1. Field of the Invention
This invention relates to cellulose fibers, and more particularly, to a method of reducing impurities in cellulose fibers. This invention also discloses the formulations, methods of manufacture and final products of cellulose fiber reinforced cement composite materials using low impurity cellulose fibers.
2. Description of the Related Art
Fiber-reinforced products such as building sheets, panels, planks, and roofing material have been used in the building construction for more than one hundred years. The reinforcement fibers used in such building products include asbestos fibers, cellulose fibers such as those described in Australian Patent No. 515151 and U.S. Pat. No. 6,030,447, the entirety of which is hereby incorporated by reference, metal fibers, and glass fibers and other natural and synthetic fibers. Presently, cellulose is one of the preferred fibers used in most commercial fiber-reinforced building materials because cellulose fiber is an effective, low cost, recyclable natural product compatible with most conventional fiber cement manufacturing processes, including refining and autoclaving.
However, the properties and performance characteristics of most fiber reinforced cement composite materials are highly dependent on the quality of the fibers used. For example, cellulose fibers sometimes contain impurities that can adversely affect the fiber cement composite properties. In particular, harmful organic compounds are sometimes trapped inside the pores and cavities of the cellulose pulp during the pulping process. These organic compounds include lignin and other aromatic components, wood sugar compounds including hextoses (glucose, mannose, and galactose) and pentoses (xylose and arabinose), wood sugar derivatives such as gluconic acid and mannonic acids, fatty acids, resin acids, other organic compounds from wood including extractives and degradation fragments of cellulose, hemicellulose and lignin. In addition to organic compounds, the impurities may also include small amounts of inorganic compounds that are oxidized. These impurities are sometimes collectively referred to as Chemical Oxygen Demand (COD) components.
Each COD component has a certain degree of negative impact on fiber cement reactions, particularly the cement hydration process. The collective effect of all COD compounds released from the pulp in the manufacture of fiber cement composite materials can significantly weaken the bonding between cellulose fibers and other inorganic ingredients in the fiber cement matrix, in which cellulose fibers are typically used as the reinforcement agent. This phenomenon is sometimes referred to as cement poisoning. Moreover, accumulation of the COD impurities released from the pulp can severely contaminate the process water during the manufacture of the fiber reinforced cement composite materials. These adverse effects associated with COD impurities can ultimately result in failure of the final fiber cement products.
To address these problems, most conventional pulp manufacturing processes include a series of cleaning steps that are designed to remove residual chemicals and degraded wood components contained in the pulp. During these cleaning steps, the pulp is typically washed in a series of vacuum, rotary or pressure brown stock washers at a temperature of about 55° C. to 65° C. to remove the residual chemicals from the pulp. However, these processes often fail to remove all COD impurities from the cellulose pulp because of the relatively short retention time and limited washing efficiency. In many cases, a large amount of COD substances remains trapped inside the cavities (lumens) and pores of the fiber cell walls and are carried over to the fiber cement manufacturing processes, which can detrimentally affect the properties of the final product and severely contaminate the process water.
Hence, from the foregoing, it will be appreciated that there is a need for a process that removes substantially all impurities from cellulose fibers during the pulping process. There is also a need for a process of manufacturing low impurity and high performance cellulose fibers for fiber reinforced cement composite materials. To this end, there is a particular need for a cellulose pulp manufacturing process that significantly reduces the amount of COD components in the pulp and can be implemented by using conventional pulp manufacturing equipment.
In one aspect, the preferred embodiments of the present invention disclose a process of making low impurity and high performance fibers for cellulose fiber reinforced cement composite materials. The preferred process comprises processing the fibers in an aqueous solution for a predetermined retention time under elevated temperature conditions and providing agitation to the solution so as to facilitate diffusion of impurities from the pores and lumens of the fibers. In one embodiment, the fibers are soaked and washed counter-currently in the solution. Preferably, the solution temperature is between about 65° C. to 120° C. Preferably, the retention time is between about 1 to 36 hours. In one embodiment, processing the fibers comprises soaking the fibers in a series of washing systems, preferably, for about 30 minutes to 2 hours in each of the series of washing systems.
In another embodiment, processing the fibers comprises soaking the fibers in up to six reactors. The reactors may be bleaching towers or a series of continuous plug flow bleaching reactors. The fibers can be soaked in a bleaching reactors followed by soaking in a bleached stock washer. Preferably, the process removes a large portion of the impurities, such as COD compounds, from the pulps. In one embodiment, processing the fibers comprises introducing at least one chemical to the solution, wherein the chemical reacts with the COD compounds and causes the compounds to become more soluble in the aqueous solution. The chemicals can be selected from the group consisting of chemicals comprising oxygen, ozone, hydrogen peroxide, and mixtures thereof. Furthermore, the fibers can be washed in a brown stock washer system, preferably at an elevated temperature of greater than about 65° C., prior to processing the fibers. Preferably, the pulps are maintained at a pulp consistency of about 1% to 30%. During the prolonged soaking cycles, impurities in the pulps will diffuse from inside of the fiber cell walls driven by the concentration gradients. Furthermore, elevated temperatures also significantly increase the diffusion transportation rate of the impurities.
