The present disclosure relates to a method and apparatus for performing a computer assisted surgical procedure, and particularly to a method and apparatus for optimizing a computer assisted surgical procedure.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Various procedures can be performed on the anatomy of a patient to assist in providing various treatments to the patient. For example, an orthopedic procedure can include implanting a prosthesis or repairing an anatomical structure of a patient. Additional surgical procedures can include neurological procedures, cardiovascular procedures, and the like. Some of these exemplary procedures are generally selected to be performed in a small or minimally invasive manner. Some surgical procedures are performed in very surgically sensitive areas of the patient, such as in the brain or spinal area. In various procedures, therefore, an assistive system, such as an imaging or navigation system can be used to assist in a procedure. For example, a navigation system can be used to assist in illustrating a position of a device or instrument relative to a patient.
Although imaging systems to image portions of the anatomy and navigation systems are generally available, they may not provide multiple levels or types of information to the user. For example, an imaging device may generally only be able to provide one or two types of image data for use by a user. Nevertheless, providing several types of data for use during a single procedure may be desirable. For example, it may be desirable to provide a generally accepted map of a selected portion of the anatomy, such as the brain, for review during a procedure. It may also be desirable to illustrate a map of the anatomy relative to a patient specific image to assist in determining or verifying a location or target in the anatomy.
In addition, it may be desirable to provide a system that allows for integration of numerous types of systems. For example, it may be desirable to provide a system that allows for integration of both a navigation system, an imaging system, a data feedback system, and the like. Therefore, it is desirable to provide a system that allows for integration of several systems to allow for a synergistic approach to performing a selected surgical procedure. It is also desirable to provide an adaptive system that allows updating of static or database models to optimize various surgical procedures.
Taught herein is a method and apparatus for providing an integrated adaptive system and approach to performing a surgical procedure. This system may be provided to obtain or display a selected type of data relating to a portion of the anatomy, and the system may allow for the synergy of several types of information for a single user. For example, image data of a particular patient, atlas information, instrument or recorder information, navigation information, archived or historical information, patient specific information and other appropriate types of information. All can be provided on or by a single system for use by a user during an operative procedure, after an operative procedure, or prior to an operative procedure.
In one example, various types of data can be provided to a user to plan a selected procedure. The plan and various types of data can be provided to a user during the actual procedure to assist navigating and assuring that the procedure is performed according to the plan. The data can also allow a user to perform a follow-up or programming of a device for a particular procedure. The data can assist the user in ensuring that an appropriate therapy is provided to a selected area of the anatomy, such as the brain. In addition, the various types of data can be used to post-operatively assist in refining various databases of data, such as atlases, including the anatomical and functional locations defined therein.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses.
With reference to
The various types of data 2 can be provided within the optimization system of 1 for use in various portions of the optimization procedure 1 The optimization system 1 can include a procedure planning 3, performing a procedure 4, or optimizing and programming a system 5, such as an implantable device. The various types of data 2 can be provided in any appropriate manner, such as visually, a list, a database, a computer accessible database, or the like.
The various types of data 2, although only exemplary and not intended to be an exhaustive list, can include atlas data 2a. The atlas data 2a can be any appropriate atlas data, such as a neurological atlas data, a cardiovascular atlas data, a musculature atlas data, skeletal atlas data, or the like. The atlas data can include three-dimensional atlas data 100 (
The data 2 provided within the optimization system 1 can also include the patient specific image data 2b. The patient specific image data 2b can be acquired in any appropriate manner, including those discussed further herein. The acquired image data can include magnetic resonance imaging data, diffusion tensor image data, optical coherence tomography image data, x-ray image data, or any appropriate image data. The patient image data can be acquired at any appropriate time, such as pre-operatively, intra-operatively or post-operatively. Also, as discussed further herein, the patient image data 2b can be registered to the atlas data 2a for use by a user within the optimization system 1. The atlas data 2a can be fitted to the image data of the patient 2b in any appropriate manner, also discussed further herein.
Also, other types of exemplary patient data that can be acquired, can include physiological data 2c. The physiological data 2c can be any appropriate type of data, such as electrical signal data recorded with a micro-electrode recorder (MER). Micro-electrode recording is understood by one skilled in the art and can be used to precisely pin point or locate various portions of the anatomy. For example, the MER can be used to determine the electrical signal relative to a single neuron or to a group of neurons. Further, the MER can be moved through the neurological tissue to determine differences between selected regions of a patient. The acquired physiological data, however, can also include any appropriate type of data, such as optical coherence tomography data 220 (see
In addition, various patient specific data in block 2d can also be provided. The patient specific data 2d can also include data, such as prior procedures, physical issues with the particular patient 14, or any appropriate patient specific data. The patient specific data 2d can also include a particular geometry or the patient, known locations of portions of the anatomy of the patient, and the like. Patient specific data 2d can also include functional data of the patient. Also, patient specific data can include function data acquired during a particular procedure. Functional data can include microelectrode recording data, pressure data, gating data, etc. Functional data, according to various embodiments, can be obtained with a microelectrode recorder, a scope, a catheter, or any other appropriate instrument.
In addition, as discussed above, the data 2 can include various archived or multiple procedural data portions or data sets 2e. Although various portions of the data can be integrated into the atlas data 2a, an additional database of data can include the archived or statistical functional data 2e. The archived and statistical functional data 2e can include data obtained during the performance of the procedure in block 4 or during the optimization and programming of the device, which can be implanted in the patient 14 in block 5. Archived or statistical functional data 2e can also include functional data of a group or previous patients. Functional data can include microelectrode recording data, pressure data, gating data, etc. The archived functional data can be used to augment data base data, including an atlas or other appropriate data. Therefore, the data in block 2 can include both data relating to the particular patient and to historical data that can assist in optimizing static data, such as atlas data, to a particular patient.
It will be understood that the system 1, as illustrated in
The data 2 can be provided to any appropriate procedure planning system 3. As discussed further herein, the data 2 can also be provided to an optimization or programming system for a device 5. The data 2 can be used in the procedure planning 3 or in the optimization programming system 5 to enhance or optimize a procedure on a particular patient. For example, the procedure planning block 3 can use the data 2 to assist in pre-selecting a target for a therapy, selecting a trajectory to reach the target for therapy, determining an appropriate amount of therapy, determining an appropriate type of therapy, or other appropriate pre-surgical planning information.
The data 2 can be provided, generally, in a database for access by a system or user. As discussed further herein, a workstation including a processor or any appropriate processor can execute instructions relating to the data base of the data 2. The database of the data 2 can be stored on a memory system for access by the processor. Thus, the data 2 can be accessed for use during a procedure, as discussed herein.
Also, as discussed further herein, a feedback 6 can allow the database of the data 2 to be augmented or updated. The database data 2 can be augmented or updated for use in multiple procedures or only in a current procedure. In this way, the data 2 in the database can be used in one or multiple procedures and accessed by multiple users. Thus, the data 2 can be used to optimize or assist in several procedures and updated and improved over time.
The data 2 in the database, can be accessed for use in a procedure. The data 2 in the database can be stored on a local memory system or accessed via a communications network. This can allow a centralized storage and access of the data 2 to efficiently update and augment the data 2 with numerous procedure data.
In planning a procedure, the patient image data 2b can be further refined with the acquired physiological data 2c or other patient specific information 2d. This can assist determining the location of the various anatomical or functional locations. Further, the data 2 can also include specific inputs or database inputs of the effective therapies on selected portions of the anatomy. For example, known effects of electrical stimulation, material delivery, or the like can be provided to assist in planning a procedure, including the amounts or type of therapy to be provided to a selected target or region.
Also, as discussed herein and illustrated in
The procedure planned in block 3 can also be performed in block 4 with the assistance of the data 2. As discussed herein, a device or instrument can be navigated relative to a patient, based upon the planned procedure from block 3, which is based upon the data from block 2. The navigation can be substantially imageless or with images to assist in ensuring that an appropriate location of the instrument or device is reached. Further, the data can be used to illustrate the type of therapy being provided and the effect of the therapy being provided to the patient. Also, various imaging techniques can be used to intraoperatively verify positioning of a selected device to ensure that the plan from the procedure planning of block 3 has been achieved.
As understood by one skilled in the art, various types of devices may be programmed or optimized once they are implanted or positioned relative to a patient. For example, a deep brain stimulator (DBS) probe can be implanted into the brain and can be programmed over time to achieve an optimal result. It will be understood, however, that various types of implantable devices can also be employed to provide any appropriate type of therapy, such as a pacing lead, a drug delivery therapy, a pharmaceutical delivery, a cell or gene delivery therapy, or any appropriate type of therapy and delivery. Therefore, the optimization and programming system in block 5 can use the data from block 2 to assist in determining the appropriate type of programming that should be provided. For example, also discussed further herein, an appropriate voltage and pulse width can be programmed for an appropriate lead to stimulate a selected portion of the anatomy. The data from block 2 can be used to assist in determining the appropriate voltage, the appropriate pulse width, and the appropriate lead to be activated.
Also, the optimization and programming system for the device 5 can be used to assist in creating or augmenting the data in block 2, via feedback 6. For example, when providing a selected voltage, pulse width, and the like achieves the selected result or achieves a particular result, the data from block 2 can be augmented or changed based upon the observed result. The optimal location or optimal initial voltage, pulse width, therapy delivery, or the like can be input for retrieval when planning a procedure 3 from the data block 2.
The procedure can be planned or performed with any appropriate system, which can include a navigation system 10 (
With reference to
The navigation system 10 can include the optional imaging device 12 that is used to acquire pre-, intra-, or post-operative or real-time image data of a patient 14. The image data acquired with the imaging device 12 can be used as part of the patient specific information in block 2. Alternatively various imageless systems can be used or images from atlas models can be used to produce patient images, such as those disclosed in U.S. patent application Ser. No. 10/687,539, filed Oct. 16, 2003, entitled “METHOD AND APPARATUS FOR SURGICAL NAVIGATION OF A MULTIPLE PIECE CONSTRUCT FOR IMPLANTATION”, incorporated herein by reference. The optional imaging device 12 is, for example, a fluoroscopic X-ray imaging device that may be configured as a C-arm 16 having an X-ray source 18, an X-ray receiving section 20, an optional calibration and tracking target 22 and optional radiation sensors 24. The calibration and tracking target 22 includes calibration markers (not illustrated). Image data may also be acquired using other imaging devices, such as those discussed above and herein.
An optional imaging device controller 28 may control the imaging device 12, such as the C-arm 16, which can capture the x-ray images received at the receiving section 20 and store the images for later use. The controller 28 may also be separate from the C-arm 16 and can be part of or incorporated into a work station 31. The controller 28 can control the rotation of the C-arm 16. For example, the C-arm 16 can move in the direction of arrow 30 or rotate about a longitudinal axis 14a of the patient 14, allowing anterior or lateral views of the patient 14 to be imaged. Each of these movements involves rotation about a mechanical axis 32 of the C-arm 16. The movements of the imaging device 12, such as the C-arm 16 can be tracked with a tracking device 59.
In the example of
In operation, the C-arm 16 generates X-rays from the −X-ray source 18 that propagate through the patient 14 and calibration and/or tracking target 22, into the X-ray receiving section 20. This allows direct visualization of the patient 14 and radio-opaque instruments in the cone of X-rays. It will be understood that the tracking target or device need not include a calibration portion. The receiving section 20 generates image data representing the intensities of the received X-rays. Typically, the receiving section 20 includes an image intensifier that first converts the X-rays to visible light and a charge coupled device (CCD) video camera that converts the visible light into digital image data. Receiving section 20 may also be a digital device that converts X-rays directly to digital image data for forming images, thus potentially avoiding distortion introduced by first converting to visible light. With this type of digital C-arm, which is generally a flat panel device, the optional calibration and/or tracking target 22 and the calibration process discussed below may be eliminated. Also, the calibration process may be eliminated or not used at all for various procedures. Alternatively, the imaging device 12 may only take a single image with the calibration and tracking target 22 in place. Thereafter, the calibration and tracking target 22 may be removed from the line-of-sight of the imaging device 12.
Two dimensional fluoroscopic images that may be taken by the imaging device 12 are captured and stored in the C-arm controller 28. Multiple two-dimensional images taken by the imaging device 12 may also be captured and assembled to provide a larger view or image of a whole region of a patient, as opposed to being directed to only a portion of a region of the patient. For example, multiple image data of a patient's leg or cranium and brain may be appended together to provide a full view or complete set of image data of the leg or brain that can be later used to follow contrast agent, such as Bolus or therapy tracking.
The image data can then be forwarded from the C-arm controller 28 to a navigation computer and/or processor controller or work station 31 having a display 34 to display image data 36 and a user interface 38. The work station 31 can also include or be connected to an image processor, navigation processor, and memory to hold instruction and data. The work station 31 can include an optimization processor, which includes the system 1, as discussed herein, or a separate optimization processor system 39 can be included. The optimization processor system 39 can also include a display 39a and a user input 39b. It will also be understood that the image data is not necessarily first retained in the controller 28, but may also be directly transmitted to the workstation 31, which can also include an image processor, navigation processor, memory, etc. Moreover, processing for the navigation system and optimization can all be done with a single or multiple processors.
The work station 31 or optimization processor 39 provides facilities for displaying the image data 36 as an image on the display 34, saving, digitally manipulating, or printing a hard copy image of the received image data. The user interface 38, which may be a keyboard, mouse, touch pen, touch screen or other suitable device, allows a physician or user 67 to provide inputs to control the imaging device 12, via the C-arm controller 28, or adjust the display settings of the display 34. The work station 31 may also direct the C-arm controller 28 to adjust the rotational axis 32 of the C-arm 16 to obtain various two-dimensional images along different planes in order to generate representative two-dimensional and three-dimensional images.
The optimization processor 39 can be provided in any appropriate format, such as a substantially portable format. The optimization processor 39 can be used in any appropriate portion of the optimization process or system 1. For example, the optimization processor 39 can be separate from the navigation processor to allow for planning of the procedure, programming of the device in step 5, or any appropriate portion.
Various calibration techniques can be used to calibrate the imaging device 12. Intrinsic calibration, which is the process of correcting image distortion in a received image and establishing the projective transformation for that image, involves placing the calibration markers in the path of the x-ray, where the calibration markers are opaque or semi-opaque to the x-rays. A more detailed explanation of exemplary methods for performing intrinsic calibration are described in the references: B. Schuele, et al., “Correction of Image Intensifier Distortion for Three-Dimensional Reconstruction,” presented at SPIE Medical Imaging, San Diego, Calif., 1995; G. Champleboux, et al., “Accurate Calibration of Cameras and Range Imaging Sensors: the NPBS Method,” Proceedings of the IEEE International Conference on Robotics and Automation, Nice, France, May, 1992; and U.S. Pat. No. 6,118,845, entitled “System And Methods For The Reduction And Elimination Of Image Artifacts In The Calibration Of X-Ray Imagers,” issued Sep. 12, 2000, the contents of which are each hereby incorporated by reference.
