This invention relates generally to electrical switchgear and more particularly, to a method and apparatus for protecting, monitoring, and controlling the electrical switchgear.
In an industrial power distribution system, power generated by a power generation company may be supplied to an industrial or commercial facility wherein the power may be distributed throughout the industrial or commercial facility to various equipment such as, for example, motors, welding machinery, computers, heaters, lighting, and other electrical equipment. At least some known power distribution systems include switchgear, which facilitates dividing the power into branch circuits, which supply power to various portions of the industrial facility. Circuit breakers are provided in each branch circuit to facilitate protecting equipment within the branch circuit. Additionally, circuit breakers in each branch circuit can facilitate minimizing equipment failures since specific loads may be energized or de-energized without affecting other loads, thus creating increased efficiencies, and reduced operating and manufacturing costs. Similar switchgear may also be used within an electric utility transmission system and a plurality of distribution substations, although the switching operations used may be more complex.
Switchgear typically include multiple devices, other than the power distribution system components, to facilitate providing protection, monitoring, and control of the power distribution system components. For example, at least some known breakers include a plurality of shunt trip circuits, under-voltage relays, trip units, and a plurality of auxiliary switches that close the breaker in the event of an undesired interruption or fluctuation in the power supplied to the power distribution components. Additionally, at least one known power distribution system also includes a monitor device that monitors a performance of the power distribution system, a control device that controls an operation of the power distribution system, and a protection device that initiates a protective response when the protection device is activated.
In at least some other known power distribution systems, a monitor and control system operates independently of the protective system. For example, a protective device may de-energize a portion of the power distribution system based on its own predetermined operating limits, without the monitoring devices recording the event. The failure of the monitoring system to record the system shutdown may mislead an operator to believe that an over-current condition has not occurred within the power distribution system, and as such, a proper corrective action may not be initiated by the operator. Additionally, a protective device, i.e. a circuit breaker, may open because of an over-current condition in the power distribution system, but the control system may interpret the over-current condition as a loss of power from the power source, rather than a fault condition. As such, the control logic may undesirably attempt to connect the faulted circuit to an alternate source, thereby restoring the over-current condition. In addition to the potential increase in operational defects which may occur using such devices, the use of multiple devices and interconnecting wiring associated with the devices may cause an increase in equipment size, an increase in the complexity of wiring the devices, and/or an increase in a quantity of devices installed.
In one aspect, a method of operating a power distribution system circuit breaker including an associated node electronics unit is provided. The method includes monitoring electrical system parameters associated with the circuit breaker with the node electronics unit, communicating the electrical system parameters over a digital network to at least one central control processing unit (CCPU), receiving commands and actions from the at least one CCPU over the digital network; determining circuit breaker actuation commands based at least partially on the received commands and actions, and operating the circuit breaker based on the circuit breaker actuation commands.
In another aspect, a node electronics unit associated with a single circuit breaker is provided. The node electronics unit is for receiving circuit breaker commands for the associated circuit breaker from at least one CCPU and transmitting a circuit breaker actuation command to the associated circuit breaker. The node electronics unit includes at least one network communications interface for communicating with the at least one CCPU, at least one processor including a memory, a communication processor and a command interpreter wherein the processor is coupled to the network communications interface, a signal conditioner coupled to the processor wherein the signal conditioner receives electrical signals from a plurality of sensors including at least one of a circuit breaker load current sensor and a circuit breaker voltage sensor, the plurality of sensors are located off-board the circuit breaker and off-board the node electronics unit, a status input module coupled to the processor for receiving signals of the associated circuit breaker status from the associated circuit breaker, and an actuation power module coupled to the processor for supplying circuit breaker actuation commands to the associated circuit breaker.