The process of the preferred embodiments can be carried out using various schemes and equipment systems such as existing bleaching and washing system in most pulp mills. Preferably, the washing systems are selected from the group consisting of washers, storage tanks, reactors, mixers, agitators, pumps, centrifuges, and filter presses. The washing systems may include bleaching reactors, bleached stock washers, pulp transport pumps, pulp dispersion/diffusion screw feeders, stock mixers and agitators, bleached stock storage towers, and bleached stock deckers.
The process described herein is particularly innovative because the conventional wisdom in the fiber processing industry actually teaches away from the use of high temperature, lengthy soaking cycles and mechanical agitation in cleaning pulps for the applications in the fiber cement composite material. It is generally believed that high temperature, prolonged soaking, and mechanical actions will reduce the fiber strengths, such as tensile strengths. Contrary to customary wisdom, preferred embodiments of this invention show that washing pulps at an elevated temperature under preferred conditions can effectively remove more impurities from the fiber pulps without compromising the fiber strength and other desirable fiber properties. For example, COD contents in the pulps processed by the preferred methods can be reduced by more than about 40%, resulting in a COD content of less than about 5 kg/ton of oven dry fiber. Application of the high purity fiber with a COD content of less than about 5 kg/ton of pulp in the manufacture of fiber reinforced cement composite materials actually improves the physical and mechanical properties of the fiber cement composite materials, such as modulus of rupture (MOR), modulus of elasticity (MOE), ultimate strain and toughness energy. Furthermore, use of the low COD fibers can also greatly reduce contamination of the process water during the manufacture of fiber reinforced cement composite materials.
Advantageously, the process of the preferred embodiments provides a cost effective method of removing substantially all impurities, such as COD components, from the fibers. The process can be performed using existing equipment available in most pulp mills. Furthermore, application of this process in the manufacture of fiber cement grade pulps can reduce the COD content by up to one half or more without degrading the physical and mechanical properties of the fibers. Use of the low COD pulp in the manufacture of fiber cement composite materials will result in less contamination to the process water and reduce the fresh water usage.
The preferred embodiments of the present invention also disclose a formulation for making fiber reinforced cement composite materials with low COD fibers. One preferred formulation of the present invention is as follows:
The preferred embodiments of the present invention disclose a method of manufacturing a fiber reinforced composite material using low COD fibers. The first step of this method is to prepare a low COD fiber by reducing impurities in cellulose fibers. This is preferably accomplished by treating the fibers in an aqueous solution for a predetermined reaction time, while maintaining the solution temperature greater than about 65° C., and providing agitation to the solution so as to facilitate diffusion of impurities from the pores and lumens of the fibers. The method of manufacturing fiber cement in accordance with the embodiments preferably includes the steps identified above, and the following additional steps:
In another aspect of the present invention, a pulping process is provided. This process comprises providing a delignified fiber substance and converting the fiber substance into fiber pulps. The pulps are washed at elevated temperatures greater than about 65° C. in a manner so as to remove a large portion of COD components from the pulps. The pulps are processed in additional washing cycles to remove substantially all remaining COD impurities.
The advantages of using the low COD fibers in the manufacture of fiber reinforced cement composite materials in accordance with the preferred formulations and processes include but are not limited to:
These and other objectives and advantages will become apparent from the following description taken in conjunction with the accompanying drawings.
The preferred embodiments of the present invention describe the preparation and application of low impurity fibers in cementitious fiber reinforced composite materials. These embodiments encompass not only the method of removing COD components from fibers, but also the formulation and the methods of manufacture of fiber reinforced composite materials formed from low COD and high purity fibers, as well as the properties of the final products. The treatment to remove impurities from pulps can also be implemented in conjunction with other fiber treatments. Further details on related chemical treatments of fibers are found in Applicant's U.S. Pat. No. 7,815,841 entitled FIBER CEMENT COMPOSITE MATERIALS USING SIZED CELLULOSE FIBERS; U.S. Pat. No. 6,777,103 FIBER CEMENT COMPOSITE MATERIALS USING BIOCIDE TREATED DURABLE CELLULOSE FIBERS; and U.S. Pat. No. 6,676,744 FIBER CEMENT COMPOSITE MATERIALS USING CELLULOSE FIBERS LOADED WITH INORGANIC AND/OR ORGANIC SUBSTANCES, the entirety of each of these applications being hereby incorporated by reference. It will be appreciated that the aspects of the present invention are not applicable solely to cellulose fiber reinforced cementitious products, and accordingly, the techniques described herein may be applied to building materials reinforced with other fibers in non-cement products as well.
