The present invention relates generally to display devices, and more particularly to brightness control in interferometric modulator display devices.
Microelectromechanical systems (MEMS) include micromechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and/or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In certain embodiments, an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. In a particular embodiment, one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by a transparent medium (e.g., an air gap). As described herein in more detail, the position of one plate in relation to the other plate can change the optical interference of light incident on the interferometric modulator. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
An interferometric modulator display device generally comprises multiple pixels, in which each pixel is operable to provide a range of visual colors, for example, by changing the position of a corresponding plate (e.g., the metallic membrane) in relation to another plate (e.g., the stationary layer) to shift a color perceived by a user. Conventional interferometric modulator display devices, however, typically do not have a brightness control (for each pixel) that is independent of pixel color—i.e., in conventional interferometric modulator display devices the brightness of a pixel is usually controlled by shifting a color of the pixel to an unperceivable color. Consequently, brightness control in conventional interferometric modulator displays is generally limited.
Accordingly, what is needed is an improved technique for providing brightness control in an interferometric modulator display. The present invention addresses such a need.
In general, in one aspect, this specification describes an interferometric modulator display pixel that includes a microelectromechanical systems (MEMS) interferometric modulator having an associated first color spectrum, and a color absorber located substantially in front of the interferometric modulator display pixel, in which the color absorber has an associated second color spectrum. The microelectromechanical systems (MEMS) interferometric modulator is operable to shift the first color spectrum relative to the second color spectrum to control a visual brightness of the interferometric modulator display pixel independent of a color of the interferometric modulator display pixel.
Implementations may provide one or more of the following advantages. An interferometric modulator display is provided that implements brightness control (for each pixel) that is independent of a color associated with a pixel. Accordingly, an interferometric modulator display can provide a greater visual display of color gradations and shade in comparison to conventional interferometric modulator displays. In addition, the range of colors of such a display changes less with changes in spectrum of the ambient illumination.
Like reference symbols in the various drawings indicate like elements.
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the embodiments may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
As discussed above, conventional interferometric modulator display devices typically do not have a brightness control (for each pixel) that is independent of pixel color. That is, in conventional interferometric modulator display devices the brightness of a pixel is usually controlled by shifting a color of the pixel to an unperceivable color. Thus, brightness control within conventional interferometric modulator display devices is generally limited. Accordingly, this specification describes an improved technique for providing brightness control in an interferometric modulator display. In one embodiment, an interferometric modulator display pixel is provided that includes a microelectromechanical systems (MEMS) interferometric modulator having an associated first color spectrum. The microelectromechanical systems (MEMS) interferometric modulator is operable to shift the first color spectrum relative to a second color spectrum to control a visual brightness of the interferometric modulator display pixel independent of a color of the interferometric modulator display pixel.
First, a description of an interferometric modulator display embodiment will be described which has been conceived and reduced to practice by QUALCOMM Inc. This display operates effectively for its stated purpose. However, it is always desirable to improve on the performance thereof. To describe this modulator and its operation refer now to the following description in conjunction with the accompanying figures.
One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in
The depicted portion of the pixel array in
The optical stacks 16a and 16b (collectively referred to as optical stack 16), as referenced herein, typically comprise of several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric. The optical stack 16 is thus electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20. The partially reflective layer can be formed from a variety of materials that are partially reflective such as various metals, semiconductors, and dielectrics. The partially reflective layer can be formed of one or more layers of materials, and each of the layers can be formed of a single material or a combination of materials.
In some embodiments, the layers of the optical stack 16 are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable reflective layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the movable reflective layers 14a, 14b are separated from the optical stacks 16a, 16b by a defined gap 19. A highly conductive and reflective material such as aluminum may be used for the reflective layers 14, and these strips may form column electrodes in a display device.
With no applied voltage, the gap 19 remains between the movable reflective layer 14a and optical stack 16a, with the movable reflective layer 14a in a mechanically relaxed state, as illustrated by the pixel 12a in
In one embodiment, the processor 21 is also configured to communicate with an array driver 22. In one embodiment, the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a display array or panel 30. The cross section of the array illustrated in
For a display array having the hysteresis characteristics of
In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
FIGS. 4 and 5A-5B illustrate one possible actuation protocol for creating a display frame on the 3×3 array of
In the frame shown in
In the above-identified modulators of
At equilibrium, the electrostatic and mechanical spring forces will be equal:
where A is the area of the pixel, and ε0 is the permittivity of space, εdielectric is the relative dielectric constant of the dielectric material, k is the spring constant, V is the applied voltage, and xair is the maximum thickness of the air gap.
