Method and Apparatus for Processing and Reading-out Storage Phosphor Plates

Abstract
A method and to a corresponding apparatus for processing information carriers, in particular for reading out storage phosphor plates (2) for storing X-ray information, an information carrier (2) and/or a container (1) in which the information carrier (2) is located being processed, in particular being moved and/or fixed, by at least one mechanical processor (13), the processor (7) being driven by at least one stepper motor (10), and information from the information carrier (2) being read out and/or written in the information carrier. In order to simplify the processing of information carriers (2) with at the same time high precision when determining the position of the processor (13) and reduced production costs, provision is made such that a motor load is recorded which is a measure for the load of the stepper motor (10) while the processor is being driven, and information about the position of the processor (13) is deduced from the number of steps, which corresponds to the number of steps of the stepper motor (10) while the processor (13) is being driven, taking into account the motor load recorded.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale; emphasis has instead been placed upon illustrating the principles of the invention. Of the drawings:



FIG. 1 is a schematic diagram showing a first exemplary embodiment used to illustrate the invention;



FIG. 2 is a schematic diagram showing a section of the first exemplary embodiment shown in FIG. 1 at a different point in time;



FIG. 3 is a schematic diagram showing a stepper motor with a control unit downstream;



FIG. 4 is a schematic diagram showing a second exemplary embodiment used to illustrate the invention; and



FIG. 5 is a schematic diagram showing the second exemplary embodiment shown in FIG. 4 at a different point in time.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 shows a first exemplary embodiment of an apparatus for implementing the method according to the invention. A cassette 1 with a storage phosphor plate 2 located within it is set down on a repository A by an operator and abutted against a stop edge K.


In order to read out the X-ray information stored in the storage phosphor layer 2, the cassette 1 is opened and the storage phosphor plate 2 removed from the cassette 1 by means of a removal device (not shown in detail), and passed to a conveyance device 5 which in the example shown here comprises two mating rolls which convey the storage phosphor plate 2 to a read-out device 6.


In the example shown, the read-out device 6 comprises two further mating rolls which convey the storage phosphor plate 2 through a read-out unit in which the storage phosphor layer 2 is stimulated by stimulation light into emitting emission light which is collected by an optical detector (not shown). The read-out of the storage phosphor plate 2 is implemented here line by line, individual points of a line 4 being respectively irradiated with stimulation light one after the other—as with so-called flying spot scanners—or at the same time—as with so-called line scanners. The design of appropriate read-out units is described e.g. in EP 1 065 523 A2 and EP1 034 443 B1.


In the region of the repository A, a fixing element 13 is provided which can be moved towards the cassette 1 or away from the cassette 1 by a threaded rod 12. In the example shown, the fixing element 13 is a clamping wedge with a screw thread by means of which the clamping wedge is coupled to the threaded rod 12 and can be shifted by the latter.


A first end of the threaded rod 12 is coupled by a coupling 11 to a stepper motor 10 and is driven by the latter, i.e. set in rotation. A second end of the threaded rod 12 is pivotably mounted in a mounting 14 and pre-tensioned axially in the direction of the stepper motor 10 by a spring 15.


In this example the stepper motor 10 is controlled by the control unit 20 in a way such that the fixing element 13 is moved at a high speed over a first stretch s I between a reference position 16 and a position 16′ close to the cassette 1. This is achieved by operating the stepper motor 10 with high frequency electrical alternating currents.


From the number of steps implemented by the stepper motor 10 for the movement of the fixing element 13, information about the respective position of the fixing element 13 in relation to the reference position 16 is calculated in a control unit 20 connected to the stepper motor 10.


In the control unit 20, as well as the number of steps implemented by the stepper motor 10, the motor load of the stepper motor 10 is also recorded, and this provides a measure for the load of the stepper motor 10 while the fixing element 13 is being moved. According to the invention, the position of the fixing element 13 is calculated from the number of steps implemented by the stepper motor 10, and this is checked, and if appropriate corrected, by means of the motor load recorded.


