec 1991 | A |
5133190 | Abdelmalek | Jul 1992 | A |
5151296 | Tokunaga | Sep 1992 | A |
5157007 | Domesle et al. | Oct 1992 | A |
5187140 | Thorsteinson et al. | Feb 1993 | A |
5192130 | Endo et al. | Mar 1993 | A |
5217746 | Lenling et al. | Jun 1993 | A |
5225656 | Frind | Jul 1993 | A |
5230844 | Macaire et al. | Jul 1993 | A |
5233153 | Coats | Aug 1993 | A |
5269848 | Nakagawa | Dec 1993 | A |
5294242 | Zurecki et al. | Mar 1994 | A |
5330945 | Beckmeyer et al. | Jul 1994 | A |
5338716 | Triplett et al. | Aug 1994 | A |
5357075 | Muehlberger | Oct 1994 | A |
5369241 | Taylor et al. | Nov 1994 | A |
5371049 | Moffett et al. | Dec 1994 | A |
5372629 | Anderson et al. | Dec 1994 | A |
5392797 | Welch | Feb 1995 | A |
5436080 | Inoue et al. | Jul 1995 | A |
5439865 | Abe et al. | Aug 1995 | A |
5442153 | Marantz et al. | Aug 1995 | A |
5452854 | Keller | Sep 1995 | A |
5460701 | Parker et al. | Oct 1995 | A |
5464458 | Yamamoto | Nov 1995 | A |
5485941 | Guyomard et al. | Jan 1996 | A |
5486675 | Taylor et al. | Jan 1996 | A |
5489449 | Umeya et al. | Feb 1996 | A |
5534149 | Birkenbeil et al. | Jul 1996 | A |
5534270 | De Castro | Jul 1996 | A |
5543173 | Horn, Jr. et al. | Aug 1996 | A |
5553507 | Basch et al. | Sep 1996 | A |
5558771 | Hagen et al. | Sep 1996 | A |
5562966 | Clarke et al. | Oct 1996 | A |
5582807 | Liao et al. | Dec 1996 | A |
5596973 | Grice | Jan 1997 | A |
5611896 | Swanepoel et al. | Mar 1997 | A |
5630322 | Heilmann et al. | May 1997 | A |
5652304 | Calderon et al. | Jul 1997 | A |
5714644 | Irgang et al. | Feb 1998 | A |
5723027 | Serole | Mar 1998 | A |
5723187 | Popoola et al. | Mar 1998 | A |
5726414 | Kitahashi et al. | Mar 1998 | A |
5733662 | Bogachek | Mar 1998 | A |
5749938 | Coombs | May 1998 | A |
5776359 | Schultz et al. | Jul 1998 | A |
5788738 | Pirzada et al. | Aug 1998 | A |
5804155 | Farrauto et al. | Sep 1998 | A |
5811187 | Anderson et al. | Sep 1998 | A |
5837959 | Muehlberger et al. | Nov 1998 | A |
5851507 | Pirzada et al. | Dec 1998 | A |
5853815 | Muehlberger | Dec 1998 | A |
5858470 | Bernecki et al. | Jan 1999 | A |
5884473 | Noda et al. | Mar 1999 | A |
5905000 | Yadav et al. | May 1999 | A |
5928806 | Olah et al. | Jul 1999 | A |
5935293 | Detering et al. | Aug 1999 | A |
5973289 | Read et al. | Oct 1999 | A |
5989648 | Phillips | Nov 1999 | A |
5993967 | Brotzman, Jr. et al. | Nov 1999 | A |
5993988 | Ohara et al. | Nov 1999 | A |
6004620 | Camm | Dec 1999 | A |
6012647 | Ruta et al. | Jan 2000 | A |
6033781 | Brotzman, Jr. et al. | Mar 2000 | A |
6045765 | Nakatsuji et al. | Apr 2000 | A |
6059853 | Coombs | May 2000 | A |
6066587 | Kurokawa et al. | May 2000 | A |
6084197 | Fusaro, Jr. | Jul 2000 | A |
6093306 | Hanrahan et al. | Jul 2000 | A |
6093378 | Deeba et al. | Jul 2000 | A |
6102106 | Manning et al. | Aug 2000 | A |
6117376 | Merkel | Sep 2000 | A |
6140539 | Sander et al. | Oct 2000 | A |
6168694 | Huang et al. | Jan 2001 | B1 |
6190627 | Hoke et al. | Feb 2001 | B1 |
6213049 | Yang | Apr 2001 | B1 |
6214195 | Yadav et al. | Apr 2001 | B1 |
6228904 | Yadav et al. | May 2001 | B1 |
6231792 | Overbeek et al. | May 2001 | B1 |
6254940 | Pratsinis et al. | Jul 2001 | B1 |
6261484 | Phillips et al. | Jul 2001 | B1 |
6267864 | Yadav et al. | Jul 2001 | B1 |
6322756 | Arno et al. | Nov 2001 | B1 |
6342465 | Klein et al. | Jan 2002 | B1 |
6344271 | Yadav et al. | Feb 2002 | B1 |
6362449 | Hadidi et al. | Mar 2002 | B1 |
6379419 | Celik et al. | Apr 2002 | B1 |
6387560 | Yadav et al. | May 2002 | B1 |
6395214 | Kear et al. | May 2002 | B1 |
6398843 | Tarrant | Jun 2002 | B1 |
6399030 | Nolan | Jun 2002 | B1 |
6409851 | Sethuram et al. | Jun 2002 | B1 |
6413781 | Geis et al. | Jul 2002 | B1 |
6413898 | Faber et al. | Jul 2002 | B1 |
6416818 | Aikens et al. | Jul 2002 | B1 |
RE37853 | Detering et al. | Sep 2002 | E |
6444009 | Liu et al. | Sep 2002 | B1 |
6475951 | Domesle et al. | Nov 2002 | B1 |
6488904 | Cox et al. | Dec 2002 | B1 |
6491423 | Skibo et al. | Dec 2002 | B1 |
6506995 | Fusaro, Jr. et al. | Jan 2003 | B1 |
6517800 | Cheng et al. | Feb 2003 | B1 |
6524662 | Jang et al. | Feb 2003 | B2 |
6531704 | Yadav et al. | Mar 2003 | B2 |
6548445 | Buysch et al. | Apr 2003 | B1 |
6554609 | Yadav et al. | Apr 2003 | B2 |
6562304 | Mizrahi | May 2003 | B1 |
6562495 | Yadav et al. | May 2003 | B2 |
6569393 | Hoke et al. | May 2003 | B1 |
6569397 | Yadav et al. | May 2003 | B1 |
6569518 | Yadav et al. | May 2003 | B2 |
6572672 | Yadav et al. | Jun 2003 | B2 |
6579446 | Teran et al. | Jun 2003 | B1 |
6596187 | Coll et al. | Jul 2003 | B2 |