A graph of this equilibrium equation is shown in
After differentiation and a little simplification, this becomes:
Accordingly, it has been found that approximately for ⅓ of the total distance between the two electrodes, the members can be controlled. The important point is that the control voltage may extend from 0 either positive or negative for small excursions, as long as the point of instability is not exceeded. If the voltage exceeds the instability voltage, then the moveable membrane will snap down to the dielectric, and there will no longer be a one-to-one correspondence between applied voltage and the membrane position (at least until the voltage is brought close to zero again).
Assuming the spring for this interferometric modulator is arranged so its force is zero at a gap of 540 nm, the point of instability is at 540 nm*(1−⅓)=360 nm. Since the maximum brightness is at 440 nm, this interferometric modulator may be controlled in an analog fashion from minimum brightness (at 540 nm) to maximum brightness (at 440 nm) without concern for the snap-in instability point.
The interferometric modulator 700 also includes a color absorber 712, for example, to provide for brightness control. In general, the color absorber 712 substantially absorbs light except light at a peak color, or absorbs light except light within a pre-determined range of wavelengths. For example, referring to
For example, as shown in graph 800A, the interferometric modulator 700 in a relaxed position (ignoring the effect of the absorber 712), has a peak reflectance color of red (e.g., a color at a wavelength substantially near 700 nm). An associated color spectrum 806 centered at approximately 700 nm is illustrated. A visual brightness of color associated with the interferometric modulator 700 is a result of the combination of the color spectrum 804 (associated with the color absorber 712) and the color spectrum 806 (from the interferometric modulator 700 in a relaxed position and ignoring the effect of the absorber upon the interferometric modulator) as shown in graph 800B of
Referring to the example graphs of 802A and 804A of
Continuously variable control can be provided in a variety of ways. For example, referring again to
After deposition of the sacrificial layer, the process of forming the support posts for the mechanical layer begins. Accordingly, the sacrificial layer is etched (step 912). Referring to the example of
The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. The housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding, and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
The display 30 of exemplary display device 40 may be any of a variety of displays as described herein. In other embodiments, the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art. However, for purposes of describing the present embodiment, the display 30 includes an interferometric modulator display, as described herein.
The components of one embodiment of exemplary display device 40 are schematically illustrated in
The network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one or more devices over a network. In one embodiment the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21. The antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including IEEE 802.11(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals that are used to communicate within a wireless cell phone network. The transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. For example, the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
Processor 21 generally controls the overall operation of the exemplary display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
In one embodiment, the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40. Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
The driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
Typically, the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
In one embodiment, the invention is intended to avoid the problems created by using a bi-stable display and bi-stable display driver. In one embodiment, the driver controller 29, array driver 22, and display array 30 are appropriate for any of the types of displays described herein. For example, in one embodiment, driver controller 29 is a conventional display controller (e.g., an interferometric modulator controller). In another embodiment, array driver 22 is a conventional driver (e.g., an interferometric modulator display driver). In one embodiment, a driver controller 29 is integrated with the array driver 22. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In yet another embodiment, display array 30 is a typical display array (e.g., a display including an array of interferometric modulators).
The input device 48 allows a user to control the operation of the exemplary display device 40. In one embodiment, input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure- or heat-sensitive membrane. In one embodiment, the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.
Power supply 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment, power supply 50 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint. In another embodiment, power supply 50 is configured to receive power from a wall outlet.
In some embodiments control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some cases control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.