While the optional imaging device 12 is shown in
Image datasets from hybrid modalities, such as positron emission tomography (PET) combined with CT, or single photon emission computer tomography (SPECT) combined with CT, could also provide functional image data superimposed onto anatomical data to be used to confidently reach target sights within the patient 14. It should further be noted that the optional imaging device 12, as shown in
4D image information can be used with the navigation system 10 as well. For example, the user 67 can use the physiologic signal 2C, which can include Heart Rate (EKG), Breath Rate (Breath Gating) and combine this data with image data 2b acquired during the phases of the physiologic signal to represent the anatomy at various stages of the physiologic cycle. For example, the brain pulses (and therefore moves) with each heartbeat. Images can be acquired to create a 4D map of the brain, onto which the atlas data 2a and representations of the instrument can be projected. This 4D data set can be matched and co-registered with the physiologic signal (EKG) to represent a compensated image within the system. The image data registered with the 4D information can show the brain (or anatomy of interest) moving during the cardiac or breath cycle. This movement can be displayed on the display 34 as the image data 36.
Likewise, other imaging modalities can be used to gather the 4D dataset to which pre-operative 2D and 3D data can be matched. One need not necessarily acquire multiple 2D or 3D images during the physiologic cycle of interest (breath or heart beat). Ultrasound imaging or other 4D imaging modalities can be used to create an image data that allows for a singular static pre-operative image to be matched via image-fusion techniques and/or matching algorithms that are non-linear to match the distortion of anatomy based on the movements during the physiologic cycle. The combination of a the dynamic reference frame 54 and 4D registration techniques can help compensate for anatomic distortions during movements of the anatomy associated with normal physiologic processes.
With continuing reference to
The tracking device 54a or any appropriate tracking device as discussed herein, can include both a sensor, a transmitter, or combinations thereof. Further, the tracking devices can be wired or wireless to provide a signal or emitter or receive a signal from a system. Nevertheless, the tracking device can include an electromagnetic coil to sense a field produced by the localizing array 46 or 47 or reflectors that can reflect a signal to be received by the optical localizer 44′, 44″. Nevertheless, one will understand that the tracking device can receive a signal, transmit a signal, or combinations thereof to provide information to the navigation system 10 to determine a location of the tracking device 54a, 58. The navigation system can then determine a position of the instrument or tracking device to allow for navigation relative to the patient and patient space.
The coil arrays 46, 47 may also be supplemented or replaced with a mobile localizer. The mobile localizer may be one such as that described in U.S. patent application Ser. No. 10/941,782, filed Sep. 15, 2004, and entitled “METHOD AND APPARATUS FOR SURGICAL NAVIGATION”, herein incorporated by reference. As is understood the localizer array can transmit signals that are received by the tracking device 54a, 58. The tracking device 58 can then transmit or receive signals based upon the transmitted or received signals from or to the array.
Other tracking systems include acoustic, radiation, radar, infrared, etc. The optical localizer can transmit and receive, or combinations thereof. An optical tracking device can be interconnected with the instrument 52, or other portions such as the dynamic reference frame 54. As is generally known the optical tracking device 58a can reflect, transmit or receive an optical signal to the optical localizer 44′ that can be used in the navigation system 10 to navigate or track various elements. Therefore, one skilled in the art will understand, that the tracking devices 54a, 58, and 59 can be any appropriate tracking device to work with any one or multiple tracking systems.
Further included in the navigation system 10 may be an isolator circuit or assembly. The isolator circuit or assembly may be included in a transmission line to interrupt a line carrying a signal or a voltage to the navigation probe interface 50. Alternatively, the isolator circuit included in the isolator box may be included in the navigation probe interface 50, the device 52, the dynamic reference frame 54, the transmission lines coupling the devices, or any other appropriate location. The isolator assembly is operable to isolate any of the instruments or patient coincidence instruments or portions that are in contact with the patient should an undesirable electrical surge or voltage take place.
It should further be noted that the entire tracking system 44 or parts of the tracking system 44 may be incorporated into the imaging device 12, including the work station 31, radiation sensors 24 and optimization processor 39. Incorporating the tracking system 44 may provide an integrated imaging and tracking system. This can be particularly useful in creating a fiducial-less system. Any combination of these components may also be incorporated into the imaging system 12, which again can include a fluoroscopic C-arm imaging device or any other appropriate imaging device.
The coil array 46 can include a plurality of coils that are each operable to generate distinct electromagnetic fields into the navigation region of the patient 14, which is sometimes referred to as patient space. Representative electromagnetic systems are set forth in U.S. Pat. No. 5,913,820, entitled “Position Location System,” issued Jun. 22, 1999 and U.S. Pat. No. 5,592,939, entitled “Method and System for Navigating a Catheter Probe,” issued Jan. 14, 1997, each of which are hereby incorporated by reference.
The coil array 46 is controlled or driven by the coil array controller 48. The coil array controller 48 drives each coil in the coil array 46 in a time division multiplex or a frequency division multiplex manner. In this regard, each coil may be driven separately at a distinct time or all of the coils may be driven simultaneously with each being driven by a different frequency.
Upon driving the coils in the coil array 46 with the coil array controller 48, electromagnetic fields are generated within the patient 14 in the area where the medical procedure is being performed, which is again sometimes referred to as patient space. The electromagnetic fields generated in the patient space induce currents in the tracking device 54a, 58 positioned on or in the device 52. These induced signals from the tracking device 58 are delivered to the navigation probe interface 50 and subsequently forwarded to the coil array controller 48. The navigation probe interface 50 can also include amplifiers, filters and buffers to directly interface with the tracking device 58 in the device 52. Alternatively, the tracking device 58, or any other appropriate portion, may employ a wireless communications channel, such as that disclosed in U.S. Pat. No. 6,474,341, entitled “Surgical Communication Power System,” issued Nov. 5, 2002, herein incorporated by reference, as opposed to being coupled directly to the navigation probe interface 50.
Various portions of the navigation system 10, such as the device 52, the dynamic reference frame (DRF) 54, the instrument 52, are equipped with at least one, and generally multiple, EM or other tracking devices 58, that may also be referred to as localization sensors. The EM tracking devices 58 can include one or more coils that are operable with the EM localizer array 46 or 47. An alternative tracking device may include an optical sensor, and may be used in addition to or in place of the electromagnetic sensor 58. The optical sensor may work with the optional optical array 44′. One skilled in the art will understand, however, that any appropriate tracking device can be used in the navigation system 10. An additional representative alternative localization and tracking system is set forth in U.S. Pat. No. 5,983,126, entitled “Catheter Location System and Method,” issued Nov. 9, 1999, which is hereby incorporated by reference. Alternatively, the localization system may be a hybrid system that includes components from various systems.
In brief, the EM tracking device 58 on the device 52 can be in a handle or inserter that interconnects with an attachment and may assist in placing an implant or in driving a portion. The device 52 can include a graspable or manipulable portion at a proximal end and the tracking device 58 may be fixed near the manipulable portion of the device 52 or at a distal working end, as discussed herein. The tracking device 58 can include an electromagnetic sensor to sense the electromagnetic field generated by the coil array 46 that can induce a current in the electromagnetic device 58. Alternatively, the tracking sensor 54a, 58 can be driven (i.e., like the coil array above) and the tracking array 46, 46a can receive a signal produced by the tracking device 54a, 58.
The dynamic reference frame 54 may be fixed to the patient 14 adjacent to the region being navigated so that any movement of the patient 14 is detected as relative motion between the coil array 46 and the dynamic reference frame 54. The dynamic reference frame 54 can be interconnected with the patient in any appropriate manner, including those discussed herein. This relative motion is forwarded to the coil array controller 48, which updates registration correlation and maintains accurate navigation, further discussed herein. The dynamic reference frame 54 may be any appropriate tracking sensor used as the dynamic reference frame 54 in the navigation system 10. Therefore the dynamic reference frame 54 may also be optical, acoustic, etc. If the dynamic reference frame 54 is electromagnetic it can be configured as a pair of orthogonally oriented coils, each having the same center or may be configured in any other non-coaxial or co-axial coil configurations.
Briefly, the navigation system 10 operates as follows. The navigation system 10 creates a translation map between all points in the image data generated from the imaging device 12 which can include external and internal portions, and the corresponding points in the patient's anatomy in patient space. After this map is established, whenever the tracked device 52 is used the work station 31 in combination with the coil array controller 48 and the C-arm controller 28 uses the translation map to identify the corresponding point on the pre-acquired image or atlas model, which is displayed on display 34. This identification is known as navigation or localization. An icon representing the localized point or instruments is shown on the display 34 within several two-dimensional image planes, as well as on three and four dimensional images and models.
To enable navigation, the navigation system 10 must be able to detect both the position of the patient's anatomy and the position of the instrument 52 or attachment member (e.g. tracking device 58) attached to the instrument 52. Knowing the location of these two items allows the navigation system 10 to compute and display the position of the instrument 52 or any portion thereof in relation to the patient 14. The tracking system 44 is employed to track the instrument 52 and the anatomy simultaneously.
The tracking system 44, if it is using an electromagnetic tracking assembly, essentially works by positioning the coil array 46 adjacent to the patient space to generate a magnetic field, which can be low energy, and generally referred to as a navigation field. Because every point in the navigation field or patient space is associated with a unique field strength, the electromagnetic tracking system 44 can determine the position of the instrument 52 by measuring the field strength at the tracking device 58 location. The dynamic reference frame 54 is fixed to the patient 14 to identify the location of the patient in the navigation field. The electromagnetic tracking system 44 continuously recomputes the relative position of the dynamic reference frame 54 and the instrument 52 during localization and relates this spatial information to patient registration data to enable image guidance of the device 52 within and/or relative to the patient 14.
Patient registration is the process of determining how to correlate the position of the instrument 52 relative to the patient 14 to the position on the diagnostic or pre-acquired images. To register the patient 14, a physician or user 67 may use point registration by selecting and storing particular points (e.g. fiducial points 60) from the pre-acquired images and then touching the corresponding points on the patient's anatomy with the pointer probe 66. The navigation system 10 analyzes the relationship between the two sets of points that are selected and computes a match, which correlates every point in the image data with its corresponding point on the patient's anatomy or the patient space. The points that are selected to perform registration are the fiducial markers or landmarks 60, such as anatomical landmarks. Again, the landmarks or fiducial points are identifiable on the images and identifiable and accessible on the patient 14. The landmarks 60 can be artificial landmarks 60 that are positioned on the patient 14 or anatomical landmarks that can be easily identified in the image data. The artificial landmarks, such as the fiducial markers 60, can also form part of the dynamic reference frame 54, such as those disclosed in U.S. Pat. No. 6,381,485, entitled “Registration of Human Anatomy Integrated for Electromagnetic Localization,” issued Apr. 30, 2002, herein incorporated by reference.
The system 10 may also perform registration using anatomic surface information or path information as is known in the art (and may be referred to as auto-registration). The system 10 may also perform 2D to 3D registration by utilizing the acquired 2D images to register 3D volume images by use of contour algorithms, point algorithms or density comparison algorithms, as is known in the art. An exemplary 2D to 3D registration procedure is set forth in U.S. Ser. No. 10/644,680, entitled “Method and Apparatus for Performing 2D to 3D Registration” filed on Aug. 20, 2003, hereby incorporated by reference.
Also as discussed herein, a substantially fiducial-less registration system can be provided, particularly if the imaging device 12 and the tracking system 44 are substantially integrated. Therefore, the tracking system 44 would generally know the position of the imaging device 12 relative to the patient 14 and fiducials may not be required to create registration. Nevertheless, it will be understood that any appropriate type of registration system can be provided for the navigation system 10.
In order to maintain registration accuracy, the navigation system 10 continuously tracks the position of the patient 14 during registration and navigation. This is because the patient 14, dynamic reference frame 54, and transmitter coil array 46 may all move during the procedure, even when this movement is not desired. Alternatively the patient 14 may be held immobile once the registration has occurred, such as with a head frame. Therefore, if the navigation system 10 did not track the position of the patient 14 or area of the anatomy, any patient movement after image acquisition would result in inaccurate navigation within that image. The dynamic reference frame 54 allows the electromagnetic tracking system 44 to register and track the anatomy. Because the dynamic reference frame 54 is rigidly fixed to the patient 14, any movement of the anatomy or the coil array 46 is detected as the relative motion between the coil array 46 and the dynamic reference frame 54. This relative motion is communicated to the coil array controller 48, via the navigation probe interface 50, which updates the registration correlation to thereby maintain accurate navigation.
The navigation system 10 can be used according to any appropriate method or system. For example, pre-acquired images, atlas or 3D models may be registered relative to the patient and patient space, as discussed further herein. Generally, the navigation system allows the images on the display 34 to be registered and accurately display the real time location of the various instruments and other appropriate items, such as the trackable pointer. In addition, the pointer may be used to register the patient space to the pre-acquired images or the atlas or 3D models. In addition, the dynamic reference frame 54 may be used to ensure that any planned or unplanned movement of the patient or the receiver array 46 is determined and used to correct the image on the display 36.
With additional reference to
To obtain a maximum reference it can be selected to fix the dynamic reference frame 54 in each of at least 6 degrees of freedom. Thus, the dynamic reference frame 54 can be fixed relative to axial motion X, translational motion Y, rotational motion Z, yaw, pitch, and roll relative to the portion of the patient 14 to which it is attached. Any appropriate coordinate system can be used to describe the various degrees of freedom. Fixing the dynamic reference frame relative to the patient 14 in this manner can assist in maintaining maximum accuracy of the navigation system 10.
In addition the dynamic reference frame 54 can be affixed to the patient in such a manner that the tracking sensor portion thereof is immovable relative to the area of interest, such as the cranium 17. A head band may form a part of the dynamic reference from 54. Further, a stereotactic frame, as generally known in the art, can be attached to the head band. Such systems for tracking and performing procedures are disclosed in U.S. patent application Ser. No. 10/651,267, filed on Aug. 28, 2003, and incorporated herein by reference.
The instrument 52 can be a DBS probe, a MER device, a catheter, etc. and each can include at least one of the tracking devices, such as the tracking device 58. The tracking device 58 can be any appropriate tracking device and can be formed in any appropriate manner such as the catheters described in pending U.S. patent application Ser. No. 11/241,837, filed on Sep. 30, 2005, incorporated herein by reference.
The catheter 52 can include the tracking device 58 at any appropriate position, such as near a distal end of the catheter 52. By positioning the tracking device 58 near the distal end of the catheter 52 knowing or determining a precise location of the distal end can be efficient. Determining a position of the distal end of the catheter 52 can be used to achieve various results, such as determining a precise position of the distal end of the catheter 52, a precise movement of the distal end of the catheter 52. It will be understood that knowing a position and moving the catheter 52 in a precise manner can be useful for various purposes, including those discussed further herein. Likewise, the catheter 52 can be directable according to various mechanisms and such as directing or pulling wires, directing or pulling signals, or any appropriate mechanism generally known in the art.