As shown in
As
Following the washing step 108, the process 100 further includes an additional diffusion washing process in step 110 in which the pulp is subject to further intensive washing to remove substantially all of the remaining impurities, such as COD components, that have not been removed by the brown stock washers. Preferably, the pulp is subject to an intensive counter-current washing scheme at normal or elevated temperatures with mild mechanical agitations. The extensive washing can be carried out by using a variety of different washing systems such as washers, storage tanks, reactors, mixers, agitators, pumps, centrifuges, filter presses or any combinations of these systems. In a preferred embodiment, the washing is performed using the existing equipment in the bleaching plants of most fiber cement pulp mills. In particular, the equipment used may include, but is not limited to, the following:
Preferably, heated fresh water is introduced to the washer system counter-currently to minimize water usage and maximize washing efficiency. Furthermore, the COD containing spent water from the washers is preferably transported to a water treatment plant or chemical recovery system.
In one embodiment, step 110 comprises soaking the pulp in a series of continuous plug flow or semi-continuous bleaching reactors for a prolonged duration at an elevated temperature between about 65° C. to 120° C. for a retention time of between about 30 minutes to 2 hours in each of the reactors followed by a dewatering process after each reactor. Preferably, each reactor is followed by a washing system to remove the COD containing water. The cumulative retention time of the pulp in all reactors preferably does not exceed about 36 hours, more preferably between about 2 to 30 hours. This allows substantially all CODs and other impurities to diffuse out of the fibers without compromising the fiber strength. Furthermore, the pulp in the reactors is preferably maintained at a pulp consistency of about 1% to 30%. Advantageously, the high temperature washing coupled with the prolonged retention time allows the remaining CODs and other impurities to diffuse out from inside of the fiber cell walls and lumens. Furthermore, mechanical agitation provided by the bleaching reactors also facilitates the removal of the COD components and other impurities from the pulp.
In another embodiment, step 110 comprises processing the pulp through a bleached stock washer followed by one or more bleaching reactors. The bleached stock washer may be vacuum, pressure, rotary or diffusion types and is utilized to further separate COD compounds from the fiber. The bleached stock reactor may include those used for oxygen delignification, chlorination, alkaline extraction, chloride dioxide bleaching, hyperchlorite bleaching, ozone bleaching, hydrogen peroxide bleaching, sodium peroxide bleaching and the like. To increase the efficiency of COD removal, the pulp is preferably processed through multiple pairs of bleaching reactors and bleached stock washers in series and/or in parallel.
In yet another embodiment, chemicals are introduced into the pulp slurry during the extensive washing process of step 110 to facilitate the removal of the COD impurities during washing. Preferably, the chemical(s) selectively react with the COD components and break the components down into smaller fragments. The chemicals may comprise oxygen, ozone, hydrogen peroxide, or any others that are capable of reacting with COD compounds and causing the compounds to become more soluble in aqueous solutions. Advantageously, the addition of these chemicals in the extensive washing process of step 110 significantly increases the efficiency of COD removal. Furthermore, the extensive washing process of step 110 can be applied to a variety of different pulping processes including, but not limited to:
Following the extensive washing process of step 110, the pulp is transported to pulp machines to form pulp laps or rolls in step 112 for making fiber reinforced cement composite materials.
Table 1 illustrates a comparison between the fiber properties of pulp processed by the pulp manufacturing process of the preferred embodiments and those processed by conventional regular temperature washing techniques. In this particular example, the wood species was predominantly Douglas fir (>90%) and the pulping process used was Kraft. For pulp samples made in accordance with the preferred process, six bleaching reactors including oxygen delignification and peroxide bleaching reactors and the corresponding washer systems in series were used to process the pulp following the brown stock washing. No chemicals were introduced during the extensive washing process. The total retention time in the extensive washing process was about 12 hours and the washing temperature was between about 90° C. to 98° C. For pulp samples made in accordance with the conventional washing techniques, the same washing cycle was used with the same retention time of 12 hours. However, the washing temperature was between about 55° C. to 60° C.
As shown in Table 1, the extensive washing at an elevated temperature reduces the COD content and sodium content of the pulp by about 50%. The COD and sodium contents are general indications of pulp cleanliness or extensiveness of washing. The COD content was measured by first dispersing the fiber into 0.01N NaOH solution, blending the solution for about 10 minutes at about 3200 rpm, then filtering the pulp with Watman #3 qualitative filter paper to obtain the filtrate, and measuring the COD content of the filtrate in accordance with Hach Method 8000 (dichromate reactor digestion and colorimetric measurement). The sodium content was measured in accordance with TAPPI method T 266 om-88 (TAPPI: Technical Association of Pulp & Paper Industry, USA).