Various embodiments of an interferometric modulator display have been described. Nevertheless, one or ordinary skill in the art will readily recognize that various modifications may be made to the implementations, and any variation would be within the spirit and scope of the present invention. For example, process steps discussed above in connection with
Number | Name | Date | Kind |
---|---|---|---|
2677714 | Max | May 1954 | A |
3247392 | Thelen | Apr 1966 | A |
3443854 | Weiss | May 1969 | A |
3448334 | Frost | Jun 1969 | A |
3653741 | Marks | Apr 1972 | A |
3679313 | Rosenberg | Jul 1972 | A |
3725868 | Malmer, Jr. et al. | Apr 1973 | A |
4200472 | Chappell | Apr 1980 | A |
4377324 | Durand et al. | Mar 1983 | A |
4389096 | Hori et al. | Jun 1983 | A |
4400577 | Spear | Aug 1983 | A |
4441789 | Pohlack | Apr 1984 | A |
4441791 | Hornbeck | Apr 1984 | A |
4633031 | Todorof | Dec 1986 | A |
4790635 | Apsley | Dec 1988 | A |
4859060 | Katagari et al. | Aug 1989 | A |
4878741 | Fergason | Nov 1989 | A |
4929061 | Tominaga et al. | May 1990 | A |
4980775 | Brody | Dec 1990 | A |
4982184 | Kirkwood | Jan 1991 | A |
5022745 | Zahowski et al. | Jun 1991 | A |
5044736 | Jaskie et al. | Sep 1991 | A |
5136669 | Gerdt | Aug 1992 | A |
5142414 | Koehler | Aug 1992 | A |
5168406 | Nelson | Dec 1992 | A |
5192946 | Thompson et al. | Mar 1993 | A |
5233385 | Sampsell | Aug 1993 | A |
5287215 | Warde et al. | Feb 1994 | A |
5293272 | Jannson et al. | Mar 1994 | A |
5311360 | Bloom et al. | May 1994 | A |
5345322 | Fergason et al. | Sep 1994 | A |
5356488 | Hezel | Oct 1994 | A |
5365283 | Doherty et al. | Nov 1994 | A |
5398170 | Lee | Mar 1995 | A |
5401983 | Jokerst et al. | Mar 1995 | A |
5448314 | Heimbuch et al. | Sep 1995 | A |
5452024 | Sampsell | Sep 1995 | A |
5517347 | Sampsell | May 1996 | A |
5550373 | Cole et al. | Aug 1996 | A |
5589852 | Thompson et al. | Dec 1996 | A |
5619059 | Li et al. | Apr 1997 | A |
5619365 | Rhoades et al. | Apr 1997 | A |
5619366 | Rhoads et al. | Apr 1997 | A |
5633739 | Matsuyama | May 1997 | A |
5638084 | Kalt | Jun 1997 | A |
5710656 | Goossen | Jan 1998 | A |
5737115 | Mackinlay et al. | Apr 1998 | A |
5739945 | Tayebati | Apr 1998 | A |
5745281 | Yi et al. | Apr 1998 | A |
5754260 | Ooi | May 1998 | A |
5771321 | Stern | Jun 1998 | A |
5782995 | Nanya et al. | Jul 1998 | A |
5805117 | Mazurek | Sep 1998 | A |
5815229 | Shapiro et al. | Sep 1998 | A |
5835255 | Miles | Nov 1998 | A |
5853310 | Nishimura | Dec 1998 | A |
5868480 | Zeinali | Feb 1999 | A |
5886688 | Fifield | Mar 1999 | A |
5892598 | Asakawa et al. | Apr 1999 | A |
5914804 | Goosen et al. | Jun 1999 | A |
5933183 | Enomoto et al. | Aug 1999 | A |
5959763 | Bozler et al. | Sep 1999 | A |
5986796 | Miles et al. | Nov 1999 | A |
5991073 | Woodgate | Nov 1999 | A |