A power distribution system is provided. The system includes at least one circuit breaker, a node electronics unit, and each node electronics unit associated with one of the at least one circuit breakers, each node electronics unit mounted remotely from the associated circuit breaker, and each node electronics unit is electrically coupled to the associated circuit breaker, a digital network communicatively coupled to each node electronics unit, and at least one central control unit communicatively coupled to the network, and the network configured to interconnect each node electronics unit and each of the at least one central control unit, and allow a plurality of communication transmissions between each node electronics unit and each of the at least one central control unit.
In use, power is supplied to a main feed system 12, i.e. a switchboard for example, from a source (not shown) such as, but not limited to, a steam turbine, powered from, for example, a nuclear reactor or a coal fired boiler, a gas turbine generator, and a diesel generator. Power supplied to main feed system 12 is divided into a plurality of branch circuits using circuit breakers 16 which supply power to various loads 18 in the industrial facility. In addition, circuit breakers 16 are provided in each branch circuit to facilitate protecting equipment, i.e. loads 18, connected within the respective branch circuit. Additionally, circuit breakers 16 facilitate minimizing equipment failures since specific loads 18 may be energized or de-energized without affecting other loads 18, thus creating increased efficiencies, and reduced operating and manufacturing costs.
Power distribution system 10 includes a circuit breaker control protection system 19 that includes a plurality of node electronics units 20 that are each electrically coupled to a digital network 22. Circuit breaker control protection system 19 also includes at least one central control processing unit (CCPU) 24 that is electrically coupled to digital network 22 via a switch 23 such as, but not limited to, an Ethernet switch 23. In use, each respective node electronics unit 20 is electrically coupled to a respective circuit breaker 16, such that CCPU 24 is electrically coupled to each circuit breaker 16 through digital network 22 and through an associated node electronics unit 20.
In the exemplary embodiment, digital network 22 is a Fast Ethernet protocol network. In another embodiment, digital network 22 includes, for example, at least one of a local area network (LAN) or a wide area network (WAN), dial-in-connections, cable modems, and special high-speed ISDN lines. Digital network 22 also includes any device capable of interconnecting to the Internet including a web-based phone, personal digital assistant (PDA), or other web-based connectable equipment. It should be appreciated that the digital network 22 network is upgradeable based on future revisions to IEEE 802.3(u) and its successors. It should further be appreciated that the digital network 22 is configurable, for example, in a star topology.
In one embodiment, CCPU 24 is a computer and includes a device 26, for example, a floppy disk drive or CD-ROM drive, to facilitate reading instructions and/or data from a computer-readable medium 28, such as a floppy disk or CD-ROM. In another embodiment, CCPU 24 executes instructions stored in firmware (not shown). CCPU 24 is programmed to perform functions described herein, but other programmable circuits can likewise be programmed. Accordingly, as used herein, the term computer is not limited to just those integrated circuits referred to in the art as computers, but broadly refers to computers, processors, microcontrollers, microcomputers, programmable logic controllers, application specific integrated circuits, and other programmable circuits. Additionally, although described in a power distribution setting, it is contemplated that the benefits of the invention accrue to all electrical distribution systems including industrial systems such as, for example, but not limited to, an electrical distribution system installed in an office building.
Additionally, in an exemplary embodiment, internal bus 50 includes an address bus, a data bus, and a control bus. In use, the address bus is configured to enable CPU 48 to address a plurality of internal memory locations or an input/output port, such as, but not limited to communications interface 52 through communications processor 54, and a gateway interface 57, through a gateway processor 58. The data bus is configured to transmit instructions and/or data between CPU 48 and at least one input/output, and the control bus is configured to transmit signals between the plurality of devices to facilitate ensuring that the devices are operating in synchronization. In the exemplary embodiment, internal bus 50 is a bi-directional bus such that signals can be transmitted in either direction on internal bus 50. CCPU 24 also includes at least one storage device 60 configured to store a plurality of information transmitted via internal bus 50.