Furthermore, as Table 1 shows, the extensive washing process of the preferred embodiment did not compromise critical fiber properties such as fiber length and fiber strength as the values for these two properties remain substantially the same for samples processed through the extensive washing process at the elevated temperature and those processed through the conventional washing cycles. The weighted average fiber length was measured by FS-200 (a fiber analyzer manufactured by Valmet). The zero span tensile (ZST) fiber strength was tested in accordance with TAPPI method T231 cm-85. Advantageously, the pulping process of the preferred embodiments can be applied to the manufacture of fiber cement grade pulps and can reduce the COD content of the fiber pulps by about 50% or more without adversely affecting key fiber physical and mechanical properties. It will be appreciated that pulp COD content can be reduced by about 20% or more under appropriate conditions. Furthermore, the pulp manufacturing process can be implemented in a cost-effective manner using existing equipment and processes in most fiber cement processing mills.
One preferred formulation of the fiber reinforced composite material comprises a cementitious binder, an aggregate, low COD and high purity cellulose fibers, density modifiers, and various additives to improve different material properties. It will be appreciated that not all of these components are necessary to formulate a suitable building product, and thus, in certain embodiments, the formulation may simply comprise cementitious binder and low COD cellulose fibers. Most of the embodiments described herein can be encompassed by the following formulation:
The cementitious binder is preferably Portland cement but can also be, but is not limited to, high alumina cement, lime, high phosphate cement, and ground granulated blast furnace slag cement, or mixtures thereof.
The aggregate is preferably ground silica sand but can also be, but is not limited to, amorphous silica, micro silica, geothermal silica, diatomaceous earth, coal combustion fly and bottom ashes, rice hull ash, blast furnace slag, granulated slag, steel slag, mineral oxides, mineral hydroxides, clays, magnasite or dolomite, metal oxides and hydroxides, and polymeric beads, or mixtures thereof.
The density modifiers can be organic and/or inorganic lightweight materials with a density of less than about 1.5 g/cm3. The density modifiers may include plastic materials, expanded polystyrene, other foamed polymer materials, glass and ceramic materials, calcium silicate hydrates, microspheres and volcanic ashes including perlite, pumice, shirasu, zeolites in expanded forms. The density modifiers can be natural or synthetic materials.
The additives can include, but are not limited to, viscosity modifiers, fire retardant, waterproofing agents, silica fume, geothermal silica, thickeners, pigments, colorants, plasticizers, dispersants, forming agents, flocculent, drainage aids, wet and dry strength aids, silicone materials, aluminum powder, clay, kaolin, alumina trihydrate, mica, metakaolin, calcium carbonate, wollastonite, and polymeric resin emulsion, or mixtures thereof.
The low COD and high purity cellulose fibers are preferably individualized fibers, and are unrefined/unfibrillated or refined/fibrillated cellulose pulps from sources, including but not limited to bleached, unbleached, semi-bleached cellulose pulp produced by pulping processes such as Kraft, Kraft-AQ, oxygen delignification, organic solvent pulping, sulfite pulping, steam explosion pulping or any other pulping techniques. The cellulose pulps can be made of softwood, hardwood, agricultural raw materials, recycled waste paper or any other forms of lignocellulosic materials.
Preferably, the low COD and high purity fibers have a freeness of 150 to 600 degrees of Canadian Standard Freeness (C SF) in accordance with TAPPI method T 227 om-99. The cement and silica preferably have surface areas of about 250 to 400 m2/kg and about 300 to 450 m2/kg, respectively. The surface area for both the cement and silica is tested in accordance with ASTM C204-96a.
Test Results—Mechanical & Physical Properties
Applications of low COD and high purity fibers in fiber reinforced composite materials desirably improve the mechanical and physical properties of the final building product. Fiber cement products using low COD and high purity cellulose fibers have improved physical and mechanical properties.
Table 2 above provides an illustrative comparison of various mechanical and physical properties of fiber cement products made with formulations that incorporate low COD fibers made in accordance with preferred embodiments and those that use conventional cellulose fibers. Prototype samples of fiber cement materials are produced based on two equivalent formulations (A and B). An equivalent formulation is herein defined as one in which the preferred low COD fibers are displaced by an equivalent percentage of conventional cellulose fibers. Formulations A and B each comprises about 35% Portland cement, about 55% silica and about 10% fibers. Formulation A contains high COD fibers while Formulation B incorporates low COD fibers. Other key properties for the fibers were the same for both formulations: fiber length, about 2.58 mm; Kappa number, about 26; and freeness, about 472 CSF. The Kappa and freeness were measured in accordance with TAPPI method T236 and T 227 om-99, respectively. Both fibers were made from the wood species predominately Douglas fir (>90%) by Kraft process. The fibers were first refined to the pre-determined freeness at 4% consistency, mixed with other ingredients and formed into articles. The articles were then pre-cured at ambient temperature for 12 hours and then autoclaved for 12 hours at 180° C. All mechanical properties were tested under the wet condition in accordance with ASTM (American Standard Test Method) C1185-98a entitled “Standard Test Methods of Sampling and Testing Non-Asbestos Fiber-Cement Flat Sheet, Roofing and Siding Shingles, and Clapboards.”