6028690 | Carter et al. | Feb 2000 | A |
6031653 | Wang et al. | Feb 2000 | A |
6040937 | Miles | Mar 2000 | A |
6046840 | Huibers | Apr 2000 | A |
6055090 | Miles | Apr 2000 | A |
6057878 | Ogiwara | May 2000 | A |
6088102 | Manhart | Jul 2000 | A |
6113239 | Sampsell et al. | Sep 2000 | A |
6147728 | Okumura | Nov 2000 | A |
6195196 | Kimura et al. | Feb 2001 | B1 |
6201633 | Peeters et al. | Mar 2001 | B1 |
6213615 | Siitari | Apr 2001 | B1 |
6243149 | Swanson et al. | Jun 2001 | B1 |
6282010 | Sulzbach | Aug 2001 | B1 |
6285424 | Yoshida | Sep 2001 | B1 |
6288824 | Kastalsky | Sep 2001 | B1 |
6300558 | Takamoto | Oct 2001 | B1 |
6301000 | Johnson | Oct 2001 | B1 |
6323834 | Colgan et al. | Nov 2001 | B1 |
6342970 | Sperger et al. | Jan 2002 | B1 |
6356378 | Huibers | Mar 2002 | B1 |
6381022 | Zavracky et al. | Apr 2002 | B1 |
6400738 | Tucker | Jun 2002 | B1 |
6466358 | Tew | Oct 2002 | B2 |
6483613 | Woodgate et al. | Nov 2002 | B1 |
6522794 | Bischel et al. | Feb 2003 | B1 |
6549338 | Wolverton et al. | Apr 2003 | B1 |
6570584 | Cok et al. | May 2003 | B1 |
6574033 | Chui | Jun 2003 | B1 |
6597419 | Okada et al. | Jul 2003 | B1 |
6597490 | Tayebati | Jul 2003 | B2 |
6636322 | Terashita | Oct 2003 | B1 |
6643069 | Dewald | Nov 2003 | B2 |
6650455 | Miles | Nov 2003 | B2 |
6657611 | Sterken | Dec 2003 | B1 |
6674562 | Miles | Jan 2004 | B1 |
6680792 | Miles | Jan 2004 | B2 |
6738194 | Ramirez et al. | May 2004 | B1 |
6747785 | Chen et al. | Jun 2004 | B2 |
6760146 | Ikeda et al. | Jul 2004 | B2 |
6768555 | Chen et al. | Jul 2004 | B2 |
6773126 | Hatjasalo et al. | Aug 2004 | B1 |
6798469 | Kimura | Sep 2004 | B2 |
6806924 | Niiyama | Oct 2004 | B2 |
6811267 | Allen et al. | Nov 2004 | B1 |
6822780 | Long | Nov 2004 | B1 |
6825969 | Chen et al. | Nov 2004 | B2 |
6841787 | Almogy | Jan 2005 | B2 |
6862029 | D'Souza et al. | Mar 2005 | B1 |
6867896 | Miles | Mar 2005 | B2 |
6870581 | Li et al. | Mar 2005 | B2 |
6880959 | Houston | Apr 2005 | B2 |
6882458 | Lin et al. | Apr 2005 | B2 |
6912022 | Lin et al. | Jun 2005 | B2 |
6930816 | Mochizuki | Aug 2005 | B2 |
6967779 | Fadel | Nov 2005 | B2 |
6982820 | Tsai | Jan 2006 | B2 |
6995890 | Lin et al. | Feb 2006 | B2 |
6999225 | Lin et al. | Feb 2006 | B2 |
6999236 | Lin et al. | Feb 2006 | B2 |
7002726 | Patel | Feb 2006 | B2 |
7006272 | Tsai | Feb 2006 | B2 |
7009754 | Huibers | Mar 2006 | B2 |
7016095 | Lin | Mar 2006 | B2 |
7025464 | Beeson et al. | Apr 2006 | B2 |
7034981 | Makigaki | Apr 2006 | B2 |
7038752 | Lin | May 2006 | B2 |
7042643 | Miles | May 2006 | B2 |
7072093 | Piehl et al. | Jul 2006 | B2 |
7072096 | Holman et al. | Jul 2006 | B2 |
7110158 | Miles | Sep 2006 | B2 |
7113339 | Taguchi | Sep 2006 | B2 |
7123216 | Miles | Oct 2006 | B1 |
7126738 | Miles | Oct 2006 | B2 |
7138984 | Miles | Nov 2006 | B1 |
7142347 | Islam | Nov 2006 | B2 |