6603038 | Hagemeyer et al. | Aug 2003 | B1 |
6607821 | Yadav et al. | Aug 2003 | B2 |
6610355 | Yadav et al. | Aug 2003 | B2 |
6623559 | Huang | Sep 2003 | B2 |
6635357 | Moxson et al. | Oct 2003 | B2 |
6641775 | Vigliotti et al. | Nov 2003 | B2 |
6652822 | Phillips et al. | Nov 2003 | B2 |
6652967 | Yadav et al. | Nov 2003 | B2 |
6669823 | Sarkas et al. | Dec 2003 | B1 |
6682002 | Kyotani | Jan 2004 | B2 |
6689192 | Phillips et al. | Feb 2004 | B1 |
6699398 | Kim | Mar 2004 | B1 |
6706097 | Zornes | Mar 2004 | B2 |
6706660 | Park | Mar 2004 | B2 |
6710207 | Bogan, Jr. et al. | Mar 2004 | B2 |
6713176 | Yadav et al. | Mar 2004 | B2 |
6716525 | Yadav et al. | Apr 2004 | B1 |
6744006 | Johnson et al. | Jun 2004 | B2 |
6746791 | Yadav et al. | Jun 2004 | B2 |
6772584 | Chun et al. | Aug 2004 | B2 |
6786950 | Yadav et al. | Sep 2004 | B2 |
6813931 | Yadav et al. | Nov 2004 | B2 |
6817388 | Tsangaris et al. | Nov 2004 | B2 |
6832735 | Yadav et al. | Dec 2004 | B2 |
6838072 | Kong et al. | Jan 2005 | B1 |
6841509 | Hwang et al. | Jan 2005 | B1 |
6855410 | Buckley | Feb 2005 | B2 |
6855426 | Yadav | Feb 2005 | B2 |
6855749 | Yadav et al. | Feb 2005 | B1 |
6858170 | Van Thillo et al. | Feb 2005 | B2 |
6886545 | Holm | May 2005 | B1 |
6891319 | Dean et al. | May 2005 | B2 |
6896958 | Cayton et al. | May 2005 | B1 |
6902699 | Fritzemeier et al. | Jun 2005 | B2 |
6916872 | Yadav et al. | Jul 2005 | B2 |
6919065 | Zhou et al. | Jul 2005 | B2 |
6919527 | Boulos et al. | Jul 2005 | B2 |
6933331 | Yadav et al. | Aug 2005 | B2 |
6972115 | Ballard | Dec 2005 | B1 |
6986877 | Takikawa et al. | Jan 2006 | B2 |
6994837 | Boulos et al. | Feb 2006 | B2 |
7007872 | Yadav et al. | Mar 2006 | B2 |
7022305 | Drumm et al. | Apr 2006 | B2 |
7052777 | Brotzman, Jr. et al. | May 2006 | B2 |
7073559 | O'Larey et al. | Jul 2006 | B2 |
7074364 | Jähn et al. | Jul 2006 | B2 |
7081267 | Yadav | Jul 2006 | B2 |
7101819 | Rosenflanz et al. | Sep 2006 | B2 |
7147544 | Rosenflanz | Dec 2006 | B2 |
7147894 | Zhou et al. | Dec 2006 | B2 |
7166198 | Van Der Walt et al. | Jan 2007 | B2 |
7166663 | Cayton et al. | Jan 2007 | B2 |
7172649 | Conrad et al. | Feb 2007 | B2 |
7172790 | Koulik et al. | Feb 2007 | B2 |
7178747 | Yadav et al. | Feb 2007 | B2 |
7208126 | Musick et al. | Apr 2007 | B2 |
7211236 | Stark et a | May 2007 | B2 |
7217407 | Zhang | May 2007 | B2 |
7220398 | Sutorik et al. | May 2007 | B2 |
7255498 | Bush et al. | Aug 2007 | B2 |
7265076 | Taguchi et al. | Sep 2007 | B2 |
7282167 | Carpenter | Oct 2007 | B2 |
7307195 | Polverejan et al. | Dec 2007 | B2 |
7323655 | Kim | Jan 2008 | B2 |
7384447 | Kodas et al. | Jun 2008 | B2 |
7402899 | Whiting et al. | Jul 2008 | B1 |
7417008 | Richards et al. | Aug 2008 | B2 |
7494527 | Jurewicz et al. | Feb 2009 | B2 |
7507495 | Wang et al. | Mar 2009 | B2 |
7517826 | Fujdala et al. | Apr 2009 | B2 |
7534738 | Fujdala et al. | May 2009 | B2 |
7541012 | Yeung et al. | Jun 2009 | B2 |
7541310 | Espinoza et al. | Jun 2009 | B2 |
7557324 | Nylen et al. | Jul 2009 | B2 |
7572315 | Boulos et al. | Aug 2009 | B2 |
7576029 | Saito et al. | Aug 2009 | B2 |
7576031 | Beutel et al. | Aug 2009 | B2 |
7601294 | Ripley et al. | Oct 2009 | B2 |
7604843 | Robinson et al. | Oct 2009 | B1 |
7611686 | Alekseeva et al. | Nov 2009 | B2 |
7615097 | McKechnie et al. | Nov 2009 | B2 |
7618919 | Shimazu et al. | Nov 2009 | B2 |
7622693 | Foret | Nov 2009 | B2 |
7632775 | Zhou et al. | Dec 2009 | B2 |
7635218 | Lott | Dec 2009 | B1 |
7674744 | Shiratori et al. | Mar 2010 | B2 |
7678419 | Kevwitch et al. | Mar 2010 | B2 |
7704369 | Olah et al. | Apr 2010 | B2 |
7709411 | Zhou et al. | May 2010 | B2 |
7709414 | Fujdala et al. | May 2010 | B2 |
7745367 | Fujdala et al. | Jun 2010 | B2 |
7750265 | Belashchenko et al. | Jul 2010 | B2 |
7759279 | Shiratori et al. | Jul 2010 | B2 |
7759281 | Kezuka et al. | Jul 2010 | B2 |
7803210 | Sekine et al. | Sep 2010 | B2 |
7842515 | Zou et al. | Nov 2010 | B2 |
7851405 | Wakamatsu et al. | Dec 2010 | B2 |
7874239 | Howland | Jan 2011 | B2 |
7875573 | Beutel et al. | Jan 2011 | B2 |
7897127 | Layman et al. | Mar 2011 | B2 |
7902104 | Kalck et al. | Mar 2011 | B2 |
7905942 | Layman | Mar 2011 | B1 |
7935655 | Tolmachev | May 2011 | B2 |
7951428 | Hoerr et al. | May 2011 | B2 |
8003020 | Jankowiak et al. | Aug 2011 | B2 |
8051724 | Layman et al. | Nov 2011 | B1 |
8076258 | Biberger | Dec 2011 | B1 |
8080494 | Yasuda et al. | Dec 2011 | B2 |
8089495 | Keller | Jan 2012 | B2 |
8129654 | Lee et al. | Mar 2012 | B2 |
8142619 | Layman et al. | Mar 2012 | B2 |
8168561 | Virkar | May 2012 | B2 |