In use, gateway interface 57 communicates to a remote workstation (not shown) via an Internet link 62 or an Intranet 62. In the exemplary embodiment, the remote workstation is a personal computer including a web browser. Although a single workstation is described, such functions as described herein can be performed at one of many personal computers coupled to gateway interface 57. For example, gateway interface 57 may be communicatively coupled to various individuals, including local operators and to third parties, e.g., remote system operators via an ISP Internet connection. The communication in the example embodiment is illustrated as being performed via the Internet, however, any other wide area network (WAN) type communication can be utilized in other embodiments, i.e., the systems and processes are not limited to being practiced via the Internet. In one embodiment, information is received at gateway interface 57 and transmitted to node electronics unit 20 via CCPU 24 and digital network 22. In another embodiment, information sent from node electronics unit 20 is received at communication interface 52 and transmitted to Internet 62 via gateway interface 57.
Node processor 72 is electrically coupled to a memory device 74, such as, but not limited to a flash memory device, an analog digital (A/D) converter 76, and a signal conditioner 78. Node processor 72 is communicatively coupled to communications interface 70. Memory device 74 is also communicatively coupled to node processor 72 for exchanging data, and program instructions. In one embodiment, memory device 74 is a single device including a program area and a data area. In an alternative embodiment, memory 74 is a plurality of devices, each including an area for a program, data and configuration constant information. In an embodiment wherein a plurality of node processors 72 are used, memory 74 includes a separate device dedicated to each node processor 72 and a shared memory area accessible and modifiable by each node processor 72. Node processor 72 is electrically coupled to A/D converter 76 to receive digital signals representing analog signals received from signal conditioner 78. Analog signals from sensors located remotely from circuit breaker 16 and node electronics unit 20 monitor electrical parameters associated with respective circuit breaker 16. The analog signals are received by signal conditioner 78 from CT input 82 and PT input 84. CT input 82 is electrically coupled to an input CT and a burden resistor. Input current flowing through the burden resistor induces a voltage drop across the burden resistor that is proportional to the input current. The induced voltage is sensed at signal conditioner 78 input. Signal conditioner 78 includes a filtering circuit to improve a signal to noise ratio of the incoming signal, a gain circuit to amplify the incoming signal, a level adjustment circuit to shift the incoming signal to a pre-determined range, and an impedance match circuit to facilitate a signal transfer to A/D converter 76. In the exemplary embodiment, A/D converter 76 is a sample and hold type of A/D converter. The sample and hold feature facilitates synchronization of electrical parameter measurements in node electronics units 20. A/D converter 76 samples signal conditioner 78 output when commanded by node processor 72, which issues synchronization commands as directed by CCPU 24. In an exemplary embodiment, node electronics unit 20 is a printed circuit board and includes a power supply 80 to power a plurality of devices on the printed circuit board.
In one embodiment, node electronics unit 20 receives signals input from a plurality of devices, such as, but not limited to, a current transformer 82, and a potential transformer 84, and/or a status input device 86. Status input device 86 receives a plurality of status signals from circuit breaker 16, such as, but not limited to, an auxiliary switch status, and an operating spring charge switch status. In one embodiment, current transformer 82 includes a plurality of current transformers, each monitoring a different phase of a three phase power system, and at least one current transformer monitoring a neutral phase of the three phase power system. In another embodiment, potential transformer 84 includes a plurality of potential transformers, each monitoring a different phase of a three-phase power system. An actuation relay module 88 is communicatively coupled to node processor 72 and module 88 is also coupled to an actuation power module 90. Status input module and actuation power module 90 are electrically coupled to circuit breaker 16 through a standard wiring harness.
In one embodiment, node electronics unit 20 includes a second node processor 72 that executes a program code segment that determines local control and protection actions to be used to determine breaker commands when communications between node electronics unit 20 and CCPU 24 is lost. The second node processor is powered from an electrical source onboard the node electronics unit separate and independent from the control system power supply that supplies the other components of node electronics unit 20. In this embodiment, first node processor 72 is configured to execute a program code segment that controls all other functions of nod electronics unit 20, including, but, not limited to, communications functions performed by communications interface 70, input functions performed by signal conditioner 78, A/D 76, and status input 86, and output functions performed by actuation relay 88 and actuation power module 90. Second node processor 72 includes a memory separate and independent from memory unit 74.