Table 2 shows that incorporation of low COD fibers in the fiber cement matrix can significantly improve the key physical and mechanical properties of the fiber cement composite materials as compared to samples made with an equivalent formulation that does not contain low COD fibers. For example, the low COD fibers improve the modulus of rupture (MOR) by about 44%, modulus of elasticity (MOE) by about 46%, ultimate strain by about 54%, and toughness by about 40%.
It will be appreciated that by varying the washing and/or other process conditions, and accordingly by lowering the COD content in the fibers, the improvement in these and other properties can be selectively controlled. Thus, in one embodiment, the low COD fibers can improve the MOR by about 10% or more, more preferably by about 20% or more, as compared to an equivalent formulation made with high COD (i.e., equal or higher than 5 kg/ton of pulp). Similarly, the low COD fibers can improve the MOE by about 10% or more, more preferably by about 20% or more. The low COD fibers can also improve the ultimate strain by about 10% or more, more preferably by about 20% or more. The low COD fibers can also improve the toughness of the composite building material by about 10% or more, more preferably by about 20% or more.
Due to the high reinforcement efficiency of low COD fibers, a smaller amount of the low COD and high purity fiber may be required to achieve the same reinforcement efficiency, compared to the regular fibers. It can be appreciated that the advantages of incorporating the low COD and high purity fibers in the fiber cement composite materials may not be limited to the above formulations and properties.
A preferred method of manufacturing a fiber reinforced composite building material incorporating the low COD fibers described herein above generally comprises the following steps:
Preferably, the step of mixing the low COD and high purity fibers with other ingredients to form a fiber cement mixture comprises mixing the low COD and high purity fibers with non-cellulose materials such as a hydraulic binder, aggregate, density modifiers, and additives in accordance with the preferred formulations of this invention. In some embodiments, the low COD and high purity fibers can also be mixed with regular cellulose pulp with high COD contents, natural inorganic fibers and synthetic fibers.
As
These processes may also include a pressing or embossing operation after the article is formed. More preferable, no pressing is used. The processing steps and parameters used to achieve the final product using a Hatschek process are similar to what is described in Australian Patent No. 515151.
Following step 208, the “green” or uncured shaped article is cured in step 210. The article is preferably pre-cured for up to 80 hours, most preferably 24 hours or less. The article is then air-cured for approximately 30 days. More preferably, the pre-cured articles is autoclaved at an elevated temperature and pressure in a steam saturated environment at about 60 to 200° C. for about 3 to 30 hours, more preferably about 24 hours or less. The time and temperature chosen for the pre-cure and cure processes are dependent on the formulation, the manufacturing process, the process parameters, and the final form of the product.
The low COD pulp used in the example shown in
The preferred embodiments provide a technique for removing COD components/impurities from cellulose pulps in the manufacture of fiber cement grade pulps. Specifically, the preferred embodiments disclose the implementation of an additional extensive washing process in the pulp processing cycle, preferably after the digester, and during or after the brown stock washer system. One embodiment of this invention utilizes the existing equipment available in bleaching plants at most fiber cement pulp mills to carry out an extensive counter-current pulp washing at a normal or elevated temperature. Preferably, the multiple bleaching towers, which are typically a series of continuous plug flow reactors, are utilized to soak the pulps and diffuse COD and other impurities out from cellulose cell walls to the bulk solution. The washers in the bleaching plants subsequently remove the COD and other impurities by dewatering the pulp and transferring the unwanted components to the wastewater. Advantageously, the technique of the preferred embodiments is capable of generating pulps with low COD contents and high purity while maintaining fiber strength, fiber lengths, and other key fiber properties that are important to manufactures of fiber reinforced cement composite materials. Furthermore, the technique is simple to implement and requires no addition of chemicals in some embodiments. The technique can reduce COD content of the pulp by about 20% to 80%. Incorporation of the low COD fibers in the fiber cement composite material in accordance with the formulations and manufacture method of the present invention improves various physical and mechanical properties of the final product, and reduces the fresh water usage in the manufacturing process.
Although the foregoing description of the preferred embodiment of the present invention has shown, described and pointed out the fundamental novel features of the invention, it will be understood that various omissions, substitutions, and changes in the form of the detail of the apparatus as illustrated as well as the uses thereof, may be made by those skilled in the art, without departing from the spirit of the invention. Consequently, the scope of the invention should not be limited to the foregoing discussions, but should be defined by the appended claims.