8173572 | Feaviour | May 2012 | B2 |
8211392 | Grubert et al. | Jul 2012 | B2 |
8258070 | Fujdala et al. | Sep 2012 | B2 |
8278240 | Tange et al. | Oct 2012 | B2 |
8294060 | Mohanty et al. | Oct 2012 | B2 |
8309489 | Roldan Cuenya et al. | Nov 2012 | B2 |
8349761 | Xia et al. | Jan 2013 | B2 |
8404611 | Nakamura et al. | Mar 2013 | B2 |
8470112 | Biberger | Jun 2013 | B1 |
8481449 | Biberger et al. | Jul 2013 | B1 |
8507401 | Biberger et al. | Aug 2013 | B1 |
8507402 | Biberger et al. | Aug 2013 | B1 |
8524631 | Biberger | Sep 2013 | B2 |
8545652 | Biberger | Oct 2013 | B1 |
8557727 | Yin et al. | Oct 2013 | B2 |
8574408 | Layman | Nov 2013 | B2 |
8574520 | Koplin et al. | Nov 2013 | B2 |
8575059 | Biberger et al. | Nov 2013 | B1 |
8604398 | Layman | Dec 2013 | B1 |
8652992 | Yin et al. | Feb 2014 | B2 |
8668803 | Biberger | Mar 2014 | B1 |
8669202 | van den Hoek et al. | Mar 2014 | B2 |
8679433 | Yin et al. | Mar 2014 | B2 |
8821786 | Biberger | Sep 2014 | B1 |
8828328 | Leamon et al. | Sep 2014 | B1 |
8859035 | Leamon | Oct 2014 | B1 |
8877357 | Biberger | Nov 2014 | B1 |
8893651 | Biberger et al. | Nov 2014 | B1 |
8906498 | Biberger | Dec 2014 | B1 |
8932514 | Yin et al. | Jan 2015 | B1 |
8992820 | Yin et al. | Mar 2015 | B1 |
9023754 | Biberger | May 2015 | B2 |
9039916 | Lehman, Jr. | May 2015 | B1 |
20010004009 | MacKelvie | Jun 2001 | A1 |
20010042802 | Youds | Nov 2001 | A1 |
20010055554 | Hoke et al. | Dec 2001 | A1 |
20020018815 | Sievers et al. | Feb 2002 | A1 |
20020068026 | Murrell et al. | Jun 2002 | A1 |
20020071800 | Hoke et al. | Jun 2002 | A1 |
20020079620 | DuBuis et al. | Jun 2002 | A1 |
20020100751 | Carr | Aug 2002 | A1 |
20020102674 | Anderson | Aug 2002 | A1 |
20020131914 | Sung | Sep 2002 | A1 |
20020143417 | Ito et al. | Oct 2002 | A1 |
20020168466 | Tapphorn et al. | Nov 2002 | A1 |
20020182735 | Kibby et al. | Dec 2002 | A1 |
20020183191 | Faber et al. | Dec 2002 | A1 |
20020192129 | Shamouilian et al. | Dec 2002 | A1 |
20030036786 | Duren et al. | Feb 2003 | A1 |
20030042232 | Shimazu | Mar 2003 | A1 |
20030047617 | Shanmugham et al. | Mar 2003 | A1 |
20030066800 | Saim et al. | Apr 2003 | A1 |
20030085663 | Horsky | May 2003 | A1 |
20030102099 | Yadav et al. | Jun 2003 | A1 |
20030108459 | Wu et al. | Jun 2003 | A1 |
20030110931 | Aghajanian et al. | Jun 2003 | A1 |
20030129098 | Endo et al. | Jul 2003 | A1 |
20030139288 | Cai et al. | Jul 2003 | A1 |
20030143153 | Boulos et al. | Jul 2003 | A1 |
20030172772 | Sethuram et al. | Sep 2003 | A1 |
20030223546 | McGregor et al. | Dec 2003 | A1 |
20040009118 | Phillips et al. | Jan 2004 | A1 |
20040023302 | Archibald et al. | Feb 2004 | A1 |
20040023453 | Xu et al. | Feb 2004 | A1 |
20040065170 | Wu et al. | Apr 2004 | A1 |
20040077494 | LaBarge et al. | Apr 2004 | A1 |
20040103751 | Joseph et al. | Jun 2004 | A1 |
20040109523 | Singh et al. | Jun 2004 | A1 |
20040119064 | Narayan et al. | Jun 2004 | A1 |
20040127586 | Jin et al. | Jul 2004 | A1 |
20040129222 | Nylen et al. | Jul 2004 | A1 |
20040166036 | Chen et al. | Aug 2004 | A1 |
20040167009 | Kuntz et al. | Aug 2004 | A1 |
20040176246 | Shirk et al. | Sep 2004 | A1 |
20040208805 | Fincke et al. | Oct 2004 | A1 |
20040213998 | Hearley et al. | Oct 2004 | A1 |
20040235657 | Xiao et al. | Nov 2004 | A1 |
20040238345 | Koulik et al. | Dec 2004 | A1 |
20040251017 | Pillion et al. | Dec 2004 | A1 |
20040251241 | Blutke et al. | Dec 2004 | A1 |
20050000321 | O'Larey et al. | Jan 2005 | A1 |
20050000950 | Schroder et al. | Jan 2005 | A1 |
20050058797 | Sen et al. | Mar 2005 | A1 |
20050066805 | Park et al. | Mar 2005 | A1 |
20050070431 | Alvin et al. | Mar 2005 | A1 |
20050077034 | King | Apr 2005 | A1 |
20050097988 | Kodas et al. | May 2005 | A1 |
20050106865 | Chung et al. | May 2005 | A1 |
20050133121 | Subramanian et al. | Jun 2005 | A1 |
20050153069 | Tapphorn et al. | Jul 2005 | A1 |
20050163673 | Johnson et al. | Jul 2005 | A1 |
20050199739 | Kuroda et al. | Sep 2005 | A1 |
20050211018 | Jurewicz et al. | Sep 2005 | A1 |
20050220695 | Abatzoglou et al. | Oct 2005 | A1 |
20050227864 | Sutorik et al. | Oct 2005 | A1 |
20050233380 | Pesiri et al. | Oct 2005 | A1 |
20050240069 | Polverejan et al. | Oct 2005 | A1 |
20050258766 | Kim | Nov 2005 | A1 |
20050274646 | Lawson et al. | Dec 2005 | A1 |
20050275143 | Toth | Dec 2005 | A1 |
20060043651 | Yamamoto et al. | Mar 2006 | A1 |
20060051505 | Kortshagen et al. | Mar 2006 | A1 |
20060068989 | Ninomiya et al. | Mar 2006 | A1 |
20060094595 | Labarge | May 2006 | A1 |
20060096393 | Pesiri | May 2006 | A1 |