In use, signals received from status input device 86, current transformer 82, and potential transformer 84, are conditioned by signal conditioner 78 and transmitted to A/D converter 76, where the analog signals are converted to digital signals for input to node processor 72. Node processor 72 executes software that is resident on memory 74. The software instructs node processor 72 to receive digital signals from A/D converter 76 and logical status signals from circuit breaker 16 through status input 86. Node processor 72 compares the input signals to parameters determined by software executing on node processor 72 and parameters in control and protective actions received from CCPU 24 through network 22 and communications interface 70. Node processor 72 determines local control and protective actions based on the input signals and the control and protective actions received from CCPU 24. If node processor 72 and CCPU are communicating properly, a local block signal received from CCPU 24 inhibits node processor 72 from using the local control and protective actions from determining a set of breaker control actions. The breaker control actions are a set of signals that command circuit breaker 16 to operate in a predetermined manner. The presence of the local block signal indicates the communication state between node processor 72 and CCPU 24. If the local block signal is present in signals received from CCPU 24, Node processor uses CCPU 24 control and protective actions to determine breaker control actions. If the local block signal is not present, node processor 72 uses local control and protective actions to determine breaker control actions. Node processor 72 transmits breaker control action through actuation relay module 88, actuation power module 90, and the standard wiring harness.
Data received from A/D converter 78 and status input 86 by node processor 72 are transmitted to CCPU 24 via node electronics unit 20, and digital network 22. The data sent is to CCPU 24 is pre-processed data from node processor 72, in that, the data sent to CCPU 24 is sent in its raw form, before processing by node processor 72 takes place. The data transmitted to CCPU 24 via node electronics unit 20 is processed by CCPU 24, which transmits a signal to node electronics unit 20 via digital network 22. In the exemplary embodiment, node electronics unit 20 actuates circuit breaker 24 in response to the signal received from CCPU 24. In one embodiment, circuit breaker 24 is actuated in response to commands sent only by CCPU 24, i.e., circuit breaker 24 is not controlled locally, but rather is operated remotely from CCPU 24 based on inputs received from current transformer 82, potential transformer 84, and status inputs 86 received from node electronics unit 20 over network 22.
In use, actuation signals from node electronics unit 20 are transmitted to circuit breaker 16 to actuate a plurality of functions in circuit breaker 16, such as, but not limited to, operating a trip coil 100, operating a close coil 102, and affecting a circuit breaker lockout feature. An auxiliary switch 104 and operating spring charge switch 106 provide a status indication of circuit breaker parameters to node electronics unit 20. Motor 108 is configured to recharge an operating spring, configured as a close spring (not shown) after circuit breaker 16 closes. It should be appreciated that the motor 108 can include, for example, a spring charge switch, a solenoid or any other electro-mechanical device capable of recharging a trip spring. To close circuit breaker 16, a close coil 102 is energized by a close signal from actuation power module 90. Close coil 102 actuates a closing mechanism (not shown) that couples at least one movable electrical contact (not shown) to a corresponding fixed electrical contact (not shown). The closing mechanism of circuit breaker 16 latches in a closed position such that when close coil 102 is de-energized, circuit breaker 16 remains closed. When breaker 16 closes, an “a” contact of auxiliary switch 104 also closes and a “b” contact of auxiliary switch 104 opens. The position of the “a” and “b” contacts is sensed by node electronics unit 20. To open circuit breaker 16, node electronics unit 20 energizes trip coil (TC) 100. TC 100 acts directly on circuit breaker 16 to release the latching mechanism that holds circuit breaker 16 closed. When the latching mechanism is released, circuit breaker 16 will open, opening the “a” contact and closing the “b” contact of auxiliary switch 104. Trip coil 100 is then de-energized by node electronics unit 20. After breaker 16 opens, with the close spring recharged by motor 108, circuit breaker 16 is prepared for a next operating cycle. In the exemplary embodiment, each node electronics unit 20 is coupled to circuit breaker 16 in a one-to-one correspondence. For example, each node electronics unit 20 communicates directly with only one circuit breaker 16. In an alternative embodiment, node electronics unit 20 may communicate with a plurality of circuit breakers 16.
