Method and apparatus for reversing direction of an article

Abstract
A method of reversing direction of an article is disclosed by engaging an article with a first belt to move the article in a first direction; disengaging the article from the first belt; and then engaging the article with a second belt to move the article in a second direction. An apparatus to reverse direction of an article is also disclosed by a first belt rotating in a first direction; a second belt rotating in a second direction; the first belt engaging an article at a first time while the second belt is disengaged with the article, the first belt disengaging the article at a second time, and the second belt engaging the article at a third time while the first belt is disengaged with the article.
Description
BACKGROUND OF THE INVENTION

This invention relates to a method and apparatus for rapidly and accurately reversing direction of a flat article. This invention is not limited to its preferred use, reversing direction of a disposable diaper or sheet of paper; but instead the methods and apparatus' of the present invention may be used in wide ranging applications.


During manufacture of disposable diapers of the children's training pant type, or of the adult incontinence type, manufacturers typically process the diapers through a series of steps. For a variety of reasons, during the manufacturing process, it might be necessary to reverse direction of the article, from forward to reverse, or from forward to upside down to reverse, or from forward to downward etc.


SUMMARY OF THE INVENTION

The present invention is used, for example, to controllably reverse the direction of the leading edge of a diaper panel as it is being cross folded. Typical cross folders used on high speed diaper lines may produce extremely high deceleration and reversal forces in the free tail end of the product being folded. One advantage provided by this invention is to reduce the acceleration forces felt by the product as it goes through the reversal process, by first carrying the article in a first direction by way of contact with the surface of a belt system which is moving in the first direction. At a point slightly before the expected reversal, the forward moving belt nip is opened and a reverse moving belt nip is engaged so that the product is stopped and then driven backwards by the second belt.


The present invention is particularly useful for products that may not be able to withstand high deceleration forces. For instance, a fluff filled adult diaper moving at a speed of more than 1000 feet per minute is stopped nearly instantly when it is cross folded. It has been calculated that the end of the product is subjected to accelerations as high as 65 Gs or 637 meters per second. The fluff contents of such a diaper could very well be destroyed by a “crack the whip” effect. The reversing conveyor of the present invention provides a controlled and driven reversal, wherein the product itself is not subjected to the same distribution of forces.


In one embodiment of the present invention, the positions of the conveyors or conveyor belts are swapped, reversed, or alternated using eccentric hubs on conveyor pulleys. Rotating the shaft that drive the eccentric hubs changes the effective centerline of these pulleys. In one embodiment, the eccentricity is such that rotating the shaft 180 degrees opens the outgoing belt nip and closes the ingoing belt nip. In another embodiment, the shafts are arranged so as to shift only one of the two belts, but each belt having its own dedicated shaft system. This would allow for the opening of one nip and the closing of the other nip to be adjustable relative to the other.


A method of reversing direction of an article is disclosed by engaging an article with a first belt to move the article in a first direction; disengaging the article from the first belt; and then engaging the article with a second belt to move the article in a second direction. An apparatus to reverse direction of an article is also disclosed by a first belt rotating in a first direction; a second belt rotating in a second direction; the first belt engaging an article at a first time while the second belt is disengaged with the article, the first belt disengaging the article at a second time, and the second belt engaging the article at a third time while the first belt is disengaged with the article.


These steps and advantages will be more evident with the following detailed description and drawings.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of an apparatus for reversing direction of an article, showing a first belt operating in a first direction, a second belt operating in a second direction, and an article whose direction is desired to be reversed;



FIG. 2 is a side view of the apparatus, with the article whose direction is desired to be reversed approaching the belts;



FIG. 3 is a side view of the apparatus, with the article whose direction is desired to be reversed being engaged by the first belt;



FIG. 4 is a side view of the apparatus, with the article whose direction is desired to be reversed being disengaged by the first belt and the second belt approaching the article for engagement;



FIG. 5 is a side view of the apparatus, with the article whose direction has been reversed by engagement with the second belt;



FIG. 6 is a side view of the apparatus, with the article whose direction has been reversed being disengaged by the second belt and discharged, and a second article approaching the apparatus for reversal;



FIG. 7 is a side view of an apparatus for reversing direction of an article, showing a first belt operating in a first direction, a second belt operating in a second direction, and an article whose direction is desired to be reversed.



FIG. 8 is a side view of one embodiment of a conveyor and conveyor pulleys, and an eccentric shaft.



FIG. 9 is a side view of an eccentric shaft coupled with four conveyors and conveyor pulleys.



FIGS. 10
a and 10b are side views of an alternate embodiment of an apparatus for reversing direction of an article, showing a first belt operating in a first direction, a second belt operating in a second direction, the first belt stationary and the second belt oscillating up and down to engage an article.



FIG. 11 is a side view of another alternate embodiment showing a first belt operating in a first direction; a plate for engaging an article to discourage movement in a direction different than that encouraged by the belt.




DESCRIPTION OF THE PREFERRED EMBODIMENT

Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention that may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention.