20060105910 | Zhou et al. | May 2006 | A1 |
20060108332 | Belashchenko | May 2006 | A1 |
20060153728 | Schoenung et al. | Jul 2006 | A1 |
20060153765 | Pham-Huu et al. | Jul 2006 | A1 |
20060159596 | De La Veaux et al. | Jul 2006 | A1 |
20060166809 | Malek et al. | Jul 2006 | A1 |
20060211569 | Dang et al. | Sep 2006 | A1 |
20060213326 | Gollob et al. | Sep 2006 | A1 |
20060222780 | Gurevich et al. | Oct 2006 | A1 |
20060231525 | Asakawa et al. | Oct 2006 | A1 |
20070020167 | Han et al. | Jan 2007 | A1 |
20070044513 | Kear et al. | Mar 2007 | A1 |
20070048206 | Hung et al. | Mar 2007 | A1 |
20070049484 | Kear et al. | Mar 2007 | A1 |
20070063364 | Hsiao et al. | Mar 2007 | A1 |
20070084308 | Nakamura et al. | Apr 2007 | A1 |
20070084834 | Hanus et al. | Apr 2007 | A1 |
20070087934 | Martens et al. | Apr 2007 | A1 |
20070092768 | Lee et al. | Apr 2007 | A1 |
20070153390 | Nakamura et al. | Jul 2007 | A1 |
20070161506 | Saito et al. | Jul 2007 | A1 |
20070163385 | Takahashi et al. | Jul 2007 | A1 |
20070172721 | Pak et al. | Jul 2007 | A1 |
20070173403 | Koike et al. | Jul 2007 | A1 |
20070178673 | Gole et al. | Aug 2007 | A1 |
20070221404 | Das et al. | Sep 2007 | A1 |
20070253874 | Foret | Nov 2007 | A1 |
20070259768 | Kear et al. | Nov 2007 | A1 |
20070266825 | Ripley et al. | Nov 2007 | A1 |
20070292321 | Plischke et al. | Dec 2007 | A1 |
20080006954 | Yubuta et al. | Jan 2008 | A1 |
20080026041 | Tepper et al. | Jan 2008 | A1 |
20080031806 | Gavenonis et al. | Feb 2008 | A1 |
20080038578 | Li | Feb 2008 | A1 |
20080045405 | Beutel et al. | Feb 2008 | A1 |
20080047261 | Han et al. | Feb 2008 | A1 |
20080056977 | Hung et al. | Mar 2008 | A1 |
20080057212 | Dorier et al. | Mar 2008 | A1 |
20080064769 | Sato et al. | Mar 2008 | A1 |
20080104735 | Howland | May 2008 | A1 |
20080105083 | Nakamura et al. | May 2008 | A1 |
20080108005 | Carpenter | May 2008 | A1 |
20080116178 | Weidman | May 2008 | A1 |
20080125308 | Fujdala et al. | May 2008 | A1 |
20080125313 | Fujdala et al. | May 2008 | A1 |
20080138651 | Doi et al. | Jun 2008 | A1 |
20080175936 | Tokita et al. | Jul 2008 | A1 |
20080187714 | Wakamatsu et al. | Aug 2008 | A1 |
20080202288 | McKechnie et al. | Aug 2008 | A1 |
20080206562 | Stucky et al. | Aug 2008 | A1 |
20080207858 | Kowaleski et al. | Aug 2008 | A1 |
20080248704 | Mathis et al. | Oct 2008 | A1 |
20080274344 | Vieth et al. | Nov 2008 | A1 |
20080277092 | Layman et al. | Nov 2008 | A1 |
20080277264 | Sprague | Nov 2008 | A1 |
20080277266 | Layman | Nov 2008 | A1 |
20080277268 | Layman | Nov 2008 | A1 |
20080277269 | Layman et al. | Nov 2008 | A1 |
20080277270 | Biberger et al. | Nov 2008 | A1 |
20080277271 | Layman | Nov 2008 | A1 |
20080280049 | Kevwitch et al. | Nov 2008 | A1 |
20080280751 | Harutyunyan et al. | Nov 2008 | A1 |
20080280756 | Biberger | Nov 2008 | A1 |
20080283411 | Eastman et al. | Nov 2008 | A1 |
20080283498 | Yamazaki | Nov 2008 | A1 |
20080307960 | Hendrickson et al. | Dec 2008 | A1 |
20090010801 | Murphy et al. | Jan 2009 | A1 |
20090018008 | Jankowiak et al. | Jan 2009 | A1 |
20090054230 | Veeraraghavan et al. | Feb 2009 | A1 |
20090081092 | Yang et al. | Mar 2009 | A1 |
20090088585 | Schammel et al. | Apr 2009 | A1 |
20090092887 | McGrath et al. | Apr 2009 | A1 |
20090098402 | Kang et al. | Apr 2009 | A1 |
20090114568 | Trevino et al. | May 2009 | A1 |
20090162991 | Beneyton et al. | Jun 2009 | A1 |
20090168506 | Han et al. | Jul 2009 | A1 |
20090170242 | Lin et al. | Jul 2009 | A1 |
20090181474 | Nagai | Jul 2009 | A1 |
20090200180 | Capote et al. | Aug 2009 | A1 |
20090208367 | Calio et al. | Aug 2009 | A1 |
20090209408 | Kitamura et al. | Aug 2009 | A1 |
20090223410 | Jun et al. | Sep 2009 | A1 |
20090253037 | Park et al. | Oct 2009 | A1 |
20090274897 | Kaner et al. | Nov 2009 | A1 |
20090274903 | Addiego | Nov 2009 | A1 |
20090286899 | Hofmann et al. | Nov 2009 | A1 |
20090320449 | Beutel et al. | Dec 2009 | A1 |
20090324468 | Golden et al. | Dec 2009 | A1 |
20100050868 | Kuznicki et al. | Mar 2010 | A1 |
20100089002 | Merkel | Apr 2010 | A1 |
20100092358 | Koegel et al. | Apr 2010 | A1 |
20100124514 | Chelluri et al. | May 2010 | A1 |
20100166629 | Deeba | Jul 2010 | A1 |
20100180581 | Grubert et al. | Jul 2010 | A1 |
20100180582 | Mueller-Stach et al. | Jul 2010 | A1 |
20100186375 | Kazi et al. | Jul 2010 | A1 |
20100240525 | Golden et al. | Sep 2010 | A1 |
20100275781 | Tsangaris | Nov 2010 | A1 |
20100323118 | Mohanty et al. | Dec 2010 | A1 |
20110006463 | Layman | Jan 2011 | A1 |
20110030346 | Neubauer et al. | Feb 2011 | A1 |
20110049045 | Hurt et al. | Mar 2011 | A1 |