This application is a divisional of U.S. application Ser. No. 09/970,389 filed Oct. 2, 2001 and claims the benefit of U.S. Provisional Application No. 60/241,102, filed on Oct. 17, 2000, which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1571048 | Garrow | Jan 1926 | A |
1914163 | Randall | Jun 1933 | A |
2024689 | Walter et al. | Dec 1935 | A |
2030383 | Luth et al. | Feb 1936 | A |
2054854 | Dreyfus | Sep 1936 | A |
2156308 | Schuh | May 1939 | A |
2156311 | Schuh | May 1939 | A |
2175568 | Haustein | Oct 1939 | A |
2175569 | Kennedy | Oct 1939 | A |
2176668 | Egeberg et al. | Oct 1939 | A |
2377484 | Elmendorf | Jun 1945 | A |
2645576 | Bate et al. | Jul 1953 | A |
2880101 | Ulfstedt | Mar 1959 | A |
3264125 | Bourlin | Aug 1966 | A |
3716386 | Kempster | Feb 1973 | A |
3748100 | Forseth | Jul 1973 | A |
3748160 | Carbajal | Jul 1973 | A |
3753749 | Nutt | Aug 1973 | A |
3836412 | Boustany et al. | Sep 1974 | A |
3843380 | Beyn | Oct 1974 | A |
3865779 | Oya et al. | Feb 1975 | A |
3918981 | Long | Nov 1975 | A |
3931069 | Lundin | Jan 1976 | A |
3969567 | Occleshaw et al. | Jul 1976 | A |
3998944 | Long | Dec 1976 | A |
4003752 | Isohata et al. | Jan 1977 | A |
4013480 | Chumbley et al. | Mar 1977 | A |
4088804 | Cornwell et al. | May 1978 | A |
4098701 | Burrill et al. | Jul 1978 | A |
4102697 | Fukuba et al. | Jul 1978 | A |
4138313 | Hillstrom et al. | Feb 1979 | A |
4177176 | Burrill et al. | Dec 1979 | A |
4225383 | McReynolds | Sep 1980 | A |
4258090 | Moraru | Mar 1981 | A |
4274913 | Kikuiri et al. | Jun 1981 | A |
4306911 | Gordon et al. | Dec 1981 | A |
4351867 | Mulvey et al. | Sep 1982 | A |
4406703 | Guthrie et al. | Sep 1983 | A |
4428775 | Johnson et al. | Jan 1984 | A |
4457785 | Hsu et al. | Jul 1984 | A |
4486234 | Herr | Dec 1984 | A |
4497688 | Schaefer | Feb 1985 | A |
4510020 | Green et al. | Apr 1985 | A |
4517375 | Schmidt | May 1985 | A |
4548676 | Johnstone et al. | Oct 1985 | A |
4637860 | Harper et al. | Jan 1987 | A |
4643920 | McEntee et al. | Feb 1987 | A |
4647505 | Blackie et al. | Mar 1987 | A |
4647509 | Wallace et al. | Mar 1987 | A |
4647589 | Valone | Mar 1987 | A |
4655979 | Nakano et al. | Apr 1987 | A |
4659386 | Nagai et al. | Apr 1987 | A |
4738723 | Frizzell et al. | Apr 1988 | A |
4766113 | West et al. | Aug 1988 | A |
4806203 | Elton | Feb 1989 | A |
4938958 | Niira et al. | Jul 1990 | A |
4944842 | Stromberg et al. | Jul 1990 | A |
4971658 | Henricson et al. | Nov 1990 | A |
4985119 | Vinson et al. | Jan 1991 | A |
5021093 | Beshay | Jun 1991 | A |
5030289 | Sattler et al. | Jul 1991 | A |
5047086 | Hayakawa et al. | Sep 1991 | A |
5049196 | Ries | Sep 1991 | A |
5063260 | Chen et al. | Nov 1991 | A |
5102596 | Lempfer et al. | Apr 1992 | A |
5118225 | Koch et al. | Jun 1992 | A |
5191456 | Sutherland et al. | Mar 1993 | A |
5223090 | Klungness et al. | Jun 1993 | A |
5236994 | Markusch et al. | Aug 1993 | A |
5346541 | Goldman et al. | Sep 1994 | A |
5403392 | Craig | Apr 1995 | A |
5405498 | Pease | Apr 1995 | A |
5415734 | Backlund et al. | May 1995 | A |
5421867 | Yeager et al. | Jun 1995 | A |
5429717 | Bokstrom et al. | Jul 1995 | A |
5432215 | Girg et al. | Jul 1995 | A |
5465547 | Jakel | Nov 1995 | A |
5472486 | Dragner et al. | Dec 1995 | A |
5482550 | Strait | Jan 1996 | A |