7161728 | Sampsell et al. | Jan 2007 | B2 |
7161730 | Floyd et al. | Jan 2007 | B2 |
7172915 | Lin et al. | Feb 2007 | B2 |
7176861 | Dedene et al. | Feb 2007 | B2 |
7187489 | Miles | Mar 2007 | B2 |
7198973 | Lin et al. | Apr 2007 | B2 |
7218429 | Batchko | May 2007 | B2 |
7271790 | Hudson et al. | Sep 2007 | B2 |
7304784 | Chui | Dec 2007 | B2 |
7342705 | Chui | Mar 2008 | B2 |
7342709 | Lin | Mar 2008 | B2 |
7372449 | Kodama et al. | May 2008 | B2 |
7385748 | Miles | Jun 2008 | B2 |
7483197 | Miles | Jan 2009 | B2 |
7489428 | Sampsell | Feb 2009 | B2 |
7525730 | Floyd | Apr 2009 | B2 |
7595811 | Matsuda | Sep 2009 | B2 |
7603001 | Wang | Oct 2009 | B2 |
7660028 | Lan | Feb 2010 | B2 |
7701029 | Mabuchi | Apr 2010 | B2 |
7710632 | Cummings | May 2010 | B2 |
7719500 | Chui | May 2010 | B2 |
7807488 | Gally | Oct 2010 | B2 |
7855824 | Gally | Dec 2010 | B2 |
7898521 | Gally | Mar 2011 | B2 |
20010049061 | Nakagaki et al. | Dec 2001 | A1 |
20020006044 | Harbers | Jan 2002 | A1 |
20020015215 | Miles | Feb 2002 | A1 |
20020050286 | Kubota | May 2002 | A1 |
20020544244 | Miles | May 2002 | |
20020075555 | Miles | Jun 2002 | A1 |
20020080465 | Han | Jun 2002 | A1 |
20020126364 | Miles | Sep 2002 | A1 |
20020149584 | Simpson | Oct 2002 | A1 |
20020154215 | Schechterman | Oct 2002 | A1 |
20020191130 | Liang et al. | Dec 2002 | A1 |
20030006730 | Tachibana | Jan 2003 | A1 |
20030011864 | Flanders | Jan 2003 | A1 |
20030043157 | Miles | Mar 2003 | A1 |
20030072070 | Miles | Apr 2003 | A1 |
20030083429 | Smith | May 2003 | A1 |
20030107692 | Sekiguchi | Jun 2003 | A1 |
20030151821 | Favalora et al. | Aug 2003 | A1 |
20030160919 | Yutaka et al. | Aug 2003 | A1 |
20030161040 | Ishii | Aug 2003 | A1 |
20030169385 | Okuwaki | Sep 2003 | A1 |
20030179383 | Chen et al. | Sep 2003 | A1 |
20030206281 | Jain | Nov 2003 | A1 |
20030210363 | Yasukawa et al. | Nov 2003 | A1 |
20030213514 | Ortabasi | Nov 2003 | A1 |
20030214621 | Kim et al. | Nov 2003 | A1 |
20040017599 | Yang | Jan 2004 | A1 |
20040027315 | Senda et al. | Feb 2004 | A1 |
20040051929 | Sampsell et al. | Mar 2004 | A1 |
20040066477 | Morimoto et al. | Apr 2004 | A1 |
20040070711 | Wen et al. | Apr 2004 | A1 |
20040080807 | Chen et al. | Apr 2004 | A1 |
20040080938 | Holman | Apr 2004 | A1 |
20040100594 | Huibers | May 2004 | A1 |
20040114242 | Sharp | Jun 2004 | A1 |
20040115339 | Ito | Jun 2004 | A1 |
20040125048 | Toshihiro et al. | Jul 2004 | A1 |
20040125281 | Lin et al. | Jul 2004 | A1 |
20040125282 | Lin et al. | Jul 2004 | A1 |
20040174583 | Chen et al. | Sep 2004 | A1 |
20040188599 | Viktorovitch et al. | Sep 2004 | A1 |
20040209195 | Lin | Oct 2004 | A1 |
20040217919 | Piehl et al. | Nov 2004 | A1 |
20040218251 | Piehl et al. | Nov 2004 | A1 |
20040233503 | Kimura | Nov 2004 | A1 |
20040240032 | Miles | Dec 2004 | A1 |