20110052467 | Chase et al. | Mar 2011 | A1 |
20110143041 | Layman et al. | Jun 2011 | A1 |
20110143915 | Yin et al. | Jun 2011 | A1 |
20110143916 | Leamon | Jun 2011 | A1 |
20110143926 | Yin et al. | Jun 2011 | A1 |
20110143930 | Yin et al. | Jun 2011 | A1 |
20110143933 | Yin et al. | Jun 2011 | A1 |
20110144382 | Yin et al. | Jun 2011 | A1 |
20110152550 | Grey et al. | Jun 2011 | A1 |
20110158871 | Arnold et al. | Jun 2011 | A1 |
20110174604 | Duesel et al. | Jul 2011 | A1 |
20110243808 | Fossey et al. | Oct 2011 | A1 |
20110245073 | Oljaca et al. | Oct 2011 | A1 |
20110247336 | Farsad et al. | Oct 2011 | A9 |
20110305612 | Müller-Stach et al. | Dec 2011 | A1 |
20120023909 | Lambert et al. | Feb 2012 | A1 |
20120045373 | Biberger | Feb 2012 | A1 |
20120063963 | Watanabe et al. | Mar 2012 | A1 |
20120097033 | Arnold et al. | Apr 2012 | A1 |
20120122660 | Andersen et al. | May 2012 | A1 |
20120124974 | Li et al. | May 2012 | A1 |
20120171098 | Hung et al. | Jul 2012 | A1 |
20120214666 | van den Hoek et al. | Aug 2012 | A1 |
20120263633 | Koplin et al. | Oct 2012 | A1 |
20120285548 | Layman et al. | Nov 2012 | A1 |
20120308467 | Carpenter et al. | Dec 2012 | A1 |
20120313269 | Kear et al. | Dec 2012 | A1 |
20130034472 | Cantrell et al. | Feb 2013 | A1 |
20130064750 | Zettl | Mar 2013 | A1 |
20130079216 | Biberger et al. | Mar 2013 | A1 |
20130125970 | Ko et al. | May 2013 | A1 |
20130213018 | Yin et al. | Aug 2013 | A1 |
20130270355 | Cotler et al. | Oct 2013 | A1 |
20130280528 | Biberger | Oct 2013 | A1 |
20130281288 | Biberger et al. | Oct 2013 | A1 |
20130294989 | Koch et al. | Nov 2013 | A1 |
20130316896 | Biberger | Nov 2013 | A1 |
20130331257 | Barcikowski et al. | Dec 2013 | A1 |
20130345047 | Biberger et al. | Dec 2013 | A1 |
20140018230 | Yin et al. | Jan 2014 | A1 |
20140120355 | Biberger | May 2014 | A1 |
20140128245 | Yin et al. | May 2014 | A1 |
20140140909 | Qi et al. | May 2014 | A1 |
20140148331 | Biberger et al. | May 2014 | A1 |
20140161693 | Brown et al. | Jun 2014 | A1 |
20140228201 | Mendoza Gömez et al. | Aug 2014 | A1 |
20140243187 | Yin et al. | Aug 2014 | A1 |
20140249021 | Van Den Hoek et al. | Sep 2014 | A1 |
20140252270 | Lehman, Jr. | Sep 2014 | A1 |
20140263190 | Biberger et al. | Sep 2014 | A1 |
20140318318 | Layman et al. | Oct 2014 | A1 |
20140338519 | Biberger | Nov 2014 | A1 |
20150093312 | Yin et al. | Apr 2015 | A1 |
20150140317 | Biberger et al. | May 2015 | A1 |
20150141236 | Yin et al. | May 2015 | A1 |
20150165418 | Kearl et al. | Jun 2015 | A1 |
20150165434 | Yin et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
1647858 | Aug 2005 | CN |
101011664 | Aug 2007 | CN |
101301610 | Nov 2008 | CN |
34 45 273 | Jun 1986 | DE |
0 347 386 | Dec 1989 | EP |
0 385 742 | Sep 1990 | EP |
1 134 302 | Sep 2001 | EP |
1 256 378 | Nov 2002 | EP |
1 619 168 | Jan 2006 | EP |
1 721 690 | Nov 2006 | EP |
1 790 612 | May 2007 | EP |
1 955 765 | Aug 2008 | EP |
1 307 941 | Feb 1973 | GB |
49-31571 | Mar 1974 | JP |
56-146804 | Nov 1981 | JP |
58-160794 | Sep 1983 | JP |
61-086815 | May 1986 | JP |
62-102827 | May 1987 | JP |
63-214342 | Sep 1988 | JP |
1-164795 | Jun 1989 | JP |
1-275708 | Nov 1989 | JP |
2-6339 | Jan 1990 | JP |
3-226509 | Oct 1991 | JP |
5-193909 | Aug 1993 | JP |
05-228361 | Sep 1993 | JP |
05-324094 | Dec 1993 | JP |
6-93309 | Apr 1994 | JP |
6-135797 | May 1994 | JP |
6-172820 | Jun 1994 | JP |
6-272012 | Sep 1994 | JP |
H6-065772 | Sep 1994 | JP |
07-031873 | Feb 1995 | JP |
7-120176 | May 1995 | JP |
7-138020 | May 1995 | JP |
7-207381 | Aug 1995 | JP |
07-256116 | Oct 1995 | JP |
8-158033 | Jun 1996 | JP |
8-215576 | Aug 1996 | JP |
8-217420 | Aug 1996 | JP |
9-141087 | Jun 1997 | JP |
10-130810 | May 1998 | JP |
10-249198 | Sep 1998 | JP |
11-502760 | Mar 1999 | JP |
11-300198 | Nov 1999 | JP |
2000-220978 | Aug 2000 | JP |
2002-88486 | Mar 2002 | JP |
2002-241812 | Aug 2002 | JP |
2002-336688 | Nov 2002 | JP |
2003-126694 | May 2003 | JP |
2004-233007 | Aug 2004 | JP |
2004-249206 | Sep 2004 | JP |
2004-290730 | Oct 2004 | JP |
2005-503250 | Feb 2005 | JP |
2005-122621 | May 2005 | JP |
2005-218937 | Aug 2005 | JP |
2005-342615 | Dec 2005 | JP |
2006-001779 | Jan 2006 | JP |
2006-508885 | Mar 2006 | JP |
2006-87965 | Apr 2006 | JP |
2006-247446 | Sep 2006 | JP |
2006-260385 | Sep 2006 | JP |
2006-272265 | Oct 2006 | JP |
2006-326554 | Dec 2006 | JP |
2007-29859 | Feb 2007 | JP |
2007-44585 | Feb 2007 | JP |
2007-46162 | Feb 2007 | JP |
2007-138287 | Jun 2007 | JP |
2007-203129 | Aug 2007 | JP |
493241 | Mar 1976 | SU |
200611449 | Apr 2006 | TW |