5520779 | Bold | May 1996 | A |
5577024 | Malkamaki et al. | Nov 1996 | A |
RE35460 | Klungness et al. | Feb 1997 | E |
5643359 | Soroushian et al. | Jul 1997 | A |
5705542 | Roffael et al. | Jan 1998 | A |
5777024 | Killilea et al. | Jul 1998 | A |
5786282 | Carter et al. | Jul 1998 | A |
5795515 | Fischer | Aug 1998 | A |
5804003 | Nishizawa | Sep 1998 | A |
5866057 | Roffael et al. | Feb 1999 | A |
5871824 | Bates | Feb 1999 | A |
5876561 | Tsai | Mar 1999 | A |
5897701 | Soroushian et al. | Apr 1999 | A |
5945044 | Kawai et al. | Aug 1999 | A |
5989335 | Soroushian et al. | Nov 1999 | A |
6030447 | Naji et al. | Feb 2000 | A |
6045057 | Moor et al. | Apr 2000 | A |
6086998 | Wihsmann | Jul 2000 | A |
6138430 | Van Acoleyen et al. | Oct 2000 | A |
6176920 | Murphy et al. | Jan 2001 | B1 |
6228215 | Hoffman, Jr. | May 2001 | B1 |
6245196 | Martin et al. | Jun 2001 | B1 |
6325853 | Hogan et al. | Dec 2001 | B1 |
6344654 | Lesko | Feb 2002 | B1 |
6346146 | Duselis et al. | Feb 2002 | B1 |
6346165 | Markessini et al. | Feb 2002 | B1 |
6352952 | Jardine et al. | Mar 2002 | B1 |
6419788 | Wingerson | Jul 2002 | B1 |
6475275 | Nebesnak et al. | Nov 2002 | B1 |
6488762 | Shi | Dec 2002 | B1 |
6506248 | Duselis et al. | Jan 2003 | B1 |
6512132 | Isoda et al. | Jan 2003 | B2 |
6528151 | Shah et al. | Mar 2003 | B1 |
6562743 | Cook et al. | May 2003 | B1 |
6572697 | Gleeson et al. | Jun 2003 | B2 |
6613424 | Putt et al. | Sep 2003 | B1 |
6676744 | Merkley et al. | Jan 2004 | B2 |
6676745 | Merkley et al. | Jan 2004 | B2 |
6719878 | Svedman | Apr 2004 | B1 |
6749897 | Naji et al. | Jun 2004 | B2 |
6770576 | Cook et al. | Aug 2004 | B2 |
6777103 | Merkley et al. | Aug 2004 | B2 |
6837452 | Dezutter et al. | Jan 2005 | B2 |
6872246 | Merkley et al. | Mar 2005 | B2 |
6893751 | Naji et al. | May 2005 | B2 |
6933038 | Nanko et al. | Aug 2005 | B2 |
6942726 | Cook et al. | Sep 2005 | B2 |
7028436 | Bezubic, Jr. | Apr 2006 | B2 |
7081184 | Wester et al. | Jul 2006 | B2 |
7226525 | Vrbanac et al. | Jun 2007 | B2 |
7300546 | Jewell et al. | Nov 2007 | B2 |
7344593 | Luo et al. | Mar 2008 | B2 |
7455727 | Trevethick | Nov 2008 | B2 |
8133352 | Merkley | Mar 2012 | B2 |
20020007926 | Jewell et al. | Jan 2002 | A1 |
20020007927 | Vahatalo et al. | Jan 2002 | A1 |
20020051892 | Laks et al. | May 2002 | A1 |
20020059886 | Merkley et al. | May 2002 | A1 |
20020069791 | Merkley et al. | Jun 2002 | A1 |
20020088584 | Merkley et al. | Jul 2002 | A1 |
20020121229 | Jardine et al. | Sep 2002 | A1 |
20020170466 | Naji et al. | Nov 2002 | A1 |
20020170467 | Naji et al. | Nov 2002 | A1 |
20020170468 | Luo et al. | Nov 2002 | A1 |
20020175126 | Naji et al. | Nov 2002 | A1 |
20020179219 | Naji et al. | Dec 2002 | A1 |
20020189499 | Naji et al. | Dec 2002 | A1 |
20020189500 | Naji et al. | Dec 2002 | A1 |
20020192510 | Naji et al. | Dec 2002 | A1 |
20030000424 | Naji et al. | Jan 2003 | A1 |
20030164119 | Naji et al. | Sep 2003 | A1 |
20040043217 | Dezutter et al. | Mar 2004 | A1 |
20040043686 | Batdorf | Mar 2004 | A1 |
20040132843 | Baumgart et al. | Jul 2004 | A1 |
20040145078 | Merkley et al. | Jul 2004 | A1 |
20040168615 | Luo et al. | Sep 2004 | A1 |
20050016423 | Merkley et al. | Jan 2005 | A1 |
20050045067 | Naji et al. | Mar 2005 | A1 |
20050126430 | Lightner, Jr. et al. | Jun 2005 | A1 |