Referring now FIG. 1, a side view is shown of an apparatus 10 for reversing direction of an article 20, showing a first belt B operating in a first direction B′, a second belt A operating in a second direction A′. The article 20, which may be a diaper in a preferred use of one embodiment of the apparatus 10 and method of the present invention, approaches the apparatus 10 for instance by use of a conveyor 25, as depicted the article 20 moving to the right. As is common in the art, a cross folder 40, is used and will be described later to crimp the article 20 to encourage folding.


As will be discussed later, belt A may be carried by conveyor pulleys 30, belt B may be carried by conveyor pulleys 32. However, more or less conveyor pulleys may be utilized, or means other than belts A and B may be used to engage the article 20, such as nips, drums, or any other conveying means known in the art.


Referring now to FIG. 2, typical cross folders used on high speed diaper lines such as shown in FIG. 2 may produce extremely high deceleration and reversal forces in the free tail end 20′ of the product being folded 20. To reduce the acceleration forces felt by the product 20 as it goes through the reversal process, depicted in the drawings as first forward to the right, reversing to second direction vertical downward, the article 20 is first carried the first direction (right as shown) by the conveyor 25, and then by engagement with contact with the surface of belt B moving in the first direction B′. (For clarity of illustration, the belts A and B are not shown directly engaged with the article 20, but instead showing slight separation that may or may not be present in physical embodiments of the present invention). Still referring to FIG. 2, the cross folder 40 is shown approaching the article 20 to encourage folding of the article 20, the article 20 being supported by both conveyor 25 and stationary surface 26.


Referring now to FIG. 3, the cross folder 40 is shown impacting the article 20, both encouraging folding, and also sending a portion of the article downward through void 50 down its later expected path. At this point, the article 20 is still moving to the right as shown, both by conveyor 25 and by belt B moving in direction B′.


Referring now to FIG. 4, at a point slightly before the expected reversal of the tail end 20′ of the article 20, the belt B has disengaged with the article 20 and belt A moving in direction A′ (reverse direction of B′) is approaching the article 20. At this point, cross folder 40 remains positioned as earlier in relation to the article 20.


Without the present invention, products that may not be able to withstand high deceleration forces would be exposed to very high deceleration at this point of reversal. For instance, a fluff filled adult diaper moving at a speed of more than 1000 feet per minute is stopped nearly instantly when it is cross folded. It has been calculated that the free end 20′ of the product 20 would have been subjected to accelerations as high as 65 Gs or 637 meters per second. The fluff contents of such a diaper could very well be destroyed by a “crack the whip” effect. The reversing conveyor of the apparatus 10 provides a controlled and driven reversal, wherein the article 20 is not subjected to the same distribution of forces.


Referring now to FIG. 5, belt A has engaged the free end 20′ of the article 20, and the free end 20′ of the article 20 is stopped and then driven backwards by the second belt A moving in direction A′. At this point, the two ends of the article 20 are moving toward each other, and the direction of the free end 20′ of the article 20 has been successfully reversed. At this point, cross folder 40 is being withdrawn from the article 20.


Referring now to FIG. 6, a side view of the apparatus 10 is shown, with the article 20 whose direction has been reversed being disengaged by the second belt A and discharged through the void 50. At this point, a second article 20 is approaching the apparatus 10 for its eventual reversal as described above.


Referring now to FIG. 7, a side view of the apparatus 10 is shown, and the apparatus has returned to the same condition depicted in FIG. 1, prepared to reverse the direction of the second article 20, the direction of first article 20 already being changed, first article 20 continuing down its intended path for further processing.


There are several timing and synchronization considerations to consider in the operation of the apparatus 10. First, the timing of the cross folder 40 is preferably such that the cross folder cycles once for each article 20 passed through the apparatus 10. It may be preferable to time the cross folder 40 to impact the article 20 in the middle of the article 20, but this may be varied in accordance with user preference.


Another timing consideration is that it is preferred that each belt A and B operate in a speed equal to the conveyor 25. This is preferred because the free end 20′ will be traveling the same speed in the same direction B′ as its opposing end while engaged by belt B. This is also preferred so that both ends, free end 20′ and its opposing end are traveling toward void 50 in opposite directions while free end 20′ is being engaged by belt A. Therefore belt A and conveyor 25 should be traveling the same speed in the same direction, while belt B and conveyor 25 should be traveling the same speed in opposite directions.


Another timing consideration is that folded reversed articles 20 should be withdrawn from the apparatus 10 at the same rate as unfolded articles 20 enter the apparatus 10.


As a last timing consideration, each cycle of the present methodology comprises one article 20 being fed into the apparatus 10, engaging the article 20 with belt B, disengaging belt B while engaging the article with belt A, then discharging article 20. Therefore, for each cycle, belts A and B, and cross folder 40 act in synchronization of one engagement per cycle. The operation and implementation of these synchronization considerations is well known in the art and will not be described herein.


In one embodiment of the present invention, conveyors or conveyor belts A and B are reversed using eccentric hubs 30 and 32. Rotating the shaft 31 that drive the eccentric hubs 30 and 32 changes the effective centerline of these pulleys. In one embodiment, the eccentricity is such that rotating the shaft 31 180 degrees engages belt A disengages belt B. In another embodiment (not shown), shafts are arranged so as to shift only one of the two belts A or B, but each belt A and B having its own dedicated shaft system. This would allow for the opening of one nip and the closing of the other nip to be adjustable relative to the other.