The catheter 52 can be used for various mechanisms and methods, such as delivering a material to a selected portion of the patient 14, such as within the cranium 17. The material can be any appropriate material such as a bioactive material, a pharmacological material, a contrast agent. Instead of a material, a therapy such as electrical stimulation can be used with a deep brain stimulation probe (DBS). The DBS can be used to apply a voltage, a pulse width, etc. to a selected portion of the brain.
As mentioned briefly above, the display 34 can display any appropriate type of image data 36. For example, the image data 36 can include patient specific image data that can be acquired at any appropriate time. The image data can include magnetic resonance imaging data (MRI) that can provide structural anatomical image data of the patient 14. The image data can be displayed on the display 34 for use during a procedure by the user 67. The display on the display 34 can also include various atlas image data. Atlas image data can include two-dimensional image data sets, three-dimensional image data sets, and even four-dimensional image data sets that show the change of various anatomical structures over time.
With reference to
With reference to
With reference to
The planning procedure can use the atlas data, and functional data, discussed further herein, to assist in determining the appropriate location of the targets 104, 106. In addition, the anatomical and functional features identified in the image data 36 can be used to assist in determining the appropriate trajectory 108, 110. Various aiming devices can also be tracked in addition to tracking the instrument 52, as discussed further herein. The identification of appropriate trajectories 108, 110 or the selection of one of many trajectories, such as the selected trajectories 108, 110 can be used to assist in positioning an appropriate aiming device or the instrument 52 during a procedure.
The planning information displayed on the display 34 can also be used post-operatively to determine whether the device, such as a deep brain stimulation probe, was implanted or positioned at an appropriate location, such as a planned location 104, 106. The planning information displayed on the display 34 can be compared to post-operative image data, such as a post-operative MRI of the patient 14, to assist in determining the success or the final positioning of the selected implant. In addition, the post-operative information can be used with the optimization/programming system for the device in block 5 to assist in ensuring that an appropriate lead, therapy, or the like is provided to the selected or target location. Therefore, the planning information on the display 34 can be used to assist in ensuring that an appropriate therapy is provided to the patient, as discussed further herein.
With reference to
The data used to refine the atlas data 102 or the data 2 can also be used during an operative procedure. The anatomy and neurophysiology that is depicted by the atlas data 102 and the plan created may show the probe as navigated in one location, but the intra-operative functional data may confirm it to be in another location (due to clinical shifting, etc.). To determine the next steps, or help refine a trajectory, path, or treatment should be chosen for the therapy, the atlas data 102 can be manipulated to match the intra-operative functional and observed data
It will be understood that any appropriate recording or sensing device can also be used in addition or alternatively to the MER. Other appropriate or selected sensing probes, such as an optical coherence sensor, or the like can be used to provide an appropriate anatomical or functional landmark or structure information. The atlas 102 can be enhanced or further augmented based upon the probe information to assist in determining an appropriate transformation or customization of the atlas relative to the image data 36. It will be further understood that the atlas data can be the 3D atlas data 100 or any other appropriate atlas data and need not necessarily be the 3D atlas data.
As discussed above, the atlas data, which can include the 3D data 100 or 2D data 102, can be provided. The 2D and 3D data can be displayed for viewing on the display device 34. Further, the atlas data information can be registered with the patient image information. The registration can include custom patient alignment. For example, the anterior commissure and the posterior commissure can be determined with Talairach scaling. Also, basal ganglia and local non-linear alignment or global non-linear alignment can be determined. The data can be used for digital mapping of the selected portion of the anatomy, such as the brain. Further, automatic fit or cell types can be determined. That is, cell types in the image data can be determined and displayed on the display 34 for use by the user 67. In addition, the MER can be used for automated fitting, such as by determining or assisting the determination of different cell types or anatomical or functional regions and fitting the atlas 100, 102 to the image data 36. In addition, back projection of physiology or back projection of therapeutic contacts can be used in physical atlases.
The atlas data allows for the statistical or general mapping or indication of various portions of the anatomy, such as portions in the brain, portions in the spinal cord, various anatomical features, or the like. Atlas data can be based upon various procedures or studies, such as well understood and studied anatomical scans. For example, the Schaltenbrand-Wharen or Talairach atlases are generally accepted and well understood atlases of the human brain. Portions that are identified within the Schaltenbrand-Wharen or Talairach atlases can be the atlas data that is used, as discussed above, and herein.
The atlas data can be used at any appropriate time. For example, the atlas data can be superimposed or registered to the image data of the patient for planning a procedure. The atlas data can also be superimposed or registered to the image data for use during a procedure, such as to assist in navigation. The additional instruments, such as the MER, can be used to verify the locations of various portions of the anatomy based upon the atlas data. The MER can be introduced into the brain to record activity within the brain to confirm locations identified with the atlas data.
The feedback loop 6 in the optimization procedure 1 can be used to enhance the atlas data. The atlas data can be stored in the memory system, or any appropriate memory system, and can be augmented based upon information from the procedure or post procedure follow-up. The detected or confirmed location of an anatomical feature or target, can be used to augment or provide a statistical range of the atlas data for use in future procedures. It will be understood, the atlas data can represent any appropriate data 2.
The atlas data can also be used post operatively. For example the atlas data can be superimposed onto image data acquired post operatively of a patient. The atlas data can be used to confirm long time positioning of various implants or instruments, such as DBS leads. Therefore, the atlas data can be used at any appropriate time relative to a procedure time.
With reference to
The provision of the various atlas data 100, 102 and the image data 36 of the patient 14, including other information, such as the physiological data from block 2c, can assist in registration and determination of various targets and an appropriate aiming of the aiming device 142. In addition, the tip 144 of the DBS probe 140 can be substantially precisely tracked due to various elements, such as the positioning of the tracking device 58 at the tip 144, the aiming device 142, or other appropriate mechanisms. Regardless, the exact location of the tip 144 can be navigated relative to a selected portion of the patient 14, such as the target 104, 106 defined during the planning procedure. This can allow for determination or correct placement of a select instrument, such as a DBS probe. It will be understood that any appropriate instrument can be positioned relative to the patient 14 and the DBS probe is merely exemplary. However, the precise positioning, in addition to determination of the appropriate target based on the data provided as discussed above, can assist in performing the appropriate procedure.
Although the procedure can be navigated, as illustrated in
As illustrated in
Further, the image data can be used for navigation by the user 67 with the navigation system 10, 10′ in any appropriate manner. As discussed above, fiducials 60 can be provided for use to register patient space to image space. Alternatively, or in addition thereto, substantially fiducial less registration can be provided. Fiducialless registration can include providing an imaging system 12, 12′, 12″ integrated with the tracking system 44, 44′, 44″. The imaging system 12, 12′, 12″ can be integrated into the tracking system 44, 44′, 44″ so that the position of the imaging device 12, 12′, 12″ is known by the tracking system 44, 44′, 44″ so that the navigation system 10, 10′ acts as one system. In this case, fiducials may not be required to register the image data with the patient space.
In addition, substantially automatic registration can include positioning the tracking device 54a substantially on the top or integrally with the fiducial 60 During the acquisition of the images, the fiducial 60 is present and the tracking device 54a can be interconnected with the fiducial 60 or at substantially the same location after imaging. Therefore, the tracking system 44 can determine the position of the tracking device 54a once the patient 14 is moved into the localization field and substantially automatic registration can occur if the fiducial points in the image data are determined.
With integration of the imaging system and the tracking system, the integrated navigation system can be provided for post-operative confirmation. That is the navigation system can be used to confirm the positioning of the instrument, such as the DBS probe 140, in the procedure. The post-operative confirmation can be substantially immediately post-operative or at a later time, but can be used to ensure the appropriate positioning of the probe 140. The position of the probe 140 can again be determined based upon the atlas information, which can be provided relative to post-operative image data or any other appropriate system.
As discussed above, any appropriate procedure can occur. For example, the positioning of a deep brain stimulation probe 140 can be performed. As is generally known in the art, the deep brain stimulation probe is then programmed or can be programmed post-operatively to apply a selected therapy, such as a voltage to the area of the anatomy relative to positioning of the probe. It will be understood, however, that any other appropriate therapy can be provided, such as a pharmaceutical delivery, a gene or cell therapy, a radiation therapy, or the like. The exemplary discussion of a deep brain stimulation programming is provided for illustration. Further, as discussed above, the appropriate positioning of the deep brain stimulation probe can be provided based upon atlas data, physiological, or patient specific data (e.g., image data of the patient, physiological data of the patient, MER data of the patient, optical coherence tomography data of the patient).
With reference to
The placement and appropriate therapy can be determined using the various data, such as the patient specific data, including physiological image data, and atlas data. For example, the work station 31, illustrated according to various embodiments in
It will be understood that the position of the probe in the anatomy can be determined in any appropriate manner, such as based upon the navigation during the procedure, based on post-operative imaging of the patient, based on post-operative tracking of the tracking sensor, or any appropriate manner. Nevertheless, the determination of the position of the probe and its illustration as the icon 150 relative to the image data 136 can be used to assist in programming the DBS probe or lead in an appropriate manner. Further, the various data collected during the procedure can also be illustrated relative to the image data 36 and the atlas data 102, such as the neuro-physiological data that can be collected with the various instruments, such as the MER or optical coherence tomography. This information, including the physiological data, functional data, and location data, can also be used for later programming and operation of the DBS lead. For example, the location of the lead relative to a functionally identified region of the anatomy can be used to assist in programming the amount of therapy to be delivered from the lead.
With continuing reference to
With reference to
The therapy icon 152a can illustrate an assumed or predicted treatment affected area. The therapy icon 152a can illustrate a size, density amount, etc. of the therapy. The therapy icons, according to various embodiments, generally illustrate a localized affect on the anatomy. The localized affect or treatment area can be based upon the data 2. Generalized affects on the patient can be determined after the therapy is applied, such as reduction of Parkinson's disease symptoms.
The first or initial therapy icon 152a can illustrate an affected area based upon a selected or programmed therapy for viewing by a user, which can include the surgeon 67. It will be understood that the initial therapy icon 152a can illustrate a size, a geometry, a density, and the like of the therapy that is selected or programmed. It will be understood that the initial icon 152a can merely be a virtual representation of the predicted effect of a selected therapy. In addition, it will be understood that the image data 36 and the various icons can be two-dimensional, three-dimensional, four-dimensional or the like. Therefore, the representation of the two-dimensional image data 36 and the two-dimensional initial therapy icon 152a is merely exemplary. Nevertheless, the initial therapy icon 152a can illustrate the possible or selected affect area of a selected therapy on the anatomy.
Turning to
The icons 152a, 152b can illustrate representation of a possible or selected therapy on the patient prior to instigating a therapy on the patient. This can allow for substantially a graphical programming of the implant to make the programming of the implant more efficient and require fewer attempts to obtain an optimal therapy. The predicted affect using the therapy icons 152a, 152b can also be used during the procedure to ensure that an instrument is positioned in an appropriate location for the selected or predicted therapy.
The therapy icons 152a, 152b, according to various embodiments, can be used to predict an area that will be affected by therapy, ensure that an instrument is implanted in the appropriate location for providing a therapy, or a procedure to position an instrument to provide a therapy. Therefore, it will be understood, that the therapy icons are not only provided for a single part of the procedure, but can be provided for multiple parts of the procedure. The therapy icons can be used to plan a procedure, perform a procedure, and post operatively to provide a treatment to the patient. In any of these situations, the icons can be displayed on the display device for use by the user 67 to optimize the therapy for the patient 14.
In addition to a therapy density, a therapy field of shape, depth, or other geometry can also be selected and visualized. With reference to
With reference to
The therapy icons can be illustrated in any appropriate orientation relative to the image data or atlas data. The illustration of the therapy icons, whether to illustrate a different size, different therapy type, different therapy amounts, or the like can be illustrated for procedure planning, procedure performance, or post operative treatment provisions. Moreover, the therapy icons can be illustrated to assist a user in determining an appropriate or optimal therapy provision. For example, the user can view on the display device the predicted therapy and determine the effect of the treatment on the patient. Therefore, the therapy icons can be used to determine whether a predicted therapy is having a predicted affect on the patient 14.
It will be understood that the various icons 152, 160 and 170 can represent two-dimensional, three-dimensional, four-dimensional, or any appropriate geometrical shapes. The icons provide a graphical representation of a proposed or selected therapy on the image data 36 of the patient 14. The icons 152, 160, 170 can illustrate a depth, geometry, affected area, amount of affected cells, charge over time, etc. of the selected therapy. The graphical representation can be used by the user 67 to assist in determining the appropriateness of the selected therapy. In addition, the graphical representation can be used to ensure that the therapy is being provided to an appropriate location within the anatomy. Again, the provision of the atlases 102, 104 can assist in this. Also, the various data that is determined intraoperatively or post-operatively, such as the physiological data, can be used to ensure or augment or customize the atlases relative to the particular patient 14. Therefore, the image data 36 during the programming phase in block 5 can also be illustrated or displayed relative to the atlas data to assist in determining whether the therapy is being applied to a selected or appropriate location.
Thus, one skilled in the art will understand that the optimization system 1 can be used to assist in all of a preoperative planning, an intraoperative procedure, and a post-operative follow up or programming. The programming can be of any appropriate system, such as the deep brain stimulator, a therapy application, a pacer, or any appropriate implant system. In addition, the optimization system 1 can include any appropriate or be used with any appropriate navigational or imaging system to assist in obtaining the appropriate image data. Also the various probes or sensors, such as the MER, can be used to assist in customizing an atlas relative to the particular patient to assist in locating or determining appropriate anatomical or functional regions.
The optimization system 1, diagrammatically illustrated in
The data, with reference to
A graphical planning can be provided based upon the various data collected either intraoperatively or preoperatively. The planning, graphically illustrated at 210, can occur at any appropriate time, as discussed above. Further, the planning or planned procedure can be changed substantially intraoperatively based upon obtained information, including the substantially real time registration or morphing of the atlas data 102 to the patient data or image data 36.
The various types of data can then be used to assist in programming or selecting a particular therapy. The optimization programming of block 5 is graphically illustrated in block 212. As discussed above, the various graphical displays can illustrate icons that illustrate how a therapy is predicted to affect various portions of the anatomy and can be used to substantially, precisely and efficiently program a particular therapy, such as a deep brain stimulation, cell therapy, gene therapy, or the like. Nevertheless, the icons can assist in determining or illustrating how a therapy will likely affect various portions of the anatomy and can be used to assist in more precisely or efficiently programming the system. Also as discussed above, the illustration of how a therapy might affect the anatomy can be used in planning the procedure, such as selecting an appropriate target, trajectory, or the like.