201023207 | Jun 2010 | TW |
WO-9628577 | Sep 1996 | WO |
WO-0016882 | Mar 2000 | WO |
WO-0072965 | Dec 2000 | WO |
WO-02092503 | Nov 2002 | WO |
WO-03094195 | Nov 2003 | WO |
WO-2004052778 | Jun 2004 | WO |
WO-2005063390 | Jul 2005 | WO |
WO-2006079213 | Aug 2006 | WO |
WO-2006096205 | Sep 2006 | WO |
WO-2007144447 | Dec 2007 | WO |
WO-2008088649 | Jul 2008 | WO |
WO-2008092478 | Aug 2008 | WO |
WO-2008130451 | Oct 2008 | WO |
WO-2008-130451 | Oct 2008 | WO |
WO-2009017479 | Feb 2009 | WO |
WO-2011081833 | Jul 2011 | WO |
WO-2012028695 | Mar 2012 | WO |
WO-2013028575 | Feb 2013 | WO |
WO-2013093597 | Jun 2013 | WO |
WO-2013151557 | Oct 2013 | WO |
Entry |
---|
Ahmad, K. et al. (2008). “Hybrid Nanocomposites: A New Route Towards Tougher Alumina Ceramics,” Composites Science and Technology 68: 1321-1327. |
Babin, A. et al. (1985). “Solvents Used in the Arts,” Center for Safety in the Arts: 16 pages. |
Bateman, J. E. et al. (Dec. 17, 1998). “Alkylation of Porous Silicon by Direct Reaction with Alkenes and Alkynes,” Angew. Chem Int. Ed. 37(19):2683-2685. |
Carrot, G. et al. (Sep. 17, 2002). “Surface-Initiated Ring-Opening Polymerization: A Versatile Method for Nanoparticle Ordering,” Macromolecules 35(22):8400-8404. |
Chaim, R. et al. (2009). “Densification of Nanocrystalline Y2O3 Ceramic Powder by Spark Plasma Sintering,” Journal of European Ceramic Society 29: 91-98. |
Chau, J. K. H. et al. (2005). “Microwave Plasma Synthesis of Silver Nanopowders,” Materials Letters 59: 905-908. |
Chen, H.-S. et al. (Jul. 3, 2001). “On the Photoluminescence of Si Nanoparticles,” Mater. Phys. Mech. 4:62-66. |
Chen, W.-J. et al. (Mar. 18, 2008). “Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria,” Small 4(4): 485-491. |
Das, N. et al. (2001). “Influence of the Metal Function in the “One-Pot” Synthesis of 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) from Acetone Over Palladium Supported on Mg(Al)O Mixed Oxides Catalysts,” Catalysis Letters 71(3-4): 181-185. |
Faber, K. T. et al. (Sep. 1988). “Toughening by Stress-Induced Microcracking in Two-Phase Ceramics,” Journal of the American Ceramic Society 71: C-399-C401. |
Fauchais, P. et al. (Jun. 1989). “La Projection Par Plasma: Une Revue,” Ann. Phys. Fr. 14(3):261-310. |
Fauchais, P. et al. (Jan. 1993). “Les Dépôts Par Plasma Thermique,” Revue Générale De L'Electricité, RGE, Paris, France, No. 2, pp. 7-12 (in French). |
Fauchais, P. et al. (Jan. 1996). “Plasma Spray: Study of the Coating Generation,” Ceramics International 22(4):295-303. |
Fojtik, A. et al. (Apr. 29, 1994). “Luminescent Colloidal Silicon Particles,”Chemical Physics Letters 221:363-367. |
Fojtik, A. (Jan. 13, 2006). “Surface Chemistry of Luminescent Colloidal Silicon Nanoparticles,” J. Phys. Chem. B. 110(5):1994-1998. |
Gangeri, M. et al. (2009). “Fe and Pt Carbon Nanotubes for the Electrocatalytic Conversion of Carbon Dioxide to Oxygenates,” Catalysis Today 143: 57-63. |
Gutsch, A. et al. (2002). “Gas-Phase Production of Nanoparticles,” Kona No. 20, pp. 24-37. |
Han, B. Q. et al. (Jan. 2004). “Deformation Mechanisms and Ductility of Nanostructured Al Alloys”, Mat. Res. Soc. Symp. Proc. 821:P9.1.1-P9.1.6. |
Heberlein, J. (2002). “New Approaches in Thermal Plasma Technology”, Pure Appl. Chem. 74(3):327-335. |
Hua, F. et al. (Mar. 2006). “Organically Capped Silicon Nanoparticles With Blue Photoluminescence Prepared by Hydrosilylation Followed by Oxidation,” Langmuir 22(9):4363-4370. |
Ihlein, G. et al.(1998). “Ordered Porous Materials as Media for the Organization of Matter on the Nanoscale,” Applied Organometallic Chemistry 12: 305-314. |
Ji, Y. et al. (Nov. 2002) “Processing and Mechanical Properties of Al2O3-5 vol.% Cr Nanocomposites,” Journal of the European Ceramic Society 22(12):1927-1936. |
Jouet, R. J. et al. (Jan. 25, 2005). “Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids,” Chem. Mater.17(11):2987-2996. |
Kenvin, J. C. et al. (1992). “Supported Catalysts Prepared from Mononuclear Copper Complexes: Catalytic Properties”, J. Catalysis 135:81-91. |
Konrad, H. et al. (1996). “Nanostructured Cu-Bi Alloys Prepared by Co-Evaporation in a Continuous Gas Flow,” NanoStructured Materials 7(6):605-610. |
Kim, N. Y. et al. (Mar. 5, 1997). “Thermal Derivatization of Porous Silicon with Alcohols,” J. Am. Chem. Soc. 1 19(9):2297-2298. |
Kwon, Y.-S. et al. (Apr. 30, 2003). “Passivation Process for Superfine Aluminum Powders Obtained by Electrical Explosion of Wires,” Applied Surface Science 211:57-67. |
Lakis, R. E. et al. (1995). “Alumina-Supported Pt-Rh Catalysts: I. Microstructural Characterization,” Journal of Catalysis 154: 261-275. |