The above-described node electronics unit for a circuit breaker is cost effective and highly reliable. The node electronics unit includes a network communications interface for transmitting data and receiving commands from a CCPU, a processor to facilitate operating the circuit breaker based on commands received from the CCPU or from the processor when communications with the CCPU is lost, and input and output devices for sensing electrical system parameters and operating the circuit breaker. Therefore, the node electronics unit facilitates monitoring, controlling and protecting a power distribution system in a cost effective and reliable manner.
Exemplary embodiments of node electronics units are described above in detail. The node electronics units are not limited to the specific embodiments described herein, but rather, components of the node electronics unit may be utilized independently and separately from other components described herein. Each node electronics unit component can also be used in combination with other node electronics unit components.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
This application is related to U.S. Patent Application No. 60/359,544 filed on Feb. 25, 2002 for “Integrated Protection, Monitoring, and Control” the content of which is incorporated in its entirety herein by reference. This application is also related to U.S. Patent Application No. 60/438,159 filed on Jan. 6, 2003 for “Single Processor Concept for Protection and Control of Circuit Breakers in Low-Voltage Switchgear” the content of which is incorporated in its entirety herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3772505 | Massell | Nov 1973 | A |
3938007 | Boniger et al. | Feb 1976 | A |
3956671 | Nimmersjo | May 1976 | A |
3963964 | Mustaphi | Jun 1976 | A |
4001742 | Jencks et al. | Jan 1977 | A |
4245318 | Eckart et al. | Jan 1981 | A |
4291299 | Hinz et al. | Sep 1981 | A |
4301433 | Castonguay et al. | Nov 1981 | A |
4311919 | Nail | Jan 1982 | A |
4415968 | Maeda et al. | Nov 1983 | A |
4423459 | Stich et al. | Dec 1983 | A |
4432031 | Premerlani | Feb 1984 | A |
4455612 | Girgis et al. | Jun 1984 | A |
4468714 | Russell | Aug 1984 | A |
4589074 | Thomas et al. | May 1986 | A |
4623949 | Salowe et al. | Nov 1986 | A |
4631625 | Alexander et al. | Dec 1986 | A |
4642724 | Ruta | Feb 1987 | A |
4652966 | Farag et al. | Mar 1987 | A |
4672501 | Bilac et al. | Jun 1987 | A |
4672555 | Hart et al. | Jun 1987 | A |
4674062 | Premerlani | Jun 1987 | A |
4689712 | Demeyer | Aug 1987 | A |
4709339 | Fernandes | Nov 1987 | A |
4751653 | Junk et al. | Jun 1988 | A |
4752853 | Matsko et al. | Jun 1988 | A |
4754407 | Nolan | Jun 1988 | A |
4777607 | Maury et al. | Oct 1988 | A |
4783748 | Swarztrauber et al. | Nov 1988 | A |