Moreover, the target can be reached based upon a linear or non-linear path. Optimization of a therapy can include determining the appropriate path and trajectory to reach a selected location in the anatomy. Again, the data 2 can assist in identifying regions of the anatomy to provide a treatment to and assist in identifying the trajectory or path to reach the target for therapy.
One skilled in the art will understand that the predicted affected or therapy icons illustrated an empirical physiological effect. The actual effect on the patient's symptoms can differ from patient to patient. Therefore, the icons can be used in future models and also to determine an amount or location of treatment provided to a selected patient. As the therapy for the selected patient is refined, reference can be made to the previous therapy areas or type illustrated with the icons.
The description of the present teachings is merely exemplary in nature and, thus, variations that do not depart from the gist of the present teachings are intended to be within the scope of the present teachings. Such variations are not to be regarded as a departure from the spirit and scope of the present teachings.
This application is a divisional of U.S. application Ser. No. 11/683,796 filed on Mar. 8, 2007, which claims the benefit of U.S. Provisional Application No. 60/848,442, filed on Sep. 29, 2006. The disclosures of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1576781 | Phillips | Mar 1926 | A |
1735726 | Bornhardt | Nov 1929 | A |
2407845 | Nemeyer | Sep 1946 | A |
2650588 | Drew | Sep 1953 | A |
2697433 | Sehnder | Dec 1954 | A |
3016899 | Stenvall | Jan 1962 | A |
3017887 | Heyer | Jan 1962 | A |
3061936 | Dobbeleer | Nov 1962 | A |
3073310 | Mocarski | Jan 1963 | A |
3109588 | Polhemus et al. | Nov 1963 | A |
3294083 | Alderson | Dec 1966 | A |
3367326 | Frazier | Feb 1968 | A |
3439256 | Kahne | Apr 1969 | A |
3577160 | White | May 1971 | A |
3614950 | Rabey | Oct 1971 | A |
3644825 | Davis, Jr. et al. | Feb 1972 | A |
3674014 | Tillander | Jul 1972 | A |
3702935 | Carey et al. | Nov 1972 | A |
3704707 | Halloran | Dec 1972 | A |
3821469 | Whetstone et al. | Jun 1974 | A |
3868565 | Kuipers | Feb 1975 | A |
3941127 | Froning | Mar 1976 | A |
3983474 | Kuipers | Sep 1976 | A |
4017858 | Kuipers | Apr 1977 | A |
4037592 | Kronner | Jul 1977 | A |
4052620 | Brunnett | Oct 1977 | A |
4054881 | Raab | Oct 1977 | A |
4117337 | Staats | Sep 1978 | A |
4173228 | Van Steenwyk et al. | Nov 1979 | A |
4182312 | Mushabac | Jan 1980 | A |
4202349 | Jones | May 1980 | A |
4228799 | Anichkov et al. | Oct 1980 | A |
4256112 | Kopf et al. | Mar 1981 | A |
4262306 | Renner | Apr 1981 | A |
4287809 | Egli et al. | Sep 1981 | A |
4298874 | Kuipers | Nov 1981 | A |
4314251 | Raab | Feb 1982 | A |
4317078 | Weed et al. | Feb 1982 | A |
4319136 | Jinkins | Mar 1982 | A |
4328548 | Crow et al. | May 1982 | A |
4328813 | Ray | May 1982 | A |
4339953 | Iwasaki | Jul 1982 | A |
4341220 | Perry | Jul 1982 | A |
4346384 | Raab | Aug 1982 | A |
4358856 | Stivender et al. | Nov 1982 | A |
4368536 | Pfeiler | Jan 1983 | A |
4396885 | Constant | Aug 1983 | A |
4396945 | DiMatteo et al. | Aug 1983 | A |
4403321 | Kruger | Sep 1983 | A |
4418422 | Richter et al. | Nov 1983 | A |
4419012 | Stephenson et al. | Dec 1983 | A |
4422041 | Lienau | Dec 1983 | A |
4431005 | McCormick | Feb 1984 | A |
4485815 | Amplatz et al. | Dec 1984 | A |
4506676 | Duska | Mar 1985 | A |
4543959 | Sepponen | Oct 1985 | A |
4548208 | Niemi | Oct 1985 | A |
4571834 | Fraser et al. | Feb 1986 | A |
4572198 | Codrington | Feb 1986 | A |
4583538 | Onik et al. | Apr 1986 | A |
4584577 | Temple | Apr 1986 | A |
4608977 | Brown | Sep 1986 | A |
4613866 | Blood | Sep 1986 | A |
4617925 | Laitinen | Oct 1986 | A |
4618978 | Cosman | Oct 1986 | A |
4621628 | Brudermann | Nov 1986 | A |
4625718 | Olerud et al. | Dec 1986 | A |
4638798 | Shelden et al. | Jan 1987 | A |
4642786 | Hansen | Feb 1987 | A |
4645343 | Stockdale et al. | Feb 1987 | A |
4649504 | Krouglicof et al. | Mar 1987 | A |
4651732 | Frederick | Mar 1987 | A |
4653509 | Oloff et al. | Mar 1987 | A |
4659971 | Suzuki et al. | Apr 1987 | A |
4660970 | Ferrano | Apr 1987 | A |
4673352 | Hansen | Jun 1987 | A |
4688037 | Krieg | Aug 1987 | A |
4701049 | Beckman et al. | Oct 1987 | A |
4705395 | Hageniers | Nov 1987 | A |
4705401 | Addleman et al. | Nov 1987 | A |
4706665 | Gouda | Nov 1987 | A |
4709156 | Murphy et al. | Nov 1987 | A |
4710708 | Rorden et al. | Dec 1987 | A |
4719419 | Dawley | Jan 1988 | A |
4722056 | Roberts et al. | Jan 1988 | A |
4722336 | Kim et al. | Feb 1988 | A |
4723544 | Moore et al. | Feb 1988 | A |
4727565 | Ericson | Feb 1988 | A |
RE32619 | Damadian | Mar 1988 | E |
4733969 | Case et al. | Mar 1988 | A |
4737032 | Addleman et al. | Apr 1988 | A |
4737794 | Jones | Apr 1988 | A |
4737921 | Goldwasser et al. | Apr 1988 | A |
4742356 | Kuipers | May 1988 | A |
4742815 | Ninan et al. | May 1988 | A |
4743770 | Lee | May 1988 | A |
4743771 | Sacks et al. | May 1988 | A |
4745290 | Frankel et al. | May 1988 | A |
4750487 | Zanetti | Jun 1988 | A |
4753528 | Hines et al. | Jun 1988 | A |
4761072 | Pryor | Aug 1988 | A |
4764016 | Johansson | Aug 1988 | A |
4771787 | Wurster et al. | Sep 1988 | A |
4779212 | Levy | Oct 1988 | A |
4782239 | Hirose et al. | Nov 1988 | A |
4788481 | Niwa | Nov 1988 | A |
4791934 | Brunnett | Dec 1988 | A |
4793355 | Crum et al. | Dec 1988 | A |
4794262 | Sato et al. | Dec 1988 | A |
4797907 | Anderton | Jan 1989 | A |
4803976 | Frigg et al. | Feb 1989 | A |
4804261 | Kirschen | Feb 1989 | A |
4805615 | Carol | Feb 1989 | A |
4809694 | Ferrara | Mar 1989 | A |
4821200 | Oberg | Apr 1989 | A |
4821206 | Arora | Apr 1989 | A |
4821731 | Martinelli et al. | Apr 1989 | A |
4822163 | Schmidt | Apr 1989 | A |
4825091 | Breyer et al. | Apr 1989 | A |
4829373 | Leberl et al. | May 1989 | A |
4836778 | Baumrind et al. | Jun 1989 | A |
4838265 | Cosman et al. | Jun 1989 | A |
4841967 | Chang et al. | Jun 1989 | A |
4845771 | Wislocki et al. | Jul 1989 | A |
4849692 | Blood | Jul 1989 | A |
4860331 | Williams et al. | Aug 1989 | A |
4862893 | Martinelli | Sep 1989 | A |
4869247 | Howard, III et al. | Sep 1989 | A |
4875165 | Fencil et al. | Oct 1989 | A |
4875478 | Chen | Oct 1989 | A |
4884566 | Mountz et al. | Dec 1989 | A |
4889526 | Rauscher et al. | Dec 1989 | A |
4896673 | Rose et al. | Jan 1990 | A |
4905698 | Strohl, Jr. et al. | Mar 1990 | A |
4923459 | Nambu | May 1990 | A |
4931056 | Ghajar et al. | Jun 1990 | A |
4945305 | Blood | Jul 1990 | A |
4945914 | Allen | Aug 1990 | A |
4951653 | Fry et al. | Aug 1990 | A |
4955891 | Carol | Sep 1990 | A |
4961422 | Marchosky et al. | Oct 1990 | A |
4977655 | Martinelli | Dec 1990 | A |
4989608 | Ratner | Feb 1991 | A |
4991579 | Allen | Feb 1991 | A |
5002058 | Martinelli | Mar 1991 | A |
5005592 | Cartmell | Apr 1991 | A |
5013317 | Cole et al. | May 1991 | A |
5016639 | Allen | May 1991 | A |
5017139 | Mushabac | May 1991 | A |
5027818 | Bova et al. | Jul 1991 | A |
5030196 | Inoue | Jul 1991 | A |
5030222 | Calandruccio et al. | Jul 1991 | A |
5031203 | Trecha | Jul 1991 | A |
5042486 | Pfeiler et al. | Aug 1991 | A |
5047036 | Koutrouvelis | Sep 1991 | A |
5050608 | Watanabe et al. | Sep 1991 | A |
5054492 | Scribner et al. | Oct 1991 | A |
5057095 | Fabian | Oct 1991 | A |
5059789 | Salcudean | Oct 1991 | A |
5078140 | Kwoh | Jan 1992 | A |
5079699 | Tuy et al. | Jan 1992 | A |
5086401 | Glassman et al. | Feb 1992 | A |
5094241 | Allen | Mar 1992 | A |
5097839 | Allen | Mar 1992 | A |
5098426 | Sklar et al. | Mar 1992 | A |
5099845 | Besz et al. | Mar 1992 | A |
5099846 | Hardy | Mar 1992 | A |
5105829 | Fabian et al. | Apr 1992 | A |
5107839 | Houdek et al. | Apr 1992 | A |
5107843 | Aarnio et al. | Apr 1992 | A |
5107862 | Fabian et al. | Apr 1992 | A |
5109194 | Cantaloube | Apr 1992 | A |
5117836 | Millar | Jun 1992 | A |
5119817 | Allen | Jun 1992 | A |
5142930 | Allen et al. | Sep 1992 | A |
5143076 | Hardy et al. | Sep 1992 | A |
5152288 | Hoenig et al. | Oct 1992 | A |
5160337 | Cosman | Nov 1992 | A |
5161536 | Vilkomerson et al. | Nov 1992 | A |
5178164 | Allen | Jan 1993 | A |
5178621 | Cook et al. | Jan 1993 | A |
5186174 | Schlondorff et al. | Feb 1993 | A |
5187475 | Wagener et al. | Feb 1993 | A |
5188126 | Fabian et al. | Feb 1993 | A |
5190059 | Fabian et al. | Mar 1993 | A |
5193106 | DeSena | Mar 1993 | A |
5197476 | Nowacki et al. | Mar 1993 | A |
5197965 | Cherry et al. | Mar 1993 | A |
5198768 | Keren | Mar 1993 | A |
5198877 | Schulz | Mar 1993 | A |
5207688 | Carol | May 1993 | A |
5211164 | Allen | May 1993 | A |
5211165 | Dumoulin et al. | May 1993 | A |
5211176 | Ishiguro et al. | May 1993 | A |
5212720 | Landi et al. | May 1993 | A |
5214615 | Bauer | May 1993 | A |
5219351 | Teubner et al. | Jun 1993 | A |
5222499 | Allen et al. | Jun 1993 | A |
5224049 | Mushabac | Jun 1993 | A |
5228442 | Imran | Jul 1993 | A |
5230338 | Allen et al. | Jul 1993 | A |
5230623 | Guthrie et al. | Jul 1993 | A |
5233990 | Barnea | Aug 1993 | A |
5237996 | Waldman et al. | Aug 1993 | A |
5249581 | Horbal et al. | Oct 1993 | A |
5251127 | Raab | Oct 1993 | A |
5251635 | Dumoulin et al. | Oct 1993 | A |
5253647 | Takahashi et al. | Oct 1993 | A |
5255680 | Darrow et al. | Oct 1993 | A |
5257636 | White | Nov 1993 | A |
5257998 | Ota et al. | Nov 1993 | A |
5261404 | Mick et al. | Nov 1993 | A |
5265610 | Darrow et al. | Nov 1993 | A |
5265611 | Hoenig et al. | Nov 1993 | A |
5269759 | Hernandez et al. | Dec 1993 | A |
5271400 | Dumoulin et al. | Dec 1993 | A |
5273025 | Sakiyama et al. | Dec 1993 | A |
5274551 | Corby, Jr. | Dec 1993 | A |
5279309 | Taylor et al. | Jan 1994 | A |
5285787 | Machida | Feb 1994 | A |
5291199 | Overman et al. | Mar 1994 | A |
5291889 | Kenet et al. | Mar 1994 | A |
5295483 | Nowacki et al. | Mar 1994 | A |
5297549 | Beatty et al. | Mar 1994 | A |
5299253 | Wessels | Mar 1994 | A |
5299254 | Dancer et al. | Mar 1994 | A |
5299288 | Glassman et al. | Mar 1994 | A |
5300080 | Clayman et al. | Apr 1994 | A |
5305091 | Gelbart et al. | Apr 1994 | A |
5305203 | Raab | Apr 1994 | A |
5306271 | Zinreich et al. | Apr 1994 | A |
5307072 | Jones, Jr. | Apr 1994 | A |
5309913 | Kormos et al. | May 1994 | A |
5315630 | Sturm et al. | May 1994 | A |
5316024 | Hirschi et al. | May 1994 | A |
5318025 | Dumoulin et al. | Jun 1994 | A |
5320111 | Livingston | Jun 1994 | A |
5325728 | Zimmerman et al. | Jul 1994 | A |
5325873 | Hirschi et al. | Jul 1994 | A |
5329944 | Fabian et al. | Jul 1994 | A |
5330485 | Clayman et al. | Jul 1994 | A |
5333168 | Fernandes et al. | Jul 1994 | A |
5353795 | Souza et al. | Oct 1994 | A |
5353800 | Pohndorf et al. | Oct 1994 | A |
5353807 | DeMarco | Oct 1994 | A |
5359417 | Muller et al. | Oct 1994 | A |
5368030 | Zinreich et al. | Nov 1994 | A |
5371778 | Yanof et al. | Dec 1994 | A |
5375596 | Twiss et al. | Dec 1994 | A |
5377678 | Dumoulin et al. | Jan 1995 | A |
5383454 | Bucholz | Jan 1995 | A |
5385146 | Goldreyer | Jan 1995 | A |
5385148 | Lesh et al. | Jan 1995 | A |
5386828 | Owens et al. | Feb 1995 | A |
5389101 | Heilbrun et al. | Feb 1995 | A |
5391199 | Ben-Haim | Feb 1995 | A |
5394457 | Leibinger et al. | Feb 1995 | A |