20050208287 | Naji et al. | Sep 2005 | A1 |
20050235883 | Merkley et al. | Oct 2005 | A1 |
20070077436 | Naji et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
250022 | Oct 1991 | AR |
015457 | Sep 1998 | AR |
014046 | Nov 1998 | AR |
14702 | Mar 1999 | AR |
391131 | Aug 1990 | AT |
515151 | Mar 1981 | AU |
2002240552 | Sep 2002 | AU |
1177205 | Nov 1984 | CA |
2242749 | Feb 1999 | CA |
2405354 | Nov 2001 | CA |
32972 | Feb 1980 | CL |
2346-01 | Sep 2001 | CL |
2347-01 | Sep 2001 | CL |
2352-01 | Sep 2001 | CL |
2353-01 | Sep 2001 | CL |
461-02 | Mar 2002 | CL |
1032332 | Apr 1989 | CN |
1199116 | Nov 1998 | CN |
1224701 | Aug 1999 | CN |
3037220 | Apr 1982 | DE |
3308917 | Sep 1984 | DE |
3601736 | Jul 1987 | DE |
4316666 | Dec 1994 | DE |
19654836 | Jun 1998 | DE |
0049365 | Apr 1982 | EP |
0058263 | Jul 1982 | EP |
0287962 | Apr 1987 | EP |
0305209 | Mar 1989 | EP |
0331666 | Sep 1989 | EP |
0263723 | Feb 1991 | EP |
484283 | Jun 1992 | EP |
0147429 | Jul 1995 | EP |
0716182 | Jun 1996 | EP |
1052262 | Nov 2000 | EP |
1088800 | Apr 2001 | EP |
1106236 | Jun 2001 | EP |
1155794 | Nov 2001 | EP |
1346964 | Sep 2003 | EP |
1334076 | Aug 2006 | EP |
2033987 | Apr 1993 | ES |
895184 | Jan 1945 | FR |
1557348 | Feb 1969 | FR |
2611432 | Sep 1988 | FR |
22139 | Jan 1901 | GB |
442098 | Feb 1936 | GB |
449384 | Jun 1936 | GB |
731597 | Jun 1955 | GB |
1003850 | Sep 1965 | GB |
1536663 | Dec 1978 | GB |
2041384 | Sep 1980 | GB |
1604910 | Dec 1981 | GB |
2137977 | Oct 1984 | GB |
2307425 | May 1997 | GB |
55-085756 | Jun 1980 | JP |
59-203747 | Nov 1984 | JP |
60-118658 | Jun 1985 | JP |
61-019900 | Jan 1986 | JP |
63-107849 | May 1988 | JP |
01-141849 | Jun 1989 | JP |
03-016978 | Jan 1991 | JP |
04-182335 | Jun 1992 | JP |
04-342746 | Nov 1992 | JP |
05-177625 | Jul 1993 | JP |
05-184246 | Jul 1993 | JP |
06-024821 | Feb 1994 | JP |
06-144911 | May 1994 | JP |
06-341093 | Dec 1994 | JP |
07-041592 | Feb 1995 | JP |
07-109165 | Apr 1995 | JP |
08-119708 | May 1996 | JP |
2508554 | Jun 1996 | JP |
08-260371 | Oct 1996 | JP |
09-255385 | Sep 1997 | JP |
10-095922 | Apr 1998 | JP |
11-010631 | Jan 1999 | JP |
11-099512 | Apr 1999 | JP |
2000-044302 | Feb 2000 | JP |
2001-240458 | Sep 2001 | JP |
2001-316163 | Nov 2001 | JP |
2003-335560 | Nov 2003 | JP |
1019950008587 | Aug 1995 | KR |
154782 | Dec 1991 | PL |
190627 | Dec 2005 | PL |
9604599-2 | Jun 1998 | SE |
240472 | Mar 1969 | SU |
WO 8404765 | Dec 1984 | WO |
WO 9101409 | Feb 1991 | WO |
WO 9520066 | Jul 1995 | WO |
WO 9617996 | Jun 1996 | WO |
WO 9708111 | Mar 1997 | WO |
WO 9731153 | Aug 1997 | WO |
WO 9818855 | May 1998 | WO |
WO 9827027 | Jun 1998 | WO |
WO 9845222 | Oct 1998 | WO |
WO 9935330 | Jul 1999 | WO |
WO 0071336 | Nov 2000 | WO |
WO 0130927 | May 2001 | WO |
WO 0168547 | Sep 2001 | WO |
WO 0108166 | Nov 2001 | WO |
WO 0181666 | Nov 2001 | WO |
WO 0212623 | Feb 2002 | WO |
WO 0218486 | Mar 2002 | WO |
WO 0228795 | Apr 2002 | WO |
WO 0228796 | Apr 2002 | WO |
WO 0233164 | Apr 2002 | WO |
WO 02070425 | Sep 2002 | WO |
WO 02072499 | Sep 2002 | WO |
WO 2004063113 | Jul 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20120205060 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
60241102 | Oct 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09970389 | Oct 2001 | US |
Child | 13399854 | US |