4796027 | Smith-Vaniz | Jan 1989 | A |
4833592 | Yamanaka | May 1989 | A |
4849848 | Ishii | Jul 1989 | A |
4855671 | Fernandes | Aug 1989 | A |
4862308 | Udren | Aug 1989 | A |
4964058 | Brown, Jr. | Oct 1990 | A |
4979122 | Davis et al. | Dec 1990 | A |
4983955 | Ham, Jr. et al. | Jan 1991 | A |
4996646 | Farrington | Feb 1991 | A |
5053735 | Ohishi et al. | Oct 1991 | A |
5060166 | Engel et al. | Oct 1991 | A |
5101191 | MacFadyen et al. | Mar 1992 | A |
5134691 | Elms | Jul 1992 | A |
5136458 | Durivage, III | Aug 1992 | A |
5162664 | Haun et al. | Nov 1992 | A |
5166887 | Farrington et al. | Nov 1992 | A |
5170310 | Studtmann et al. | Dec 1992 | A |
5170360 | Porter et al. | Dec 1992 | A |
5179376 | Pomatto | Jan 1993 | A |
5182547 | Griffith | Jan 1993 | A |
5185705 | Farrington | Feb 1993 | A |
5196831 | Bscheider | Mar 1993 | A |
5214560 | Jensen | May 1993 | A |
5216621 | Dickens | Jun 1993 | A |
5225994 | Arinobu et al. | Jul 1993 | A |
5231565 | Bilas et al. | Jul 1993 | A |
5237511 | Caird et al. | Aug 1993 | A |
5247454 | Farrington et al. | Sep 1993 | A |
5253159 | Bilas et al. | Oct 1993 | A |
5272438 | Stumme | Dec 1993 | A |
5301121 | Garverick et al. | Apr 1994 | A |
5305174 | Morita et al. | Apr 1994 | A |
5311392 | Kinney et al. | May 1994 | A |
5323307 | Wolf et al. | Jun 1994 | A |
5353188 | Hatakeyama | Oct 1994 | A |
5361184 | El-Sharkawi et al. | Nov 1994 | A |
5367427 | Matsko et al. | Nov 1994 | A |
5369356 | Kinney et al. | Nov 1994 | A |
5381554 | Langer et al. | Jan 1995 | A |
5384712 | Oravetz et al. | Jan 1995 | A |
5402299 | Bellei | Mar 1995 | A |
5406495 | Hill | Apr 1995 | A |
5414635 | Ohta | May 1995 | A |
5420799 | Peterson et al. | May 1995 | A |
5422778 | Good et al. | Jun 1995 | A |
5440441 | Ahuja | Aug 1995 | A |
5451879 | Moore | Sep 1995 | A |
5487016 | Elms | Jan 1996 | A |
5490086 | Leone et al. | Feb 1996 | A |
5493468 | Hunter et al. | Feb 1996 | A |
5530738 | McEachern | Jun 1996 | A |
5534782 | Nourse | Jul 1996 | A |
5534833 | Castonguay et al. | Jul 1996 | A |
5537327 | Snow et al. | Jul 1996 | A |
5544065 | Engel et al. | Aug 1996 | A |
5559719 | Johnson et al. | Sep 1996 | A |
5560022 | Dunstan et al. | Sep 1996 | A |
5576625 | Sukegawa et al. | Nov 1996 | A |
5581471 | McEachern et al. | Dec 1996 | A |
5587917 | Elms | Dec 1996 | A |
5596473 | Johnson et al. | Jan 1997 | A |
5600527 | Engel et al. | Feb 1997 | A |
5608646 | Pomatto | Mar 1997 | A |
5613798 | Braverman | Mar 1997 | A |
5619392 | Bertsch et al. | Apr 1997 | A |
5627716 | Lagree et al. | May 1997 | A |
5627717 | Pein et al. | May 1997 | A |
5627718 | Engel et al. | May 1997 | A |
5629825 | Wallis et al. | May 1997 | A |
5631798 | Seymour et al. | May 1997 | A |