20050002082 | Miles | Jan 2005 | A1 |
20050035699 | Tsai | Feb 2005 | A1 |
20050036095 | Yeh et al. | Feb 2005 | A1 |
20050036192 | Lin et al. | Feb 2005 | A1 |
20050042117 | Lin | Feb 2005 | A1 |
20050057442 | Way | Mar 2005 | A1 |
20050069209 | Damera-Venkata et al. | Mar 2005 | A1 |
20050083352 | Higgins | Apr 2005 | A1 |
20050117623 | Shchukin | Jun 2005 | A1 |
20050120553 | Brown | Jun 2005 | A1 |
20050179977 | Chui et al. | Aug 2005 | A1 |
20050195462 | Lin | Sep 2005 | A1 |
20050212738 | Gally | Sep 2005 | A1 |
20050286113 | Miles | Dec 2005 | A1 |
20060001942 | Chui | Jan 2006 | A1 |
20060022966 | Mar | Feb 2006 | A1 |
20060028708 | Miles | Feb 2006 | A1 |
20060065940 | Kothari | Mar 2006 | A1 |
20060066541 | Gally et al. | Mar 2006 | A1 |
20060066557 | Floyd | Mar 2006 | A1 |
20060066641 | Cummings et al. | Mar 2006 | A1 |
20060066935 | Cummings et al. | Mar 2006 | A1 |
20060067600 | Gally et al. | Mar 2006 | A1 |
20060067633 | Gally et al. | Mar 2006 | A1 |
20060067651 | Chui | Mar 2006 | A1 |
20060077122 | Gally et al. | Apr 2006 | A1 |
20060077124 | Gally et al. | Apr 2006 | A1 |
20060077125 | Floyd | Apr 2006 | A1 |
20060077127 | Sampsell et al. | Apr 2006 | A1 |
20060077148 | Gally et al. | Apr 2006 | A1 |
20060077149 | Gally et al. | Apr 2006 | A1 |
20060077512 | Cummings | Apr 2006 | A1 |
20060103912 | Katoh et al. | May 2006 | A1 |
20060130889 | Li et al. | Jun 2006 | A1 |
20060180886 | Tsang | Aug 2006 | A1 |
20060201546 | Yokoyama | Sep 2006 | A1 |
20060250337 | Miles | Nov 2006 | A1 |
20060274243 | Iijima et al. | Dec 2006 | A1 |
20060274400 | Miles | Dec 2006 | A1 |
20060286381 | Naito | Dec 2006 | A1 |
20070031097 | Heikenfeld | Feb 2007 | A1 |
20070064446 | Sharma et al. | Mar 2007 | A1 |
20070113887 | Laih | May 2007 | A1 |
20070115415 | Piehl | May 2007 | A1 |
20070132843 | Miles | Jun 2007 | A1 |
20070206267 | Tung | Sep 2007 | A1 |
20070235072 | Bermel | Oct 2007 | A1 |
20070253054 | Miles | Nov 2007 | A1 |
20080112031 | Gally | May 2008 | A1 |
20080112039 | Chui | May 2008 | A1 |
20080151347 | Chui | Jun 2008 | A1 |
20080288225 | Djordjev | Nov 2008 | A1 |
20090073540 | Kothari | Mar 2009 | A1 |
20090086301 | Gally | Apr 2009 | A1 |
20090101192 | Kothari | Apr 2009 | A1 |
20090151771 | Kothari | Jun 2009 | A1 |
20090231524 | Tanaka | Sep 2009 | A1 |
20090242024 | Kothari | Oct 2009 | A1 |
20090293955 | Kothari | Dec 2009 | A1 |
20090296191 | Floyd | Dec 2009 | A1 |
20100096006 | Griffiths | Apr 2010 | A1 |
20100096011 | Griffiths | Apr 2010 | A1 |
20100214642 | Miles | Aug 2010 | A1 |
20100245370 | Narayanan | Sep 2010 | A1 |
20100245975 | Cummings | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
1409157 | Apr 2003 | CN |
1517743 | Aug 2004 | CN |
196 22 748 | Dec 1997 | DE |
103 29 917 | Feb 2005 | DE |
0 223 136 | May 1987 | EP |