5394875 | Lewis et al. | Mar 1995 | A |
5397329 | Allen | Mar 1995 | A |
5398684 | Hardy | Mar 1995 | A |
5399146 | Nowacki et al. | Mar 1995 | A |
5400384 | Fernandes et al. | Mar 1995 | A |
5402801 | Taylor | Apr 1995 | A |
5408409 | Glassman et al. | Apr 1995 | A |
5413573 | Koivukangas | May 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5419325 | Dumoulin et al. | May 1995 | A |
5423334 | Jordan | Jun 1995 | A |
5425367 | Shapiro et al. | Jun 1995 | A |
5425382 | Golden et al. | Jun 1995 | A |
5426683 | O'Farrell, Jr. et al. | Jun 1995 | A |
5426687 | Goodall et al. | Jun 1995 | A |
5427097 | Depp | Jun 1995 | A |
5429132 | Guy et al. | Jul 1995 | A |
5433198 | Desai | Jul 1995 | A |
RE35025 | Anderton | Aug 1995 | E |
5437277 | Dumoulin et al. | Aug 1995 | A |
5443066 | Dumoulin et al. | Aug 1995 | A |
5443489 | Ben-Haim | Aug 1995 | A |
5444756 | Pai et al. | Aug 1995 | A |
5445144 | Wodicka et al. | Aug 1995 | A |
5445150 | Dumoulin et al. | Aug 1995 | A |
5445166 | Taylor | Aug 1995 | A |
5446548 | Gerig et al. | Aug 1995 | A |
5447154 | Cinquin et al. | Sep 1995 | A |
5448610 | Yamamoto et al. | Sep 1995 | A |
5453686 | Anderson | Sep 1995 | A |
5456718 | Szymaitis | Oct 1995 | A |
5457641 | Zimmer et al. | Oct 1995 | A |
5458718 | Venkitachalam | Oct 1995 | A |
5464446 | Dreessen et al. | Nov 1995 | A |
5469847 | Zinreich et al. | Nov 1995 | A |
5478341 | Cook et al. | Dec 1995 | A |
5478343 | Ritter | Dec 1995 | A |
5480422 | Ben-Haim | Jan 1996 | A |
5480439 | Bisek et al. | Jan 1996 | A |
5483961 | Kelly et al. | Jan 1996 | A |
5484437 | Michelson | Jan 1996 | A |
5485849 | Panescu et al. | Jan 1996 | A |
5487391 | Panescu | Jan 1996 | A |
5487729 | Avellanet et al. | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5490196 | Rudich et al. | Feb 1996 | A |
5494034 | Schlondorff et al. | Feb 1996 | A |
5503416 | Aoki et al. | Apr 1996 | A |
5513637 | Twiss et al. | May 1996 | A |
5514146 | Lam et al. | May 1996 | A |
5515160 | Schulz et al. | May 1996 | A |
5517990 | Kalfas et al. | May 1996 | A |
5531227 | Schneider | Jul 1996 | A |
5531520 | Grimson et al. | Jul 1996 | A |
5531673 | Helenowski | Jul 1996 | A |
5542938 | Avellanet et al. | Aug 1996 | A |
5543951 | Moehrmann | Aug 1996 | A |
5546940 | Panescu et al. | Aug 1996 | A |
5546949 | Frazin et al. | Aug 1996 | A |
5546951 | Ben-Haim | Aug 1996 | A |
5551429 | Fitzpatrick et al. | Sep 1996 | A |
5558091 | Acker et al. | Sep 1996 | A |
5558638 | Evers et al. | Sep 1996 | A |
5566681 | Manwaring et al. | Oct 1996 | A |
5568384 | Robb et al. | Oct 1996 | A |
5568809 | Ben-haim | Oct 1996 | A |
5571109 | Bertagnoli | Nov 1996 | A |
5572999 | Funda et al. | Nov 1996 | A |
5573533 | Strul | Nov 1996 | A |
5575794 | Walus et al. | Nov 1996 | A |
5575798 | Koutrouvelis | Nov 1996 | A |
5583909 | Hanover | Dec 1996 | A |
5588430 | Bova et al. | Dec 1996 | A |
5590215 | Allen | Dec 1996 | A |
5592939 | Martinelli | Jan 1997 | A |
5595193 | Walus et al. | Jan 1997 | A |
5596228 | Anderton et al. | Jan 1997 | A |
5600330 | Blood | Feb 1997 | A |
5603318 | Heilbrun et al. | Feb 1997 | A |
5611025 | Lorensen et al. | Mar 1997 | A |
5617462 | Spratt | Apr 1997 | A |
5617857 | Chader et al. | Apr 1997 | A |
5619261 | Anderton | Apr 1997 | A |
5622169 | Golden et al. | Apr 1997 | A |
5622170 | Schulz | Apr 1997 | A |
5627873 | Hanover et al. | May 1997 | A |
5628315 | Vilsmeier et al. | May 1997 | A |
5630431 | Taylor | May 1997 | A |
5636644 | Hart et al. | Jun 1997 | A |
5638819 | Manwaring et al. | Jun 1997 | A |
5640170 | Anderson | Jun 1997 | A |
5642395 | Anderton et al. | Jun 1997 | A |
5643268 | Vilsmeier et al. | Jul 1997 | A |
5645065 | Shapiro et al. | Jul 1997 | A |
5646524 | Gilboa | Jul 1997 | A |
5647361 | Damadian | Jul 1997 | A |
5662111 | Cosman | Sep 1997 | A |
5664001 | Tachibana et al. | Sep 1997 | A |
5674296 | Bryan et al. | Oct 1997 | A |
5676673 | Ferre et al. | Oct 1997 | A |
5681260 | Ueda et al. | Oct 1997 | A |
5682886 | Delp et al. | Nov 1997 | A |
5682890 | Kormos et al. | Nov 1997 | A |
5690108 | Chakeres | Nov 1997 | A |
5690117 | Gilbert | Nov 1997 | A |
5694945 | Ben-Haim | Dec 1997 | A |
5695500 | Taylor et al. | Dec 1997 | A |
5695501 | Carol et al. | Dec 1997 | A |
5696500 | Diem | Dec 1997 | A |
5697377 | Wittkampf | Dec 1997 | A |
5702406 | Vilsmeier et al. | Dec 1997 | A |
5711299 | Manwaring et al. | Jan 1998 | A |
5713946 | Ben-Haim | Feb 1998 | A |
5715822 | Watkins et al. | Feb 1998 | A |
5715836 | Kliegis et al. | Feb 1998 | A |
5718241 | Ben-Haim et al. | Feb 1998 | A |
5727552 | Ryan | Mar 1998 | A |
5727553 | Saad | Mar 1998 | A |
5729129 | Acker | Mar 1998 | A |
5730129 | Darrow et al. | Mar 1998 | A |
5730130 | Fitzpatrick et al. | Mar 1998 | A |
5732703 | Kalfas et al. | Mar 1998 | A |
5733259 | Valcke et al. | Mar 1998 | A |
5735278 | Hoult et al. | Apr 1998 | A |
5735814 | Elsberry et al. | Apr 1998 | A |
5738096 | Ben-Haim | Apr 1998 | A |
5740802 | Nafis et al. | Apr 1998 | A |
5740808 | Panescu et al. | Apr 1998 | A |
5741214 | Ouchi et al. | Apr 1998 | A |
5742394 | Hansen | Apr 1998 | A |
5744953 | Hansen | Apr 1998 | A |
5748767 | Raab | May 1998 | A |
5749362 | Funda et al. | May 1998 | A |
5749835 | Glantz | May 1998 | A |
5752513 | Acker et al. | May 1998 | A |
5755725 | Druais | May 1998 | A |
RE35816 | Schulz | Jun 1998 | E |
5758667 | Slettenmark | Jun 1998 | A |
5762064 | Polvani | Jun 1998 | A |
5767669 | Hansen et al. | Jun 1998 | A |
5767699 | Bosnyak et al. | Jun 1998 | A |
5767960 | Orman | Jun 1998 | A |
5769789 | Wang et al. | Jun 1998 | A |
5769843 | Abela et al. | Jun 1998 | A |
5769861 | Vilsmeier | Jun 1998 | A |
5772594 | Barrick | Jun 1998 | A |
5772661 | Michelson | Jun 1998 | A |
5775322 | Silverstein et al. | Jul 1998 | A |
5776064 | Kalfas et al. | Jul 1998 | A |
5782765 | Jonkman | Jul 1998 | A |
5787886 | Kelly et al. | Aug 1998 | A |
5792055 | McKinnon | Aug 1998 | A |
5795294 | Luber et al. | Aug 1998 | A |
5797849 | Vesely et al. | Aug 1998 | A |
5799055 | Peshkin et al. | Aug 1998 | A |
5799099 | Wang et al. | Aug 1998 | A |
5800352 | Ferre et al. | Sep 1998 | A |
5800535 | Howard, III | Sep 1998 | A |
5802719 | O'Farrell, Jr. et al. | Sep 1998 | A |
5803089 | Ferre et al. | Sep 1998 | A |
5807252 | Hassfeld et al. | Sep 1998 | A |
5810008 | Dekel et al. | Sep 1998 | A |
5810728 | Kuhn | Sep 1998 | A |
5810735 | Halperin et al. | Sep 1998 | A |
5820553 | Hughes | Oct 1998 | A |
5823192 | Kalend et al. | Oct 1998 | A |
5823958 | Truppe | Oct 1998 | A |
5824048 | Tuch | Oct 1998 | A |
5828725 | Levinson | Oct 1998 | A |
5828770 | Leis et al. | Oct 1998 | A |
5829444 | Ferre et al. | Nov 1998 | A |
5831260 | Hansen | Nov 1998 | A |
5833608 | Acker | Nov 1998 | A |
5834759 | Glossop | Nov 1998 | A |
5836954 | Heilbrun et al. | Nov 1998 | A |
5840024 | Taniguchi et al. | Nov 1998 | A |
5840025 | Ben-Haim | Nov 1998 | A |
5843076 | Webster, Jr. et al. | Dec 1998 | A |
5848967 | Cosman | Dec 1998 | A |
5851183 | Bucholz | Dec 1998 | A |
5865846 | Bryan et al. | Feb 1999 | A |
5868674 | Glowinski et al. | Feb 1999 | A |
5868675 | Henrion et al. | Feb 1999 | A |
5871445 | Bucholz | Feb 1999 | A |
5871455 | Ueno | Feb 1999 | A |
5871487 | Warner et al. | Feb 1999 | A |
5873822 | Ferre et al. | Feb 1999 | A |
5882304 | Ehnholm et al. | Mar 1999 | A |
5884410 | Prinz | Mar 1999 | A |
5889834 | Vilsmeier et al. | Mar 1999 | A |
5891034 | Bucholz | Apr 1999 | A |
5891157 | Day et al. | Apr 1999 | A |
5904691 | Barnett et al. | May 1999 | A |
5907395 | Schulz et al. | May 1999 | A |
5913820 | Bladen et al. | Jun 1999 | A |
5920395 | Schulz | Jul 1999 | A |
5921992 | Costales et al. | Jul 1999 | A |
5923727 | Navab | Jul 1999 | A |
5928248 | Acker | Jul 1999 | A |
5938603 | Ponzi | Aug 1999 | A |
5938694 | Jaraczewski et al. | Aug 1999 | A |
5947980 | Jensen et al. | Sep 1999 | A |
5947981 | Cosman | Sep 1999 | A |
5950629 | Taylor et al. | Sep 1999 | A |
5951475 | Gueziec et al. | Sep 1999 | A |
5951571 | Audette | Sep 1999 | A |
5954647 | Bova et al. | Sep 1999 | A |
5954796 | McCarty et al. | Sep 1999 | A |
5957844 | Dekel et al. | Sep 1999 | A |
5967980 | Ferre et al. | Oct 1999 | A |
5967982 | Barnett | Oct 1999 | A |
5968047 | Reed | Oct 1999 | A |
5970499 | Smith et al. | Oct 1999 | A |
5971997 | Guthrie et al. | Oct 1999 | A |
5976156 | Taylor et al. | Nov 1999 | A |
5980535 | Barnett et al. | Nov 1999 | A |
5983126 | Wittkampf | Nov 1999 | A |
5987349 | Schulz | Nov 1999 | A |
5987960 | Messner et al. | Nov 1999 | A |
5999837 | Messner et al. | Dec 1999 | A |
5999840 | Grimson et al. | Dec 1999 | A |
6001130 | Bryan et al. | Dec 1999 | A |
6006126 | Cosman | Dec 1999 | A |
6006127 | Van Der Brug et al. | Dec 1999 | A |
6013087 | Adams et al. | Jan 2000 | A |
6014580 | Blume et al. | Jan 2000 | A |
6016439 | Acker | Jan 2000 | A |
6019725 | Vesely et al. | Feb 2000 | A |
6024695 | Taylor et al. | Feb 2000 | A |
6026316 | Kucharczyk et al. | Feb 2000 | A |
6050724 | Schmitz et al. | Apr 2000 | A |
6059718 | Taniguchi et al. | May 2000 | A |
6063022 | Ben-Haim | May 2000 | A |
6064904 | Yanof et al. | May 2000 | A |
6071288 | Carol et al. | Jun 2000 | A |
6073043 | Schneider | Jun 2000 | A |
6076008 | Bucholz | Jun 2000 | A |
6096050 | Audette | Aug 2000 | A |
6104944 | Martinelli | Aug 2000 | A |
6118845 | Simon et al. | Sep 2000 | A |
6122538 | Sliwa, Jr. et al. | Sep 2000 | A |
6122541 | Cosman et al. | Sep 2000 | A |
6131396 | Duerr et al. | Oct 2000 | A |
6139183 | Graumann | Oct 2000 | A |
6147480 | Osadchy et al. | Nov 2000 | A |
6149592 | Yanof et al. | Nov 2000 | A |
6156067 | Bryan et al. | Dec 2000 | A |
6161032 | Acker | Dec 2000 | A |
6165181 | Heilbrun et al. | Dec 2000 | A |
6167296 | Shahidi | Dec 2000 | A |
6172499 | Ashe | Jan 2001 | B1 |
6175756 | Ferre et al. | Jan 2001 | B1 |
6178345 | Vilsmeier et al. | Jan 2001 | B1 |
6194639 | Botella et al. | Feb 2001 | B1 |
6198794 | Peshkin et al. | Mar 2001 | B1 |
6201387 | Govari | Mar 2001 | B1 |
6201988 | Bourland et al. | Mar 2001 | B1 |
6203497 | Dekel et al. | Mar 2001 | B1 |
6206885 | Ghahremani et al. | Mar 2001 | B1 |
6211666 | Acker | Apr 2001 | B1 |
6223067 | Vilsmeier et al. | Apr 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6246231 | Ashe | Jun 2001 | B1 |
6259942 | Westermann et al. | Jul 2001 | B1 |
6273896 | Franck et al. | Aug 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6285902 | Kienzle, III et al. | Sep 2001 | B1 |
6298262 | Franck et al. | Oct 2001 | B1 |
6314310 | Ben-Haim et al. | Nov 2001 | B1 |
6332089 | Acker et al. | Dec 2001 | B1 |
6341231 | Ferre et al. | Jan 2002 | B1 |
6348058 | Melkent et al. | Feb 2002 | B1 |
6351659 | Vilsmeier | Feb 2002 | B1 |
6381485 | Hunter et al. | Apr 2002 | B1 |
6385483 | Uber, III et al. | May 2002 | B1 |
6390097 | Chandra | May 2002 | B1 |
6402689 | Scarantino et al. | Jun 2002 | B1 |
6406426 | Reuss et al. | Jun 2002 | B1 |
6424856 | Vilsmeier et al. | Jul 2002 | B1 |
6427314 | Acker | Aug 2002 | B1 |
6428547 | Vilsmeier et al. | Aug 2002 | B1 |
6434415 | Foley et al. | Aug 2002 | B1 |
6437567 | Schenck et al. | Aug 2002 | B1 |
6445943 | Ferre et al. | Sep 2002 | B1 |
6464662 | Raghavan et al. | Oct 2002 | B1 |
6470207 | Simon et al. | Oct 2002 | B1 |
6474341 | Hunter et al. | Nov 2002 | B1 |