If, for example, the check shows that the motor load recorded exceeds a pre-specified maximum value, it can be concluded from this that an obstacle, for example the operator's hand, is present. In this event, the stepper motor 10 is halted immediately.


The situation can also arise where the cassette 1 is not placed accurately by an operator against the stop edge K, by means of which the fixing element 13 moved towards the cassette 1 comes into contact with the cassette 1 prematurely and pushes the latter over a specific stretch until the cassette 1 is abutted against the stop bar 4. Along this stretch step, losses occur in the stepper motor 10 due to which the stretch s1 covered by the fixing element 13 from the reference position 16 is no longer in proportion to the recorded number of steps. Precise determination of the position of the fixing element 13 purely from the number of steps is no longer possible in this way. According to the invention, in order to check the precise actual position of the fixing element 13, the recorded motor load is used.


In the present example, on the stretch over which the cassette 1 is pushed by the fixing element towards the stop bar 4 an increased motor load is detected which suggests step losses of the stepper motor 10. In this case the stepper motor 10 is controlled in a way such that any step losses occurring when the fixing element 13 is being driven can be avoided, or at least reduced. In the example shown, the rotation speed of the stepper motor 10 is reduced and/or the torque of the stepper motor 10 is increased.


If the motor load recorded while the fixing element 13 is being driven exceeds a pre-specified maximum value, in certain operational states, such as e.g. with a low revolution speed of the stepper motor 10, the position of the fixing element 13 deduced from the number of steps can also be corrected in order to finally obtain the actual position of the fixing element 13. The desired position of the fixing element 13 calculated from the number of steps recorded can be corrected downwardly dependently e.g. upon the respectively recorded level of the motor load in order to establish the respective precise actual position of the fixing element 13.



FIG. 2 shows a section of the first exemplary embodiment shown in FIG. 1 at a point in time at which the cassette 1 is fixed by the fixing element 13. Shortly before the point in time illustrated, the threaded rod 12 was conveyed in the axial direction into the mounting 14 due to the movement of the fixing element 13 already resting against the cassette 1, the spring 15 being compressed.


In the phase of compressing the spring 15, an increased motor load of the stepper motor 10 is detected in the control unit 20 which, due to the defined mechanical properties of the spring 15, comes within a characteristic value range. Preferably, in this phase the stepper motor 10 is controlled such that its rotation speed is reduced and the torque increased. In this way, on the one hand step losses are avoided, or at least reduced, and on the other hand particularly reliable and sufficiently strong clamping of the cassette 1 is made possible.



FIG. 3 shows the multiphase motor 10 used in the first exemplary embodiment and which drives the threaded rod 12. The control unit 20 connected to the stepper motor 10 includes a motor driver unit 21 for detecting the number of steps and the motor load and for controlling the stepper motor 10. In an evaluation unit 22 the respective precise actual position of the fixing element 13 is deduced from the number of steps and the motor load, and control parameters for controlling the drive of the stepper motor 10 are sent to the motor driver unit 21. The motor driver unit 21 is connected to a direct current source with a voltage U.


Alternating currents 11 and 12 with which the stepper motor 10 is operated are pre-specified by the motor driver unit 21. These are cosinusoidal and/or sinusoidal alternating current sequences, it being possible to control the rotation speed of the stepper motor 10 by specifying the frequency of the alternating currents. The torque of the stepper motor 10 is set by specifying the amplitude of the alternating currents 11 and 12. The respective number of steps to be implemented by the stepper motor 10 is pre-specified by the number of periods in individual alternating current sequences. According to the invention, the aforementioned values are selected and specified dependently upon the number of steps recorded, which is a measure for the desired position of the fixing element 13, and/or the motor load recorded.