Referring now to FIG. 8, conveyor belts A and B are shown driven by hubs 30 and 32.


Referring now to FIG. 9, another side view is shown of the shaft 31 carrying hubs 30 and 32 (4 shown). Also shown are timing belts 60, rollers 62, ball bearings 64, collars clamps 66, and cams 68 it being understood that each hub 30 and 32 may be similarly equipped. In the view shown, it can be seen that hubs 30, situated between hubs 32, are in the lower position. Rotating shaft 31, would cause hubs 30 to raise, while also causing hubs 32 to lower. In this sense, the shaft 31 rotatably causes the first hub 30 and said second hub 30 and 32 to alternately raise and lower.


Referring now to FIGS. 10a and 10b side views of an alternate embodiment of an apparatus for reversing direction of an article are shown. In this embodiment, a first belt A operates in a first direction A′ as previously described, and a second belt B operating in a second direction B′ as previously described. In this embodiment however, the hubs 32 remain stationary vertically relative to the baseline pictured, and the hubs 30 move up and down vertically relative to the baseline to engage an article (not shown). In this manner, the belts A and B still alternately engage the article and the engagement, including the maneuvering of the cross folder 40, the belt 25 and other timing aspects remain the same as in the maneuvering of the hubs 30 and 32 synchronously as described above.


Referring now to FIG. 11, an alternate embodiment of an apparatus for reversing direction of an article is shown, showing a first belt A operating in a first direction A′, and a plate P that is not required to rotate with reference to previously described belts. In this embodiment, there is only directional assistance applied to the article 20 in one direction (A′), and the belt A is drawn into contact 20 with product (not shown) when directional reversal is required.


The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention.

Claims
  • 1. An apparatus for reversing direction of an article comprising: a first belt rotating in a first direction; a second belt rotating in a second direction; said first belt engaging an article during a first time period of contact; said second belt engaging said article during a second time period of contact, said second time period of contact after said first period of contact; said first and said second belts driven by an eccentric hub.
  • 2. An apparatus according to claim 1, said apparatus further comprising a conveyor to carry said article toward said first and second belts.
  • 3. An apparatus according to claim 2, said conveyor operating in said first direction.
  • 4. An apparatus according to claim 2, said conveyor carrying said article during said first period of contact and said second period of contact.
  • 5. An apparatus according to claim 1, the apparatus further comprising a cross folder for engaging said article.
  • 6. An apparatus according to claim 1, the cross folder engaging said article during at least one of said first and said second periods of contact.
  • 7. An apparatus according to claim 1, the apparatus further comprising a surface for carrying said article during said first and second periods of contact.
  • 8. An apparatus for reversing direction of an article comprising: a conveyor for carrying an article towards a belt, said article having a leading and a trailing edge; a surface for carrying said article, said surface underneath said belt; said conveyor operating in a first direction, said belt operating in a second direction; a void space for receiving said article; a cross folder for directing said article into said void space; said trailing edge traveling in said first direction while said cross folder is directing said article; said leading edge traveling in said second direction while said cross folder is directing said article.
  • 9. An apparatus for reversing direction of an article comprising: a first belt rotating in a first direction; a second belt rotating in a second direction; the first belt engaging an article at a first time while the second belt is disengaged with the article; the first belt disengaging the article at a second time; the second belt engaging the article at a third time while the first belt is disengaged with the article.
  • 10. An apparatus for reversing direction of an article comprising: a first belt rotating in a first direction; a second belt rotating in a second direction; said first belt engaging an article during a first time period of contact; said second belt engaging said article during a second time period of contact, said second time period of contact after said first period of contact; said first and said second belts having a dedicated shaft system.
  • 11. An apparatus for reversing direction of an article comprising: a shaft carrying a first hub and a second hub; said first hub carrying a first belt rotating in a first direction; said second hub carrying a second belt rotating in a second direction; said shaft rotatably causing said first hub and said second hub to alternately raise and lower; said first belt assisting an article to travel in the first direction; said second belt assisting the article to travel in the second direction.
  • 12. An apparatus for reversing direction of an article comprising: a first belt operating in a first direction; a second belt operating in a second direction; said first belt carried by a stationary hub; said second belt carried by a movable hub; said first belt and said second belt alternately engaging an article to assist said article in said first or said second direction.
  • 13. An apparatus for reversing direction of an article comprising: a first belt operating in a first direction; a plate; said first belt carried by a movable hub; said plate engaging an article to discourage movement in a direction different than said first direction; said first belt selectively engaging an article to assist said article in said first direction.
  • 14. A method of reversing direction of an article comprising: propelling an article in a first direction toward a device to reverse said article to a second said direction; engaging an article with a first belt to move the article in the first direction; disengaging the article from the first belt; engaging the article with a second belt to move the article in said second direction.
RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/563,511, filed 19 Apr. 2004, and entitled “Method and Apparatus for Reversing Direction of an Article.”

Provisional Applications (1)
Number Date Country
60563511 Apr 2004 US