6478802 | Kienzle, III et al. | Nov 2002 | B2 |
6482182 | Carroll et al. | Nov 2002 | B1 |
6484049 | Seeley et al. | Nov 2002 | B1 |
6490475 | Seeley et al. | Dec 2002 | B1 |
6491699 | Henderson et al. | Dec 2002 | B1 |
6493573 | Martinelli et al. | Dec 2002 | B1 |
6498944 | Ben-Haim et al. | Dec 2002 | B1 |
6499488 | Hunter et al. | Dec 2002 | B1 |
6516046 | Frohlich et al. | Feb 2003 | B1 |
6516212 | Bladen et al. | Feb 2003 | B1 |
6526415 | Smith et al. | Feb 2003 | B2 |
6527443 | Vilsmeier et al. | Mar 2003 | B1 |
6531152 | Lerner et al. | Mar 2003 | B1 |
6549803 | Raghavan et al. | Apr 2003 | B1 |
6551325 | Neubauer et al. | Apr 2003 | B2 |
6567690 | Giller et al. | May 2003 | B2 |
6584174 | Schubert et al. | Jun 2003 | B2 |
6609022 | Vilsmeier et al. | Aug 2003 | B2 |
6611700 | Vilsmeier et al. | Aug 2003 | B1 |
6640128 | Vilsmeier et al. | Oct 2003 | B2 |
6658396 | Tang et al. | Dec 2003 | B1 |
6671538 | Ehnholm et al. | Dec 2003 | B1 |
6694162 | Hartlep | Feb 2004 | B2 |
6701179 | Martinelli et al. | Mar 2004 | B1 |
6740883 | Stodilka et al. | May 2004 | B1 |
6755789 | Stringer et al. | Jun 2004 | B2 |
6828966 | Gavriliu et al. | Dec 2004 | B1 |
6901287 | Davis et al. | May 2005 | B2 |
6905492 | Zvuloni et al. | Jun 2005 | B2 |
6973718 | Sheppard, Jr. et al. | Dec 2005 | B2 |
6979348 | Sundar | Dec 2005 | B2 |
6982282 | Lambert et al. | Jan 2006 | B2 |
7011814 | Suddarth et al. | Mar 2006 | B2 |
7047235 | Yang et al. | May 2006 | B2 |
7072705 | Miga et al. | Jul 2006 | B2 |
7081088 | Geiger | Jul 2006 | B2 |
7092748 | Valdes Sosa et al. | Aug 2006 | B2 |
7103399 | Miga et al. | Sep 2006 | B2 |
7167180 | Shibolet | Jan 2007 | B1 |
7194295 | Vilsmeier | Mar 2007 | B2 |
7313430 | Urquhart et al. | Dec 2007 | B2 |
7599730 | Hunter et al. | Oct 2009 | B2 |
20010007918 | Vilsmeier et al. | Jul 2001 | A1 |
20020069215 | Orbanes et al. | Jun 2002 | A1 |
20020095081 | Vilsmeier et al. | Jul 2002 | A1 |
20030078485 | Hartlep | Apr 2003 | A1 |
20030101081 | Putnam et al. | May 2003 | A1 |
20030114752 | Henderson et al. | Jun 2003 | A1 |
20030191408 | Montgomery | Oct 2003 | A1 |
20040024309 | Ferre et al. | Feb 2004 | A1 |
20040039259 | Krause et al. | Feb 2004 | A1 |
20040068172 | Nowinski et al. | Apr 2004 | A1 |
20040092809 | DeCharms | May 2004 | A1 |
20040097806 | Hunter et al. | May 2004 | A1 |
20040107210 | Yang et al. | Jun 2004 | A1 |
20040138551 | Hartlep et al. | Jul 2004 | A1 |
20040158313 | Altman | Aug 2004 | A1 |
20040210124 | Nowinski et al. | Oct 2004 | A1 |
20040215071 | Frank et al. | Oct 2004 | A1 |
20040215162 | Putz | Oct 2004 | A1 |
20040236554 | Raghavan et al. | Nov 2004 | A1 |
20040240753 | Hu et al. | Dec 2004 | A1 |
20050002918 | Strauss et al. | Jan 2005 | A1 |
20050004617 | Dawant et al. | Jan 2005 | A1 |
20050004909 | Stevenson et al. | Jan 2005 | A1 |
20050018885 | Chen et al. | Jan 2005 | A1 |
20050031210 | Shen et al. | Feb 2005 | A1 |
20050049486 | Urquhart et al. | Mar 2005 | A1 |
20050070781 | Dawant | Mar 2005 | A1 |
20050084146 | Watson et al. | Apr 2005 | A1 |
20050085714 | Foley et al. | Apr 2005 | A1 |
20050085720 | Jascob et al. | Apr 2005 | A1 |
20050101855 | Miga et al. | May 2005 | A1 |
20050111621 | Riker et al. | May 2005 | A1 |
20050148859 | Miga et al. | Jul 2005 | A1 |
20050171558 | Abovitz et al. | Aug 2005 | A1 |
20050245814 | Anderson et al. | Nov 2005 | A1 |
20060017749 | McIntyre et al. | Jan 2006 | A1 |
20060084867 | Tremblay et al. | Apr 2006 | A1 |
20060182321 | Hu et al. | Aug 2006 | A1 |
20060217733 | Plassky et al. | Sep 2006 | A1 |
20070021668 | Boese et al. | Jan 2007 | A1 |
20070100226 | Yankelevitz et al. | May 2007 | A1 |
20080081982 | Simon et al. | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
964149 | Mar 1975 | CA |
3042343 | Jun 1982 | DE |
3508730 | Sep 1986 | DE |
3717871 | Dec 1988 | DE |
3831278 | Mar 1989 | DE |
3838011 | Jul 1989 | DE |
4213426 | Oct 1992 | DE |
4225112 | Dec 1993 | DE |
4233978 | Apr 1994 | DE |
19715202 | Oct 1998 | DE |
19751761 | Oct 1998 | DE |
19832296 | Feb 1999 | DE |
19747427 | May 1999 | DE |
10085137 | Nov 2002 | DE |
0062941 | Oct 1982 | EP |
0119660 | Sep 1984 | EP |
0155857 | Sep 1985 | EP |
0319844 | Jun 1989 | EP |
0326768 | Aug 1989 | EP |
0350996 | Jan 1990 | EP |
0419729 | Apr 1991 | EP |
0427358 | May 1991 | EP |
0456103 | Nov 1991 | EP |
0469966 | Feb 1992 | EP |
0581704 | Feb 1994 | EP |
0651968 | May 1995 | EP |
0655138 | May 1995 | EP |
0894473 | Feb 1999 | EP |
0908146 | Apr 1999 | EP |
0930046 | Jul 1999 | EP |
1306050 | May 2003 | EP |
1344187 | Sep 2003 | EP |
1396233 | Mar 2004 | EP |
1406203 | Apr 2004 | EP |
1442715 | Aug 2004 | EP |
1474782 | Nov 2004 | EP |
1597701 | Nov 2005 | EP |
1603076 | Dec 2005 | EP |
1691687 | Aug 2006 | EP |
1692633 | Aug 2006 | EP |
1692657 | Aug 2006 | EP |
1713015 | Oct 2006 | EP |
2417970 | Sep 1979 | FR |
2618211 | Jan 1989 | FR |
2094590 | Sep 1982 | GB |
2164856 | Apr 1986 | GB |
62327 | Jun 1983 | JP |
61-94639 | Oct 1984 | JP |
63240851 | Oct 1988 | JP |
2765738 | Apr 1991 | JP |
3267054 | Nov 1991 | JP |
WO-8809151 | Dec 1988 | WO |
WO-8905123 | Jun 1989 | WO |
WO 9005494 | May 1990 | WO |
WO-9103982 | Apr 1991 | WO |
WO-9104711 | Apr 1991 | WO |
WO-9107726 | May 1991 | WO |
WO-9203090 | Mar 1992 | WO |
WO -9206645 | Apr 1992 | WO |
WO-9404938 | Mar 1994 | WO |
WO-9423647 | Oct 1994 | WO |
WO-9424933 | Nov 1994 | WO |
WO-9507055 | Mar 1995 | WO |
WO-9611624 | Apr 1996 | WO |
WO-9632059 | Oct 1996 | WO |
WO-9736192 | Oct 1997 | WO |
WO-9749453 | Dec 1997 | WO |
WO-9808554 | Mar 1998 | WO |
WO-9838908 | Sep 1998 | WO |
WO-9915097 | Apr 1999 | WO |
WO-9921498 | May 1999 | WO |
WO-9923956 | May 1999 | WO |
WO-9926549 | Jun 1999 | WO |
WO-9927839 | Jun 1999 | WO |
WO-9929253 | Jun 1999 | WO |
WO-9933406 | Jul 1999 | WO |
WO-9937208 | Jul 1999 | WO |
WO-9938449 | Aug 1999 | WO |
WO-9952094 | Oct 1999 | WO |
WO-9960939 | Dec 1999 | WO |
WO-0007652 | Feb 2000 | WO |
WO-0010034 | Feb 2000 | WO |
WO-0130437 | May 2001 | WO |
WO-0243003 | May 2002 | WO |
WO-02093292 | Nov 2002 | WO |
WO-02097735 | Dec 2002 | WO |
WO-02098292 | Dec 2002 | WO |
WO-03039600 | May 2003 | WO |
WO-03060827 | Jul 2003 | WO |
WO-2004077359 | Sep 2004 | WO |
WO-2004096018 | Nov 2004 | WO |
WO-2005002444 | Jan 2005 | WO |
WO-2005048844 | Jun 2005 | WO |
WO-2005052838 | Jun 2005 | WO |
WO-2005057493 | Jun 2005 | WO |
WO-2005057498 | Jun 2005 | WO |
WO-2005084542 | Sep 2005 | WO |
WO-2005096227 | Oct 2005 | WO |
WO-2005111931 | Nov 2005 | WO |
WO-2006011850 | Feb 2006 | WO |
WO-2006017053 | Feb 2006 | WO |
WO-2006017392 | Feb 2006 | WO |
WO-2006028416 | Mar 2006 | WO |
WO-2006028474 | Mar 2006 | WO |
WO-2006069250 | Jun 2006 | WO |
WO-2006083236 | Aug 2006 | WO |
WO-2006088429 | Aug 2006 | WO |
Entry |
---|
“Advanced Drug Delivery: Technologies, Applications & Markets Jul. 2003, A Kalorama Information Market Intelligence Report.” (Jul. 2003) Kalorama Information 432 sheets. |
“Interventional Radiology Grand Rounds. Topic: Central Venous Access.” Society of Interventional Radiology, (2004) 4 sheets. |
Adams et al., “Orientation Aid for Head and Neck Surgeons,” Innov. Tech. Biol. Med., vol. 13, No. 4, 1992, pp. 409-424. |
Adams et al., Computer-Assisted Surgery, IEEE Computer Graphics & Applications, pp. 43-51, (May 1990). |
Arndt, “Neopharm Investigators Present Final Results of Peritumoral vs. Intratumoral Infusion of IL13-PE38QQR from Phasel Clinical Studies at the American Society of Clinical Oncology Meeting.” NeoPharm. Biowire2k 4st Annual Meeting of the American Society of Clinical Oncology. Business Wire (May 17, 2005) www.businesswire.com/news/home/20050517005098/en/NeoPharm-Investigators-Pr accessed Jul. 27, 2011. |
Barrick et al., “Prophylactic Intramedullary Fixation of the Tibia for Stress Fracture in a Professional Athlete,” Journal of Orthopaedic Trauma, vol. 6, No. 2, pp. 241-244 (1992). |
Barrick et al., “Technical Difficulties with the Brooker-Wills Nail in Acute Fractures of the Femur,” Journal of Orthopaedic Trauma, vol. 4, No. 2, pp. 144-150 (1990). |
Barrick, “Distal Locking Screw Insertion Using a Cannulated Drill Bit: Technical Note,” Journal of Orthopaedic Trauma, vol. 7, No. 3, 1993, pp. 248-251. |
Batnitzky et al., “Three-Dimensional Computer Reconstructions of Brain Lesions from Surface Contours Provided by Computed Tomography: A Prospectus,” Neurosurgery, vol. 11, No. 1, Part 1, 1982, pp. 73-84. |
Beghetto, M.G., et al. Parenteral Nutrition as a Risk Factor for Central Venous Catheter-Related Infection. Journal of Parenteral and Enteral Nutrition 29(5): (Sep. 4, 2005) pp. 367-373. http://www.redorbit.com/news/health/229618/parenteral—nutrition—as—a—risk—factor—for—central—venous—catheter/ (accessed Jul. 27, 2011). |
Benzel et al., “Magnetic Source Imaging: a Review of the Magnes System of Biomagnetic Technologies Incorporated,” Neurosurgery, vol. 33, No. 2 (Aug. 1993), pp. 252-259. |
Bergstrom et al. Stereotaxic Computed Tomography, Am. J. Roentgenol, vol. 127 pp. 167-170 (1976). |
Bouazza-Marouf et al.; “Robotic-Assisted Internal Fixation of Femoral Fractures”, IMECHE., pp. 51-58 (1995). |
Brack et al., “Accurate X-ray Based Navigation in Computer-Assisted Orthopedic Surgery,” CAR '98, pp. 716-722. |
Brown, R., M.D., A Stereotactic Head Frame for Use with CT Body Scanners, Investigative Radiology © J.B. Lippincott Company, pp. 300-304 (Jul.-Aug. 1979). |
Bryan, “Bryan Cervical Disc System Single Level Surgical Technique”, Spinal Dynamics, 2002, pp. 1-33. |
Bucholz et al., “Variables affecting the accuracy of stereotactic localizationusing computerized tomography,” Journal of Neurosurgery, vol. 79, Nov. 1993, pp. 667-673. |
Bucholz, R.D., et al. Image-guided surgical techniques for infections and trauma of the central nervous system, Neurosurg. Clinics of N.A., vol. 7, No. 2, pp. 187-200 (1996). |
Bucholz, R.D., et al., A Comparison of Sonic Digitizers Versus Light Emitting Diode-Based Localization, Interactive Image-Guided Neurosurgery, Chapter 16, pp. 179-200 (1993). |
Bucholz, R.D., et al., Intraoperative localization using a three dimensional optical digitizer, SPIE—The Intl. Soc. for Opt. Eng., vol. 1894, pp. 312-322 (Jan. 17-19, 1993). |
Bucholz, R.D., et al., Intraoperative Ultrasonic Brain Shift Monitor and Analysis, Stealth Station Marketing Brochure (2 pages) (undated). |
Bucholz, R.D., et al., The Correction of Stereotactic Inaccuracy Caused by Brain Shift Using an Intraoperative Ultrasound Device, First Joint Conference, Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery, Grenoble, France, pp. 459-466 (Mar. 19-22, 1997). |
Butz et al. Pre- and Intra-operative Planning and Simulation of Percutaneous Tumor Ablation, Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, p. 317-326, Oct. 11-14, 2000. |
Champleboux et al., “Accurate Calibration of Cameras and Range Imaging Sensors: the NPBS Method,” IEEE International Conference on Robotics and Automation, Nice, France, May 1992. |
Champleboux, “Utilisation de Fonctions Splines pour la Mise au Point D'un Capteur Tridimensionnel sans Contact,” Quelques Applications Medicales, Jul. 1991. |
Cinquin et al., “Computer Assisted Medical Interventions,” IEEE Engineering in Medicine and Biology, May/Jun. 1995, pp. 254-263. |