5638296 | Johnson et al. | Jun 1997 | A |
5650936 | Loucks et al. | Jul 1997 | A |
5661658 | Putt et al. | Aug 1997 | A |
5666256 | Zavis et al. | Sep 1997 | A |
5670923 | Gonzalez et al. | Sep 1997 | A |
5694329 | Pomatto | Dec 1997 | A |
5696695 | Ehlers et al. | Dec 1997 | A |
5719738 | Singer et al. | Feb 1998 | A |
5734576 | Klancher | Mar 1998 | A |
5736847 | Van Doorn et al. | Apr 1998 | A |
5737231 | Pyle et al. | Apr 1998 | A |
5742513 | Bouhenguel et al. | Apr 1998 | A |
5751524 | Swindler | May 1998 | A |
5754033 | Thomson | May 1998 | A |
5754440 | Cox et al. | May 1998 | A |
5768148 | Murphy et al. | Jun 1998 | A |
5784237 | Velez | Jul 1998 | A |
5784243 | Pollman et al. | Jul 1998 | A |
5786699 | Sukegawa et al. | Jul 1998 | A |
5812389 | Katayama et al. | Sep 1998 | A |
5821704 | Carson et al. | Oct 1998 | A |
5825643 | Dvorak et al. | Oct 1998 | A |
5828576 | Loucks et al. | Oct 1998 | A |
5828983 | Lombardi | Oct 1998 | A |
5831428 | Pyle et al. | Nov 1998 | A |
5867385 | Brown et al. | Feb 1999 | A |
5872722 | Oravetz et al. | Feb 1999 | A |
5872785 | Kienberger | Feb 1999 | A |
5890097 | Cox | Mar 1999 | A |
5892449 | Reid et al. | Apr 1999 | A |
5903426 | Ehling | May 1999 | A |
5905616 | Lyke | May 1999 | A |
5906271 | Castonguay et al. | May 1999 | A |
5926089 | Sekiguchi et al. | Jul 1999 | A |
5936817 | Matsko et al. | Aug 1999 | A |
5946210 | Montminy et al. | Aug 1999 | A |
5958060 | Premerlani | Sep 1999 | A |
5963457 | Kanoi et al. | Oct 1999 | A |
5973481 | Thompson et al. | Oct 1999 | A |
5973899 | Williams et al. | Oct 1999 | A |
5982595 | Pozzuoli | Nov 1999 | A |
5982596 | Spencer et al. | Nov 1999 | A |
5995911 | Hart | Nov 1999 | A |
6005757 | Shvach et al. | Dec 1999 | A |
6005758 | Spencer et al. | Dec 1999 | A |
6018451 | Lyke et al. | Jan 2000 | A |
6038516 | Alexander et al. | Mar 2000 | A |
6047321 | Raab et al. | Apr 2000 | A |
6054661 | Castonguay et al. | Apr 2000 | A |
6055145 | Lagree et al. | Apr 2000 | A |
6061609 | Kanoi et al. | May 2000 | A |
6084758 | Clarey et al. | Jul 2000 | A |
6138241 | Eckel et al. | Oct 2000 | A |
6139327 | Callahan et al. | Oct 2000 | A |
6141196 | Premerlani et al. | Oct 2000 | A |
6157527 | Spencer et al. | Dec 2000 | A |
6167329 | Engel et al. | Dec 2000 | A |
6175780 | Engel | Jan 2001 | B1 |
6185482 | Egolf et al. | Feb 2001 | B1 |
6185508 | Van Doorn et al. | Feb 2001 | B1 |
6186842 | Hirschbold et al. | Feb 2001 | B1 |
6195243 | Spencer et al. | Feb 2001 | B1 |
6198402 | Hasegawa et al. | Mar 2001 | B1 |
6212049 | Spencer et al. | Apr 2001 | B1 |
6233128 | Spencer et al. | May 2001 | B1 |
6236949 | Hart | May 2001 | B1 |
6242703 | Castonguay et al. | Jun 2001 | B1 |
6268991 | Criniti et al. | Jul 2001 | B1 |
6285917 | Sekiguchi et al. | Sep 2001 | B1 |