FIG. 4 shows a second exemplary embodiment of the invention in which a storage phosphor plate 2 located on a support 3 is pushed together with the support 3 into a cassette 1. For this, a bar 19 is provided with guide pins 7 which engage in recesses 8 in the support 3 until they are abutted against the guide edge 2′ of the storage phosphor plate 2. Onto the bar 19 a stepper motor 10 is fitted which drives a spline shaft 17 which runs along a toothed rack 18 disposed immovably in relation to the cassette 1 and can thus move the bar 19 together with the guide pins 7 towards the cassette 1 or away from the cassette 1.


For precisely determining, according to the invention, the position of the guide pins 7 relative to a reference position 16, the above comments in connection with the examples shown in FIGS. 1 to 3 apply accordingly.


In this example the stepper motor 10 is controlled by the control unit 20 in a way such that initially the guide pins 7 move quickly towards the recesses 8 at high speed, and the speed of the stepper motor 10 is reduced when the guide pins 7 have reached a pre-specifiable position close to the support 3. The guide pins 7 are then engaged in the recesses 8 at a speed which is reduced in relation to the initial speed and finally push the support 3 together with the storage phosphor plate 2 located on top of it into the cassette 1.


By successively, almost continuously recording the motor load of the stepper motor 10 it can be established here whether the support 3—as shown in FIG. 5—is already fully pushed into the cassette 1 and is abutted against the opposite face side of the cassette or against a stop located here. In this case a high motor load is detected in the control unit 20, and directly thereupon the conveyance of the support 3 and the storage phosphor plate 2 back into the cassette 1 is ended by the rotation of the stepper motor 10 being halted.


In this way reliable and precise conveyance of the support 3 together with the storage phosphor plate 2 located on top of it back into the cassette 1 is achieved.


After fixing the support 3 together with the storage phosphor plate 2 in the cassette 1 the stepper motor 10 can now be operated in the opposite rotation direction at relatively high speed in order to bring the bar 19 together with the guide pins 7 back into the reference position 16. This movement is also initially implemented at high speed and close to the reference position 16 at reduced speed. By successively recording the motor load and taking this into account both when establishing the actual position of the bar 19 and when controlling the stepper motor 10 it is guaranteed that the reference position 16 is approached and finally reached with a high level of reliability and precision.


In the exemplary embodiments described in detail above, only two possibilities were shown with which processors, such as the fixing element 13 and the guide pins 7, can be operated according to the invention when processing and reading out storage phosphor plates. Furthermore, there are numerous further possibilities for using the described invention.


Therefore, for example, the distance between the rolls of mating rolls, as in the conveyance device 5 shown in FIG. 1, can be set by means of a guide rail which is in turn driven by a stepper motor operated according to the invention.


Further examples of use of the invention are driving devices for opening and closing a flap located on the face side of the cassette, driving mechanisms for fixing and releasing the storage phosphor plate in the cassette, and driving devices for conveying the storage phosphor plate through the apparatus, in particular through the read-out unit, such as e.g. rolls, threaded rods or cables.


In general the invention can advantageously be used for implementing and controlling any mechanical procedures in connection with processing information carriers. As well as precisely determining the position of and controlling mechanical processors, such as e.g. fixing and/or conveyance elements, a further advantage of the invention is that one can dispense with a plurality of different sensors for determining the position of and controlling mechanical processors. The production costs of corresponding systems are considerably reduced in this way.