0 330 361 | Aug 1989 | EP |
0 366 117 | May 1990 | EP |
0 389 031 | Sep 1990 | EP |
0 667 548 | Aug 1995 | EP |
0 695 959 | Feb 1996 | EP |
0 786 911 | Jul 1997 | EP |
0 822 441 | Feb 1998 | EP |
0 830 032 | Mar 1998 | EP |
0 855 745 | Jul 1998 | EP |
1 003 062 | May 2000 | EP |
1 014 161 | Jun 2000 | EP |
1 251 454 | Apr 2002 | EP |
1 205 782 | May 2002 | EP |
1 298 635 | Apr 2003 | EP |
1 336 876 | Aug 2003 | EP |
1 341 025 | Sep 2003 | EP |
1 389 775 | Feb 2004 | EP |
1 413 543 | Apr 2004 | EP |
1 640 313 | Mar 2006 | EP |
1 640 767 | Mar 2006 | EP |
1 640 779 | Mar 2006 | EP |
1 670 065 | Jun 2006 | EP |
1 767 981 | Mar 2007 | EP |
2 051 124 | Apr 2009 | EP |
2 256 537 | Dec 2010 | EP |
2 760 559 | Sep 1998 | FR |
2760559 | Sep 1998 | FR |
2 278 222 | Nov 1994 | GB |
2 315 356 | Jan 1998 | GB |
2321532 | Jul 1998 | GB |
02-068513 | Mar 1990 | JP |
02-151079 | Jun 1990 | JP |
04-081816 | Mar 1992 | JP |
04-238321 | Aug 1992 | JP |
05-281479 | Oct 1993 | JP |
08 18990 | Jan 1996 | JP |
08018990 | Jan 1996 | JP |
09 189869 | Jul 1997 | JP |
09-189910 | Jul 1997 | JP |
09 281917 | Oct 1997 | JP |
10 500224 | Jan 1998 | JP |
10 319877 | Dec 1998 | JP |
11 002712 | Jan 1999 | JP |
11 174234 | Jul 1999 | JP |
11-211999 | Aug 1999 | JP |
11 211999 | Aug 1999 | JP |
11-295726 | Oct 1999 | JP |
2000 500245 | Jan 2000 | JP |
2002-149116 | May 2000 | JP |
2000 514568 | Oct 2000 | JP |
2001343514 | Dec 2001 | JP |
2001-345458 | Dec 2001 | JP |
2002 062505 | Feb 2002 | JP |
2002-062505 | Feb 2002 | JP |
2002-174780 | Jun 2002 | JP |
2002-229023 | Aug 2002 | JP |
2002-287047 | Oct 2002 | JP |
2003-021821 | Jan 2003 | JP |
2003 255324 | Sep 2003 | JP |
2003 255379 | Sep 2003 | JP |
2003 295160 | Oct 2003 | JP |
2003-315732 | Nov 2003 | JP |
2004-111278 | Apr 2004 | JP |
2004-117815 | Apr 2004 | JP |
2004-206049 | Jul 2004 | JP |
2004-212673 | Jul 2004 | JP |
2004 212922 | Jul 2004 | JP |
2004-534280 | Nov 2004 | JP |
2005-527861 | Sep 2005 | JP |
2005-308871 | Nov 2005 | JP |
2008-224930 | Sep 2008 | JP |
2002 010322 | Feb 2002 | KR |
2003-0081662 | Oct 2003 | KR |
594155 | Jun 2004 | TW |
WO 9530924 | Nov 1995 | WO |
WO 9608833 | Mar 1996 | WO |
WO 9717628 | May 1997 | WO |
WO 9744707 | Nov 1997 | WO |
WO 9746908 | Dec 1997 | WO |
WO 9952006 | Oct 1999 | WO |
WO 9967680 | Dec 1999 | WO |
WO 0181994 | Nov 2001 | WO |
WO 0224570 | Mar 2002 | WO |
WO 02071132 | Sep 2002 | WO |
WO 03007049 | Jan 2003 | WO |
WO 03056876 | Jul 2003 | WO |
WO 03073151 | Sep 2003 | WO |
WO 03100756 | Dec 2003 | WO |
WO 2004006003 | Jan 2004 | WO |
WO 2004068460 | Aug 2004 | WO |
WO 2006036519 | Apr 2006 | WO |
WO 2006036524 | Apr 2006 | WO |
WO 2006036540 | Apr 2006 | WO |
WO 2007127046 | Nov 2007 | WO |
WO 2007142978 | Dec 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20070247704 A1 | Oct 2007 | US |