Cinquin et al., “Computer Assisted Medical Interventions,” International Advanced Robotics Programme, Sep. 1989, pp. 63-65. |
Clarysse et al., “A Computer-Assisted System for 3-D Frameless Localization in Stereotaxic MRI,” IEEE Transactions on Medical Imaging, vol. 10, No. 4, Dec. 1991, pp. 523-529. |
Cutting M.D. et al., Optical Tracking of Bone Fragments During Craniofacial Surgery, Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery, pp. 221-225, (Nov. 1995). |
Feldmar et al., “3D-2D Projective Registration of Free-Form Curves and Surfaces,” Rapport de recherche (Inria Sophia Antipolis), 1994, pp. 1-44. |
Finnis, Kirk W., et al., “Three-Dimensional Database of Subcortical Electrophysiology for Image-Guided Stereotactic Functional Neurosurgery,” IEEE Transactions of Medical Imaging, vol. 22, No. 1 (Jan. 2003) pp. 93-104. |
Flanigan, M. et al.. Peritoneal Catheters and Exit-Site Practices Toward Optimum Peritoneal Access: A Review of Current Developments. Peritoneal Dialysis International. (2005) vol. 25, pp. 132-139. |
Fletcher, S.J., et al. “Editorial II. Safe placement of central venous catheters: where should the tip of the catheter lie?” Oxford Journals, British Journal of Anaesthesia (2000) vol. 85 Issue 2, Aug. pp. 188-191. |
Foley et al., “Fundamentals of Interactive Computer Graphics,” The Systems Programming Series, Chapter 7, Jul. 1984, pp. 245-266. |
Foley et al., “Image-guided Intraoperative Spinal Localization,” Intraoperative Neuroprotection, Chapter 19, 1996, pp. 325-340. |
Foley, “The StealthStation: Three-Dimensional Image-Interactive Guidance for the Spine Surgeon,” Spinal Frontiers, Apr. 1996, pp. 7-9. |
Friets, E.M., et al. A Frameless Stereotaxic Operating Microscope for Neurosurgery, IEEE Trans. on Biomed. Eng., vol. 36, No. 6, pp. 608-617 (Jul. 1989). |
G. Champleboux, et al., “Accurate Calibration of Cameras and Range Imaging Sensors: the NPBS Method,” Proceedings of the IEEE International Conference on Robotics and Automation, Nice, France, May 1992. |
Gallen, C.C., et al., Intracranial Neurosurgery Guided by Functional Imaging, Surg. Neurol., vol. 42, pp. 523-530 (1994). |
Galloway, R.L., et al., Interactive Image-Guided Neurosurgery, IEEE Trans. on Biomed. Eng., vol. 89, No. 12, pp. 1226-1231 (1992). |
Galloway, R.L., Jr. et al, Optical localization for interactive, image-guided neurosurgery, SPIE, vol. 2164, (May 1, 1997) pp. 137-145. |
Germano, “Instrumentation, Technique and Technology”, Neurosurgery, vol. 37, No. 2, Aug. 1995, pp. 348-350. |
Gildenberg et al., “Calculation of Stereotactic Coordinates from the Computed Tomographic Scan,” Neurosurgery, vol. 10, No. 5, May 1982, pp. 580-586. |
Gomez, C.R., et al., Transcranial Doppler Ultrasound Following Closed Head Injury: Vasospasm or Vasoparalysis?, Surg. Neurol., vol. 35, pp. 30-35 (1991). |
Gonzalez, “Digital Image Fundamentals,” Digital Image Processing, Second Edition, 1987, pp. 52-54. |
Gottesfeld Brown et al., “Registration of Planar Film Radiographs with Computer Tomography,” Proceedings of MMBIA, Jun. '96, pp. 42-51. |
Grimson, W.E.L., An Automatic Registration Method for Frameless Stereotaxy, Image Guided Surgery, and enhanced Reality Visualization, IEEE, pp. 430-436 (1994). |
Grimson, W.E.L., et al., Virtual-reality technology is giving surgeons the equivalent of x-ray vision helping them to remove tumors more effectively, to minimize surgical wounds and to avoid damaging critical tissues, Sci. Amer., vol. 280, No. 6, pp. 62-69 (Jun. 1999). |
Gueziec et al., “Registration of Computed Tomography Data to a Surgical Robot Using Fluoroscopy: A Feasibility Study,” Computer Science/Mathematics, Sep. 27, 1996, 6 pages. |
Guthrie, B.L., Graphic-Interactive Cranial Surgery: The Operating Arm System, Handbook of Stereotaxy Using the CRW Apparatus, Chapter 13 (1994) pp. 193-211. |
Hamadeh et al, “Kinematic Study of Lumbar Spine Using Functional Radiographies and 3D/2D Registration,” TIMC UMR 5525—IMAG (1997). |
Hamadeh et al., “Automated 3-Dimensional Computed Tomographic and Fluorscopic Image Registration,” Computer Aided Surgery (1998), 3:11-19. |
Hamadeh et al., “Towards Automatic Registration Between CT and X-ray Images: Cooperation Between 3D/2D Registration and 2D Edge Detection,” MRCAS '95, pp. 39-46. |
Hanas, M.D., Ragnar. “Indwelling—Catheters—for—Injections. How to Reduce Injection Anxiety. Insuflon.” (Jun. 2003) Children with Diabetes. http://www.childrenwithdiabetes.com/d—06—311.htm web accessed Jul. 27, 2011. |
Hardy, T., M.D., et al., CASS: A Program for Computer Assisted Stereotaxic Surgery, The Fifth Annual Symposium on Comptuer Applications in Medical Care, Proceedings, Nov. 1-4, 1981, IEEE, pp. 1116-1126, (1981). |
Hatch, “Reference-Display System for the Integration of CT Scanning and the Operating Microscope,” Thesis, Thayer School of Engineering, Oct. 1984, pp. 1-189. |
Hatch, et al., “Reference-Display System for the Integration of CT Scanning and the Operating Microscope”, Proceedings of the Eleventh Annual Northeast Bioengineering Conference, Mar. 14-15, 1985, pp. 252-254. |
Hayashi, Y., et al. “Optimal Placement of CVP Catheter in Paediatric Cardiac Patients.” Canadian Journal of Anesthesia, (1995) 42:6 pp. 479-482. |
Heilbrun et al., “Preliminary experience with Brown-Roberts-Wells (BRW) computerized tomography stereotaxic guidance system,” Journal of Neurosurgery, vol. 59, Aug. 1983, pp. 217-222. |
Heilbrun, M.D., Progressive Technology Applications, Neurosurgery for the Third Millenium, Chapter 15, J. Whitaker & Sons, Ltd., Amer. Assoc. of Neurol. Surgeons, pp. 191-198 (1992). |
Heilbrun, M.P., Computed Tomography—Guided Stereotactic Systems, Clinical Neurosurgery, Chapter 31, pp. 564-581 (1983). |
Heilbrun, M.P., et al., Stereotactic Localization and Guidance Using a Machine Vision Technique, Sterotact & Funct. Neurosurg., Proceed. of the Mtg. of the Amer. Soc. For Sterot. and Funct. Neurosurg. (Pittsburgh, PA) vol. 58, pp. 94-98 (1992). |
Henderson et al., “An Accurate and Ergonomic Method of Registration for Image-guided Neurosurgery,” Computerized Medical Imaging and Graphics, vol. 18, No. 4, Jul.-Aug. 1994, pp. 273-277. |
Hodge, D. et al. “Diagnosis, prevention, and management of catheter related bloodstream infection during long term parenteral nutrition.” Arch. Dis. Child. Fetal Neonatal Ed. (2002) vol. 87 pp. F21-F24. |
Hoenecke, Heinz, R., et al. “Continuous Local Anesthetic Infiltration,” Case Report. Orthopedic Technology Review (Mar./Apr. 2002) vol. 3 No. 2. http://www.orthopedictechreview.com/issues/marapr02/case.htm. Said url is no longer valid. The article can be found using the Wayback Machine archive at: http://web.archive.org/web/20060315052636/http://www.orthopedictechreview.com/issues/marapr02/case.htm. Accessed and printed Aug. 11, 2011. |
Hoerenz, “The Operating Microscope I. Optical Principles, Illumination Systems, and Support Systems,” Journal of Microsurgery, vol. 1, 1980, pp. 364-369. |
Hofstetter et al., “Fluoroscopy Based Surgical Navigation—Concept and Clinical Applications,” Computer Assisted Radiology and Surgery, 1997, pp. 956-960. |
Horner et al., “A Comparison of CT-Stereotaxic Brain Biopsy Techniques,” Investigative Radiology, Sep.-Oct. 1984, pp. 367-373. |
Hounsfield, “Computerized transverse axial scanning (tomography): Part 1. Description of system,” British Journal of Radiology, vol. 46, No. 552, Dec. 1973, pp. 1016-1022. |
International Preliminary Report on Patentability for PCT/US2007/009820 mailed Oct. 30, 2008 claiming benefit of U.S. Appl. No. 11/409,499. |
International Preliminary Report on Patentability for PCT/US2007/009931 mailed Jan. 20, 2009, claiming priority to U.S. Appl. No. 11/683,796, filed Mar. 8, 2007. |
International Search Report and Written Opinion for PCT/US2007/009820 mailed Sep. 21, 2007 claiming benefit of U.S. Appl. No. 11/409,499. |
International Search Report and Written Opinion for PCT/US2007/009931 mailed Nov. 14, 2007, claiming priority to U.S. Appl. No. 11/683,796, filed Mar. 8, 2007. |
International Search Report and Written Opinion mailed Apr. 11, 2009 for PCT/US2009/051341 filed Jul. 22, 2009. |
iPlan® Stereotaxy Software, BrainLab, http://www.brainlab.com/scripts/website—english.asp?menuDeactivate=1&articleID=1842&articleTypeID=27&pageTypeID=4&article—short—headline=iPlan%AE%20Stereotaxy printed Apr. 1, 2009. |
Jacques et al., “A Computerized Microstereotactic Method to Approach, 3-Dimensionally Reconstruct, Remove and Adjuvantly Treat Small CNS Lesions,” Applied Neurophysiology, vol. 43, 1980, pp. 176-182. |
Jacques et al., “Computerized three-dimensional stereotaxic removal of small central nervous system lesion in patients,” J. Neurosurg., vol. 53, Dec. 1980, pp. 816-820. |
Joskowicz et al., “Computer-Aided Image-Guided Bone Fracture Surgery: Concept and Implementation,” CAR '98, pp. 710-715. |
Kall, B., The Impact of Computer and lmgaging Technology on Stereotactic Surgery, Proceedings of the Meeting of the American Society for Stereotactic and Functional Neurosurgery, pp. 10-22 (1987). |
Kato, A., et al., A frameless, armless navigational system for computer-assisted neurosurgery, J. Neurosurg., vol. 74, pp. 845-849 (May 1991). |
Kelly et al., “Computer-assisted stereotaxic laser resection of intra-axial brain neoplasms,” Journal of Neurosurgery, vol. 64, Mar. 1986, pp. 427-439. |
Kelly et al., “Precision Resection of Intra-Axial CNS Lesions by CT-Based Stereotactic Craniotomy and Computer Monitored CO2 Laser,” Acta Neurochirurgica, vol. 68, 1983, pp. 1-9. |
Kelly, P.J., Computer Assisted Stereotactic Biopsy and Volumetric Resection of Pediatric Brain Tumors, Brain Tumors in Children, Neurologic Clinics, vol. 9, No. 2, pp. 317-336 (May 1991). |
Kelly, P.J., Computer-Directed Stereotactic Resection of Brain Tumors, Neurologica Operative Atlas, vol. 1, No. 4, pp. 299-313 (1991). |
Kelly, P.J., et al., Results of Computed Tomography-based Computer-assisted Stereotactic Resection of Metastatic Intracranial Tumors, Neurosurgery, vol. 22, No. 1, Part 1, 1988, pp. 7-17 (Jan. 1988). |
Kelly, P.J., Stereotactic Imaging, Surgical Planning and Computer-Assisted Resection of Intracranial Lesions: Methods and Results, Advances and Technical Standards in Neurosurgery, vol. 17, pp. 78-118, (1990). |
Kim, W.S. et al., A Helmet Mounted Display for Telerobotics, IEEE, pp. 543-547 (1988). |
Klimek, L., et al., Long-Term Experience with Different Types of Localization Systems in Skull-Base Surgery, Ear, Nose & Throat Surgery, Chapter 51 (1996) pp. 635-638. |
Kosugi, Y., et al., An Articulated Neurosurgical Navigation System Using MRI and CT Images, IEEE Trans. on Biomed, Eng. vol. 35, No. 2, pp. 147-152 (Feb. 1988). |
Krybus, W., et al., Navigation Support for Surgery by Means of Optical Position Detection, Computer Assisted Radiology Proceed. of the Intl. Symp. CAR '91 Computed Assisted Radiology, pp. 362-366 (Jul. 3-6, 1991). |
Kunwar, S., et al. “Peritumoral convection-enhanced delivery (CED) of IL13-PE38QQR (IL13PE): Results of multicenter phase 1 studies in recurrent High Grade Glioma (HGG).” Abstracts from the World Federation of Neuro-Oncology Second Quadrennial Meeting and Sixth Meeting of the European Association for Neuro-Oncology, Edinburgh, UK. (May 5-8, 2005) p. 311 Society for Neuro-Oncology. |
