This application claims priority of Taiwanese Application No. 100146.828, filed on Dec. 16, 2011.
1. Field of the Invention
The invention relates to a method and an apparatus for growing crystal, more particularly to a method and an apparatus for monitoring and controlling crystal growth during a crystal growing procedure.
2. Description of the Related Art
Mono-like silicon is a crystal material that can be applied to a solar cell for converting solar energy to electrical energy. Compared with other conventional crystal materials, namely single-crystal silicon and polycrystalline silicon (polysilicon), the mono-like silicon has a relatively low manufacturing cost compared to single-crystal silicon, and a relatively high energy conversion efficiency than polysilicon.
The mono-like silicon is typically manufactured through a crystal growing procedure. Quality of the crystal of mono-like silicon is a major factor that affects energy conversion efficiency. However, when monitoring and controlling crystal growth during the conventional crystal growing procedure are not available, parameters of the crystal growing procedure cannot be adjusted during the conventional crystal growing procedure. Therefore, the parameters must be adjusted after the crystal growing procedure is finished, based on the result of the previous crystal growing procedure. In order to optimize the parameters, many crystal growing procedures may have to be executed.
Monitoring the crystal growing procedure typically involves obtaining heights of different points on a solid-liquid interface of the crystal material. Conventionally, a probe is manually extended into a crucible for contacting the solid-liquid interface of the crystal material therein, and the state of crystal growth is determined empirically. Establishment of an objective standard of determination is preferable.
Therefore, the object of the present invention is to provide a method that is capable of monitoring and controlling crystal growth, and that can increase productivity and improve crystal quality.
Accordingly, a method of the present invention is for monitoring and controlling crystal growth during a crystal growing procedure. The method comprises the following steps of:
measuring heights of a plurality of measuring points on a solid-liquid interface of a crystal material disposed in a crucible; and
automatically optimizing at least one parameter of the crystal growing procedure based on the measured heights, so that the solid-liquid interface maintains a dome shape with a predetermined curvature during the crystal growing procedure.
Another object of the present invention is to provide an apparatus for implementing the aforementioned method.
Accordingly, an apparatus of the present invention is for monitoring and controlling crystal growth during a crystal growing procedure. The apparatus comprises a growth chamber, a crucible, a heating system, a probe system and a control system.
The crucible is disposed in the growth chamber for receiving a crystal material therein. The heating system is disposed in the growth chamber and arranged around the crucible. The probe system is disposed at the growth chamber and includes a probe extended into the crucible for contacting a solid-liquid interface of the crystal material in the crucible during the crystal growing procedure so as to obtain crystal growth information.
The control system is coupled to the probe system for receiving the crystal growth information therefrom. The control system is further coupled to the heating system for automatically controlling heating operation of the heating system according to the crystal growth information received from the probe system.
Still another object of the present invention is to provide a probe system for monitoring crystal growth during the crystal growing procedure.
Accordingly, a probe system of the present invention is for monitoring crystal growth during a crystal growing procedure in a crucible. The probe system comprises a probe and a probe control mechanism.
The probe has a main portion and a probing portion connected to the main portion and to be extended into the crucible. The main portion is movable along a predetermined measuring track and is rotatable around an axis of the main portion. The probing portion has a tip which is offset from the axis of the main portion and which is disposed for contacting a solid-liquid interface of crystal material in the crucible during the crystal growing procedure.
The probe control mechanism is connected to the probe for raising and lowering the probe relative to the crucible. The probe control mechanism is further for controlling movement of the main portion of the probe along the predetermined measuring track and rotation of the main portion around the axis of the main portion so that the tip is able to contact different points on the solid-liquid interface.
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiment with reference to the accompanying drawings, of which:
Then, in step S20, the control system 7 is operable to calculate the shape of the solid-liquid interface of the crystal material based on the crystal growth information, and to automatically adjust at least one parameter of the crystal growing procedure, so that the solid-liquid interface maintains a dame shape with a predetermined curvature during the crystal growing procedure. In this embodiment, the parameter may be a heating power, a rate of air inflow into a growth chamber, a temperature of cooling water, etc.