While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims
  • 1. A method for processing information carriers in which an information carrier and/or a container, in which the information carrier is located, is processed by being moved and/or fixed, by at least one mechanical processor, the processor being driven by at least one stepper motor, and information from the information carrier being read out and/or written in the information carrier, the method comprising: recording a motor load which is a measure for the load of the stepper motor while the mechanical processor is being driven, anddeducing information about a position of the processor from a number of steps, which corresponds to the number of steps of the stepper motor while the processor is being driven, taking into account the motor load recorded.
  • 2. The method according to claim 1, wherein the stepper motor is controlled dependently upon the information deduced about the position of the processing means.
  • 3. The method according to claim 2, wherein the stepper motor rotates with a rotation speed and a torque, and the rotation speed and/or the torque of the rotation is reduced or increased when the position of the processor lies within pre-specified positions.
  • 4. The method according to claim 3, wherein the rotation speed is higher between a reference position and a position close to an object to be processed than between the position close to the object to be processed and the object.
  • 5. The method according to claim 3, wherein the torque between a reference position and a position close to an object to be processed is lower than between the position close to the object to be processed and the object.
  • 6. The method according to claim 1, wherein the stepper motor is controlled dependently upon the motor load recorded.
  • 7. The method according to claim 6, wherein, in the event that the motor load recorded exceeds a pre-specified maximum value, the stepper motor being controlled such that any step losses are avoided or at least reduced.
  • 8. The method according to claim 7, wherein, in the event that the motor load recorded exceeds the pre-specified maximum value, the stepper motor is halted and/or the rotation speed of the stepper motor is reduced and/or the torque of the stepper motor is increased.
  • 9. The method according to claim 6, wherein the stepper motor is controlled such that the mechanical processor is moved at a first speed, and in the event of detection of an increase in the motor load is halted.
  • 10. The method according to claim 9, wherein the stepper motor is controlled such that the processor is moved at a second speed, and in the event of detection of an increase in the motor load, the rotation speed of the stepper motor is reduced and/or the torque of the stepper motor is increased.
  • 11. The method according to claim 6, wherein the stepper motor is controlled such that the mechanical processor is moved at a second speed, and in the event of detection of an increase in the motor load, the rotation of the stepper motor is slowed down and finally halted within a pre-specified interval of time.
  • 12. The method according to claim 10, wherein the first speed of the mechanical processor is lower than the second speed of the processor
  • 13. The method according to claim 2, wherein while the processor is being driven, the motor load is continuously recorded at intervals of time of one or a few steps of the stepper motor and the stepper motor is continuously controlled.
  • 14. The method according to claim 1, wherein the number of steps which the stepper motor is to implement while the processor is being driven is pre-specified.
  • 15. The method according to claim 1, wherein the number of steps for the steps of the stepper motor implemented while the mechanical processor is being driven is recorded while the processor is being driven.
  • 16. The method according claim 1, wherein, in order to control the stepper motor, electrical currents flowing through the stepper motor are pre-specified dependently upon the information deduced about the position of the mechanical processor and/or dependently upon the motor load recorded.
  • 17. The method according to claim 16, wherein the electrical currents through the stepper motor are periodic, in particular cosinusoidal and/or sinusoidal alternating currents which respectively have a frequency, an amplitude and a specific number of periods, and the frequency and/or the amplitude and/or the number of periods of the alternating currents being respectively pre-specified dependently upon the information deduced about the position of the mechanical processor and/or dependently upon the motor load recorded.
  • 18. The method according to claim 1, wherein the information carrier is a storage phosphor plate for storing X-ray information, and the storage phosphor plate and/or a cassette, in which the storage phosphor plate is located, is processed, being moved and/or fixed, by the mechanical processor, and the X-ray information stored in the storage phosphor plate is read out.
  • 19. An apparatus for processing information carriers, comprising: at least one mechanical processor for processing, including moving and/or fixing, an information carrier and/or a container in which the information carrier is located;at least one stepper motor by means of which the processor is driven;a device for reading out and/or writing information from and in the information carrier; anda control unit for recording a motor load which is a measure for the load of the stepper motor while the mechanical processor is being driven, and deducing information about the position of the mechanical processor from a number of steps, which corresponds to the number of steps of the stepper motor while the mechanical processor is being driven, taking into account the motor load recorded.
  • 20. The apparatus according to claim 19, wherein the information carrier is a storage phosphor plate for storing X-ray information and the storage phosphor plate and/or a cassette, in which the storage phosphor plate is located, is processed by the mechanical processor for a read-out device for reading out the X-ray information stored in the storage phosphor plate.
Priority Claims (1)
Number Date Country Kind
06119718.2 Aug 2006 EP regional