Kwoh, Y.S., Ph.D., et al., A New Computerized Tomographic-Aided Robotic Stereotaxis System, Robotics Age, vol. 7, No. 6, pp. 17-22 (Jun. 1985). |
Laitinen et al., “An Adapter for Computed Tomography-Guided, Stereotaxis,” Surg. Neurol., 1985, pp. 559-566. |
Laitinen, “Noninvasive multipurpose stereoadapter,” Neurological Research, Jun. 1987, pp. 137-141. |
Lavallee et al, “Matching 3-D Smooth Surfaces with their 2-D Projections using 3-D Distance Maps,” SPIE, vol. 1570, Geometric Methods in Computer Vision, 1991, pp. 322-336. |
Lavallee et al., “Computer Assisted Driving of a Needle into the Brain,” Proceedings of the International Symposium CAR '89, Computer Assisted Radiology, 1989, pp. 416-420. |
Lavallee et al., “Computer Assisted Interventionist Imaging: The Instance of Stereotactic Brain Surgery,” North-Holland MEDINFO 89, Part 1, 1989, pp. 613-617. |
Lavallee et al., “Computer Assisted Spine Surgery: A Technique for Accurate Transpedicular Screw Fixation Using CT Data and a 3-D Optical Localizer,” TIMC, Faculte de Medecine de Grenoble (1995). |
Lavallee et al., “Image guided operating robot: a clinical application in stereotactic neurosurgery,” Proceedings of the 1992 IEEE Internation Conference on Robotics and Automation, May 1992, pp. 618-624. |
Lavallee et al., “Matching of Medical Images for Computed and Robot Assisted Surgery,” IEEE EMBS, Orlando, 1991. |
Lavallee, “A New System for Computer Assisted Neurosurgery,” IEEE Engineering in Medicine & Biology Society 11th Annual International Conference, 1989, pp. 0926-0927. |
Lavallee, “VI Adaption de la Methodologie a Quelques Applications Cliniques,” Chapitre VI, pp. 133-148. |
Lavallee, S., et al., Computer Assisted Knee Anterior Cruciate Ligament Reconstruction First Clinical Tests, Proceedings of the First International Symposium on Medical Robotics and Computer Assisted Surgery, pp. 11-16 (Sep. 1994). |
Lavallee, S., et al., Computer Assisted Medical Interventions, NATO ASI Series, vol. F 60, 3d Imaging in Medic., pp. 301-312 (1990). |
Leavitt, D.D., et al., Dynamic Field Shaping to Optimize Stereotactic Radiosurgery, I.J. Rad. Onc. Biol. Physc., vol. 21, pp. 1247-1255 (1991). |
Leksell et al., “Stereotaxis and Tomography—A Technical Note,” ACTA Neurochirurgica, vol. 52, 1980, pp. 1-7. |
Lemieux et al., “A Patient-to-Computed-Tomography Image Registration Method Based on Digitally Reconstructed Radiographs,” Med. Phys. 21 (11), Nov. 1994, pp. 1749-1760. |
Levin et al., “The Brain: Integrated Three-dimensional Display of MR and PET Images,” Radiology, vol. 172, No. 3, Sep. 1989, pp. 783-789. |
Maurer, Jr., et al., Registration of Head CT Images to Physical Space Using a Weighted Combination of Points and Surfaces, IEEE Trans. on Med. Imaging, vol. 17, No. 5, pp. 753-761 (Oct. 1998). |
Mazier et al., “Computer-Assisted Interventionist Imaging: Application to the Vertebral Column Surgery,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 12, No. 1, 1990, pp. 0430-0431. |
Mazier et al., Chirurgie de la Colonne Vertebrate Assistee par Ordinateur: Appication au Vissage Pediculaire, Innov. Tech. Biol. Med., vol. 11, No. 5, 1990, pp. 559-566. |
McGirr, S., M.D., et al., Stereotactic Resection of Juvenile Pilocytic Astrocytomas of the Thalamus and Basal Ganglia, Neurosurgery, vol. 20, No. 3, pp. 447-452, (1987). |
Merloz, et al., “Computer Assisted Spine Surgery”, Clinical Assisted Spine Surgery, No. 337 (1997) pgs. 86-96. |
Müller, M., et al. “Issues in Pharmacokinetics and Pharmacodynamics of Anti-Infective Agents: Distribution in Tissue.” Antimicrobial Agents and Chemotherapy, Minireview (2004) vol. 48, No. 5. pp. 1441-1453. |
NeuroSight™ Cranial Module, Radionics™, Jul. 27, 2003 http://www.radionics.com/products/frameless/omnisight/omnisight—modules.shtml#neuro accessed and printed on Apr. 1, 2009 through the Wayback Machine at http://www.archive.org/web/web.php. |
Ng, W.S. et al., Robotic Surgery—A First-Hand Experience in Transurethral Resection of the Prostate Surgery, IEEE Eng. in Med. and Biology, pp. 120-125 (Mar. 1993). |
Pelizzari et al., “Accurate Three-Dimensional Registration of CT, PET, and/or MR Images of the Brain,” Journal of Computer Assisted Tomography, Jan./Feb. 1989, pp. 20-26. |
Pelizzari et al., “Interactive 3D Patient-Image Registration,” Information Processing in Medical Imaging, 12th International Conference, IPMI '91, Jul. 7-12, 136-141 (A.C.F. Colchester et al. eds. 1991). |
Pelizzari et al., No. 528—“Three Dimensional Correlation of PET, CT and MRI Images,” The Journal of Nuclear Medicine, vol. 28, No. 4, Apr. 1987, p. 682. |
Penn, R.D., et al., Stereotactic Surgery with Image Processing of Computerized Tomographic Scans, Neurosurgery, vol. 3, No. 2, pp. 157-163 (Sep.-Oct. 1978). |
Phillips et al., “Image Guided Orthopaedic Surgery Design and Analysis,” Trans Inst. MC, vol. 17, No. 5, 1995, pp. 251-264. |
Pixsys, 3-D Digitizing Accessories, by Pixsys (marketing brochure)(undated) (2 pages). |
Potamianos et al., “Intra-Operative Imaging Guidance for Keyhole Surgery Methodology and Calibration,” First International Symposium on Medical Robotics and Computer Assisted Surgery, Sep. 22-24, 1994, pp. 98-104. |
Prestige Cervical Disc System Surgical Technique, 12 pgs. |
Reinhardt et al., “CT-Guided ‘Real Time’ Stereotaxy,” ACTA Neurochirurgica, 1989. |
Reinhardt, H., et al., A Computer-Assisted Device for Intraoperative CT-Correlated Localization of Brain Tumors, pp. 51-58 (1988). |
Reinhardt, H.F. et al., Sonic Stereometry in Microsurgical Procedures for Deep-Seated Brain Tumors and Vascular Malformations, Neurosurgery, vol. 32, No. 1, pp. 51-57 (Jan. 1993). |
Reinhardt, H.F., et al., Mikrochirugische Entfernung tiefliegender Gefäβmiβbildungen mit Hilfe der Sonar-Stereometrie (Microsurgical Removal of Deep-Seated Vascular Malformations Using Sonar Stereometry). Ultraschall in Med. 12, pp. 80-83 (1991). |
Reinhardt, Hans. F., Neuronavigation: A Ten-Year Review, Neurosurgery (1996) pp. 329-341. |
Renard, E., et. al. “Catheter Complications Associated with Implantable Systems for Peritoneal Insulin Delivery. An Analysis of Frequency, Predisposing Factors, and Obstructing Materials.” Diabetes Care (Mar. 1995) vol. 18, No. 3. pp. 300-306. |
Roberts et al., “A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope,” J. Neurosurg., vol. 65, Oct. 1986,pp. 545-549. |
Rosenbaum et al., “Computerized Tomography Guided Stereotaxis: A New Approach,” Applied Neurophysiology, vol. 43, No. 3-5, 1980, pp. 172-173. |
Sautot, “Vissage Pediculaire Assiste Par Ordinateur,” Sep. 20, 1994. |
Schueler et al., “Correction of Image Intensifier Distortion for Three-Dimensional X-Ray Angiography,” SPIE Medical Imaging 1995, vol. 2432, pp. 272-279. |
Schueler, Beth, et al., “Correction of Image Intensifier Distortion for Three-Dimensional X-ray Angiography,” Proceedings, SPIE—the International Society for Optical Engineering, Medical Imaging 1995—Physics of Medical Imaging, pp. 273-279 (San Diego, California, Feb. 26-27, 1995). |
Selvik et al., “A Roentgen Stereophotogrammetric System,” Acta Radiologica Diagnosis, 1983, pp. 343-352. |
Shelden et al., “Development of a computerized microsteroetaxic method for localization and removal of minute CNS lesions under direct 3-D vision,” J. Neurosurg., vol. 52, 1980, pp. 21-27. |
Simon, D.A., Accuracy Validation in Image-Guided Orthopaedic Surgery, Second Annual Intl. Symp. on Med. Rob. an Comp-Assisted surgery, MRCAS (1995) pp. 185-192. |
Smith et al., “Computer Methods for Improved Diagnostic Image Display Applied to Stereotactic Neurosurgery,” Automedical, vol. 14, 1992, pp. 371-382 (4 unnumbered pages). |
Smith et al., “The Neurostation™—A Highly Accurate, Minimally Invasive Solution to Frameless Stereotactic Neurosurgery,” Computerized Medical Imaging and Graphics, vol. 18, Jul.-Aug. 1994, pp. 247-256. |
Smith, K.R., et al. Multimodality Image Analysis and Display Methods for Improved Tumor Localization in Stereotactic Neurosurgery, Annul Intl. Conf. of the IEEE Eng. in Med. and Biol. Soc., vol. 13, No. 1, p. 210 (1991). |
Tan, K., Ph.D., et al., A frameless stereotactic approach to neurosurgical planning based on retrospective patient-image registration, J Neurosurgy, vol. 79, pp. 296-303 (Aug. 1993). |
The Laitinen Stereotactic System, E2-E6. |
Thompson, et al., A System for Anatomical and Functional Mapping of the Human Thalamus, Computers and Biomedical Research, vol. 10, pp. 9-24 (1977). |
Trobraugh, J.W., et al., Frameless Stereotactic Ultrasonography: Method and Applications, Computerized Medical Imaging and Graphics, vol. 18, No. 4, pp. 235-246 (1994). |
Vande Walle, et al. “Use of Bicarbonate/Lactate Buffered Dialysate with Nighttime Cycler, Associated with a Daytime Dwell with Icodextrin, May Result in Alkalosis in Children.” Advances in Peritoneal Dialysis (2004) vol. 20, pp. 222-225. |
VectorVision® cranial Navigation Software, BrainLab, http://www.brainlab.com/scripts/website—english.asp?menuDeactivate=1&articleID=593&articleTypeID=27&pageTypeID=4&article—short—headline=VectorVision%AE%20%20cranial printed Apr. 1, 2009. |
Versweyveld, Leslie, “Scientists in Singapore develop Virtual Brain Bench for stereotactic frame neurosurgery,” VMW Virtual Medical Worlds Monthly, printed Apr. 1, 2009 (3 pages). |
Vesely, T.M., “Central Venous Catheter Tip Position: A Continuing Controversy.” J Vasc Interv Radiol (2003) vol. 14, No. 5. pp. 527-534. |
Viant et al., “A Computer Assisted Orthopaedic System for Distal Locking of Intramedullary Nails,” Proc. of MediMEC '95, Bristol, 1995, pp. 86-91. |
Von Hanwhr et al., Foreword, Computerized Medical Imaging and Graphics, vol. 18, No. 4, pp. 225-228, (Jul.-Aug. 1994). |
Wang, M.Y., et al., An Automatic Technique for Finding and Localizing Externally Attached Markers in CT and MR Volume Images of the Head, IEEE Trans. on Biomed. Eng., vol. 43, No. 6, pp. 627-637 (Jun. 1996). |
Washburn, Kimberly, K, et al. “Surgical Technique for Peritoneal Dialysis Catheter Placement in the Pediatric Patient: A North American Survey.” Advances in Peritoneal Dialysis (2004) vol. 20, pp. 218-221. |
Watanabe et al., “Three-Dimensional Digitizer (Neuronavigator): New Equipment for Computed Tomography-Guided Stereotaxic Surgery,” Surgical Neurology, vol. 27, No. 6, Jun. 1987, pp. 543-547. |
Watanabe, “Neuronavigator,” Igaku-no-Ayumi, vol. 137, No. 6, May 10, 1986, pp. 1-4. |
Watanabe, E., M.D., et al., Open Surgery Assisted by the Neuronavigator, a Stereotactic, Articulated, Sensitive Arm, Neurosurgery, vol. 28, No. 6, pp. 792-800 (1991). |
Weese et al., “An Approach to 2D/3D Registration of a Vertebra in 2D X-ray Fluoroscopies with 3D CT Images” (1997) pp. 119-128. |
Wood et al. Technologies for Guidance of Radiofrequency Ablation in the Multimodality Interventional Suite of the Future. J Vasc Interv Radiol. Jan. 2007; 18(1 Pt 1): 9-24. doi:10.1 016/j.jvir.2006.1 0.013. |
Zürcher, Matthias et al. “Colonization and Bloodstream Infection with Single—Versus Multi-Lumen Central Venous Catheters: A Quantitative Systematic Review.” Anesthesia & Analgesia (2004) vol. 99, pp. 177-182. |
Number | Date | Country | |
---|---|---|---|
20140171791 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
60848442 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11683796 | Mar 2007 | US |
Child | 14187601 | US |