Langner, A. et al. (Aug. 25, 2005). “Controlled Silicon Surface Functionalization by Alkene Hydrosilylation,” J. Am. Chem. Soc. 127(37):12798-12799. |
Li, D. et al. (Apr. 9, 2005). “Environmentally Responsive “Hairy” Nanoparticles: Mixed Homopolymer Brushes on Silica Nanoparticles Synthesized by Living Radical Polymerization Techniques,” J. Am. Chem. Soc. 127(7):6248-6256. |
Li, X. et al. (May 25, 2004). “Surface Functionalization of Silicon Nanoparticles Produced by Laser-Driven Pyrolysis of Silane Followed by HF-HNO3 Etching,” Langmuir 20(11):4720-4727. |
Liao, Y.-C. et al. (Jun. 27, 2006). “Self-Assembly of Organic Monolayers on Aerosolized Silicon Nanoparticles,” J.Am. Chem. Soc. 128(28):9061-9065. |
Liu, S.-M. et al. (Jan. 13, 2006). “Enhanced Photoluminescence from Si Nano-Organosols by Functionalization With Alkenes and Their Size Evolution,” Chem. Mater. 18(3):637-642. |
Luo, J. et al. (2008). “Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions,” Advanced Materials 20: 4342-4347. |
Mignard, D. et al. (2003). “Methanol Synthesis from Flue-Gas CO2 and Renewable Electricity: A Feasibility Study,” International Journal of Hydrogen Energy 28: 455-464. |
Mühlenweg, H. et al. (2004). “Gas-Phase Reactions—Open Up New Roads to Nanoproducts,” Degussa ScienceNewsletter No. 08, pp. 12-16. |
Nagai, Y. et al. (Jul. 3, 2006). “Sintering Inhibition Mechanism of Platinum Supported on Ceria-Based Oxide and Pt-Oxide-Support Interaction,” J. Catalysis 242:103-109. |
NASA (2009). “Enthalpy,” Article located at http://www.grc.nasa.gov/WWW/K-12/airplane/enthalpy.htrnl, published by National Aeronautics and Space Administration on Nov. 23, 2009, 1 page. |
Neiner, D. (Aug. 5, 2006). “Low-Temperature Solution Route to Macroscopic Amounts of Hydrogen Terminated Silicon Nanoparticles,” J. Am. Chem. Soc. 128:11016-11017. |
Netzer, L. et al. (1983). “A New Approach to Construction of Artificial Monolayer Assemblies,” J. Am. Chem. Soc. 105(3):674-676. |
Park, H.-Y. et al. (May 30, 2007). “Fabrication of Magnetic Core@Shell Fe Oxide@Au Nanoparticles for Interfacial Bioactivity and Bio-Separation,” Langmuir 23: 9050-9056. |
Park, N.-G. et al. (Feb. 17, 2004). “Morphological and Photoelectrochemical Characterization of Core-Shell Nanoparticle Films for Dye-Sensitized Solar Cells: Zn-O Type Shell on SnO2 and TiO2 Cores,” Langmuir 20: 4246-4253. |
“Plasma Spray and Wire Flame Spray Product Group,” located at http://www.processmaterials.com/spray.html, published by Process Materials, Inc., last accessed Aug. 5, 2013, 2 pages. |
“Platinum Group Metals: Annual Review 1996” (Oct. 1997). Engineering and Mining Journal, p. 63. |
Rahaman, R. A. et al. (1995). “Synthesis of Powders,” in Ceramic Processing and Sintering. Marcel Decker, Inc., New York, pp. 71-77. |
Sailor, M. J. (1997). “Surface Chemistry of Luminescent Silicon Nanocrystallites,” Adv. Mater. 9(10):783-793. |
Schimpf, S. et al. (2002). “Supported Gold Nanoparticles: In-Depth Catalyst Characterization and Application in Hydrogenation and Oxidation Reactions,” Catalysis Today 2592: 1-16. |
Stiles, A. B. (Jan. 1, 1987). “Manufacture of Carbon-Supported Metal Catalysts,” in Catalyst Supports and Supported Catalysts, Butterworth Publishers, MA, pp. 125-132. |
Subramanian, S. et al. (1991). “Structure and Activity of Composite Oxide Supported Platinum-Iridium Catalysts,” Applied Catalysts 74: 65-81. |
Tao, Y.-T. (May 1993). “Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the surfaces of Silver, Copper, and Aluminum,” J. Am. Chem. Soc. 115(10):4350-4358. |
Ünal, N. et al. (Nov. 2011). “Influence of WC Particles on the Microstructural and Mechanical Properties of 3 mol% Y2O3 Stabilized ZrO2 Matrix Composites Produced by Hot Pressing,” Journal of the European Ceramic Society (31)13: 2267-2275. |
Vardelle, A. et al. (1996). “Coating Generation: Vaporization of Particles in Plasma Spraying and Splat Formation,” Universite de Limoges, 123 Avenue A. Thomas 87000, Limoges, France, Pure & Appl. Chem. 68(5):1093-1099. |
Vardelle, M. et al. (Jun. 1991). “Experimental Investigation of Powder Vaporization in Thermal Plasma Jets,” Plasma Chemistry and Plasma Processing 11(2):185-201. |
Viswanathan, V. et al. (2006). “Challenges and Advances in Nanocomposite Processing Techniques,” Materials Science and Engineering R 54: 121-285. |
Wan, J. et al. (2005). “Spark Plasma Sintering of Silicon Nitride/Silicon Carbide Nanocomposites with Reduced Additive Amounts,” Scripta Materialia 53: 663-667. |