Afterward, the flow goes back to step S10, where the probe system 6 is operable to further obtain new crystal growth information in real time after the parameter is adjusted. The new crystal growth information is similarly transmitted to the control system 7 for further shape recalculation, and for subsequently determining whether the parameter requires further adjustment. The aforesaid procedure is thus executed repeatedly until the parameter is optimized, and subsequently the solid-liquid interface maintains the dome shape with the predetermined curvature.
The effect of maintaining the solid-liquid interface to have the dome shape with the predetermined curvature is that, since height of a central part of the solid-liquid interface is higher than that of an outer part of the solid-liquid interface, impurities of the crystal material move to the lower outer part of the solid-liquid interface. Therefore, the central part of grown crystal yields higher purity than the outer part, and can be separated from the outer part so as to obtain a large chunk of crystal with high purity.
The above method can be implemented using either of the following two implementations of an apparatus, which will now be described in detail.
As shown in
Further referring to
In this embodiment, the probe control mechanism 60 is disposed at the growth chamber 1 and has a probe seal 61, and the probe 62 is connected to a rotatable inner cylinder 611 of the probe seal 61. The rotatable inner cylinder 611 is driven by a driving motor (not shown) of the control system 7 so as to be rotatable around a rotary axis 611a. The probe 62 has a main portion 621 and a probing portion 622 that is bent from the main portion 621 and that is to be extended into the crucible 3 for contacting the solid-liquid interface 30. The probing portion 622 has a tip 623 which is driven by the main portion 621 to move in the crucible 3 for contacting different points on the solid-liquid interface 30. Specifically,
The guiding component 612 is disposed on the probe seal 61 and disposed parallel to the probe 62. The sliding component 613 is slidably disposed on the guiding component 612 and connected to the probe 62.
The elevating motor 614 is disposed on the rotatable inner cylinder 611 of the probe seal 61 and connected to the sliding component 641 for controlling raising and lowering of the probe 62 relative to the crucible 3. The rotating motor 615 is disposed on the sliding component 613 and is connected to the probe 62 for controlling rotation of the main portion 621 of the probe 62 around the axis 621a, such that the tip 623 is driven to move within the circular measuring range 603 and to contact different points of the solid-liquid interface 30. The position measuring device 616 is connected to the probe seal 61 and the sliding component 613, and is for measuring vertical displacement of the probe 62. In this implementation, the position measuring device 616 is a displacement transducer, and can be an optical scale in other implementations. The position measuring device 616 has a retractable end 616a connected to the sliding component 613 and a fixed end 616b connected to the rotatable inner cylinder 611 of the probe seal 61. The position measuring device 616 is operable to measure the vertical displacement of the sliding component 613 relative to the probe seal 61, and subsequently the vertical displacement of the probe 62. In this implementation, the probe 62 is sleeved by a retractable tube 65 for sealing gaps between the probe 62 and the probe seal 61.
Referring back to
In addition to the aforementioned effects, the probe system 6 can be operable to further detect other states of the crystal growth procedure, such as a rate that the crystal material melts, a rate that the crystal grows, and whether the crystal growth procedure has been completed. Furthermore, the probe system 6 is operable for detecting procedures other than the crystal growth procedure. For example, before a crystal growth procedure for growing mono-like silicon, a melting procedure is first executed as shown in
To sum up, the method of this invention enables the crystal growing procedure to be monitored and controlled automatically, such that the solid-liquid surface 30 can Maintain a dome shape with a predetermined curvature during the crystal growing procedure. As a result, crystal with a better yield may be obtained.
While the present invention has been described in connection with what is considered the most practical and preferred embodiment, it is understood that this invention is not limited to the disclosed embodiment but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
100146828 | Dec 2011 | TW | national |