6288882 | DiSalvo et al. | Sep 2001 | B1 |
6289267 | Alexander et al. | Sep 2001 | B1 |
6291911 | Dunk et al. | Sep 2001 | B1 |
6292340 | O'Regan et al. | Sep 2001 | B1 |
6292717 | Alexander et al. | Sep 2001 | B1 |
6292901 | Lys et al. | Sep 2001 | B1 |
6297939 | Bilac et al. | Oct 2001 | B1 |
6313975 | Dunne et al. | Nov 2001 | B1 |
6341054 | Walder et al. | Jan 2002 | B1 |
6347027 | Nelson et al. | Feb 2002 | B1 |
6351823 | Mayer et al. | Feb 2002 | B1 |
6356422 | Bilac et al. | Mar 2002 | B1 |
6356849 | Jaffe | Mar 2002 | B1 |
6369996 | Bo | Apr 2002 | B1 |
6377051 | Tyner et al. | Apr 2002 | B1 |
6385022 | Kulidjian et al. | May 2002 | B1 |
6396279 | Gruenert | May 2002 | B1 |
6397155 | Przydatek et al. | May 2002 | B1 |
6405104 | Dougherty | Jun 2002 | B1 |
6406328 | Attarian et al. | Jun 2002 | B1 |
6411865 | Qin et al. | Jun 2002 | B1 |
6441931 | Moskovich et al. | Aug 2002 | B1 |
6459997 | Anderson | Oct 2002 | B1 |
6496342 | Horvath et al. | Dec 2002 | B1 |
6535797 | Bowles et al. | Mar 2003 | B1 |
6549880 | Willoughby et al. | Apr 2003 | B1 |
6553418 | Collins et al. | Apr 2003 | B1 |
6892115 | Berkcan et al. | May 2005 | B1 |
20010010032 | Ehlers et al. | Jul 2001 | A1 |
20010032025 | Lenz et al. | Oct 2001 | A1 |
20010044588 | Mault | Nov 2001 | A1 |
20010048354 | Douville et al. | Dec 2001 | A1 |
20010055965 | Delp et al. | Dec 2001 | A1 |
20020010518 | Reid et al. | Jan 2002 | A1 |
20020032535 | Alexander et al. | Mar 2002 | A1 |
20020034086 | Scoggins et al. | Mar 2002 | A1 |
20020045992 | Shincovich et al. | Apr 2002 | A1 |
20020059401 | Austin | May 2002 | A1 |
20020063635 | Shincovich | May 2002 | A1 |
20020064010 | Nelson et al. | May 2002 | A1 |
20020091949 | Ykema | Jul 2002 | A1 |
20020094799 | Elliott et al. | Jul 2002 | A1 |
20020107615 | Bjorklund | Aug 2002 | A1 |
20020108065 | Mares | Aug 2002 | A1 |
20020109722 | Rogers et al. | Aug 2002 | A1 |
20020111980 | Miller et al. | Aug 2002 | A1 |
20020116092 | Hamamatsu et al. | Aug 2002 | A1 |
20020124011 | Baxter et al. | Sep 2002 | A1 |
20020146076 | Lee | Oct 2002 | A1 |
20020146083 | Lee et al. | Oct 2002 | A1 |
20020147503 | Osburn, III | Oct 2002 | A1 |
20020159402 | Binder | Oct 2002 | A1 |
20020162014 | Przydatek et al. | Oct 2002 | A1 |
20020163918 | Cline | Nov 2002 | A1 |
20020165677 | Lightbody et al. | Nov 2002 | A1 |
20020181174 | Bilac et al. | Dec 2002 | A1 |
20020193888 | Wewalaarachchi et al. | Dec 2002 | A1 |
20030043785 | Liu et al. | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
0718948 | Jun 1996 | EP |
0723325 | Jul 1996 | EP |
0949734 | Oct 1999 | EP |
Number | Date | Country | |
---|---|---|---|
20030222509 A1 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
60438159 | Jan 2003 | US | |
60359544 | Feb 2002 | US |