Yoshida, T. (1994). “The Future of Thermal Plasma Processing for Coating”, Pure & Appl. Chem. 66(6):1223-1230. |
Zou, J. et al. (Jun. 4, 2004). “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Letters 4(7):1181-1186. |
Non Final Office Action mailed on May 10, 2011, for U.S. Appl. No. 12/151,935, filed May 8, 2008, 14 pages. |
Final Office Action mailed on Nov. 1, 2011, for U.S. Appl. No. 12/151,935, filed May 8, 2008, 10 pages. |
Non Final Office Action mailed on Feb. 19, 2010, for U.S. Appl. No. 12/152,109, filed May 9, 2008, Biberger et al., 17 pages. |
International Search Report mailed on Aug. 8, 2008, for PCT Patent Application No. PCT/US2008/06003, filed on May 8, 2008, published on Nov. 20, 2008, as WO 2008/140786, 1 page. |
Written Opinion mailed on Aug. 8, 2008, for PCT Patent Application No. PCT/US2008/06003, filed on May 8, 2008, published on Nov. 20, 2008, as WO 2008/140786, 8 page. |
U.S. Appl. No. 13/291,983, filed Nov. 8, 2011, for Layman et al. |
U.S. Appl. No. 12/152,084, filed May 9, 2008, for Biberger. |
U.S. Appl. No. 13/028,693, filed Feb. 16, 2011, for Biberger. |
U.S. Appl. No. 12/943,909, filed Nov. 10, 2010, for Layman. |
U.S. Appl. No. 12/152,111, filed May 9, 2008, for Biberger et al. |
U.S. Appl. No. 12/151,830, filed May 8, 2008, for Biberger et al. |
U.S. Appl. No. 12/968,248, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/968,245, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/968,241, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/968,239, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/969,128, filed Dec. 15, 2010, for Biberger. |
U.S. Appl. No. 12/962,463, filed Dec. 7, 2010, for Leamon. |
U.S. Appl. No. 12/961,030, filed Dec. 6, 2010, for Lehman. |
U.S. Appl. No. 12/961,108, filed Dec. 6, 2010, for Lehman. |
U.S. Appl. No. 12/961,200, filed Dec. 6, 2010, for Lehman. |
U.S. Appl. No. 12/968,253, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/968,235, filed Dec. 14, 2010, for Biberger. |
U.S. Appl. No. 12/969,306, filed Dec. 15, 2010, for Lehman et al. |
U.S. Appl. No. 12/969,447, filed Dec. 15, 2010, for Biberger et al. |
U.S. Appl. No. 12/969,087, filed Dec. 15, 2010, for Biberger. |
U.S. Appl. No. 12/962,533, filed Dec. 7, 2010, for Yin et al. |
U.S. Appl. No. 12/962,523, filed Dec. 7, 2010, for Yin et al. |
U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, for Biberger et al. |
U.S. Appl. No. 12/474,081, filed May 28, 2009, for Biberger et al. |
U.S. Appl. No. 12/001,602, filed Dec. 11, 2007, for Biberger et al. |
U.S. Appl. No. 12/001,644, filed Dec. 11, 2007, for Biberger et al. |
U.S. Appl. No. 12/969,457, filed Nov. 15, 2010, for Leamon et al. |
U.S. Appl. No. 12/969,503, filed Nov. 15, 2010, for Leamon et al. |
U.S. Appl. No. 12/954,813, filed Nov. 26, 2010, for Biberger. |
U.S. Appl. No. 12/954,822, filed Nov. 26, 2010, for Biberger. |
Birlik, I. et al. (Jun. 15, 2010). “Nanoparticle Doped YBCO Films Prepared by Chemical Solution Deposition Method,” 6th Nanoscience and Nanotechnology Conference, Izmir, Turkey: 1 page. |
Büchel, R. et al. (2009). “Influence of Pt Location on BaCO3 or Al2O3 During NOx Storage Reduction,” Journal of Catalysis 261: 201-207. |
Cospheric LLC. (Mar. 13, 2010). “Porous Ceramics: Application for Polyethylene Microspheres,” Microspheres Online, located at http://microspheres.us/microsphere-manufacturing/porous-ceramics-polyethylene-microspheres/177.html, last accessed Mar. 17, 2015, 6 pages. |
Strobel, R. et al. (2003). “Flame-made Platinum/Alumina: Structural Properties and Catalytic Behaviour in Enantioselective Hydrogenation,” Journal of Catalysis 213: 296-304. |
Date, A. R. et al. (1987). “The Potential of Fire Assay and Inductively Coupled Plasama Source Mass Spectrometry for the Determination of Platinum Group Elements in Geological Materials,” Analyst 112: 1217-1222. |
Lamouroux, E. et al. (2007). “Identification of Key Parameters for the Selective Growth of Single or Double Wall Carbon Nanotubes on FeMo/Al2O3 CVD Catalysts,” Applied Catalysts A: General 323: 162-173. |
Martinez-Hansen, V. et al. (2009). “Development of Aligned Carbon Nanotubes Layers Over Stainless Steel Mesh Monoliths,” Catalysis Today 1475: 571-575. |
Panchula, M. L. et al. (2003). “Nanocrystalline Aluminum Nitride: I, Vapor-Phase Synthesis in a Forced-Flow Reactor,” Journal of the American Ceramic Society 86(7): 1114-1120. |
Number | Date | Country | |
---|---|---|---|
20140209451 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
60928946 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12152096 | May 2008 | US |
Child | 14165438 | US |