1. Field of the Invention
This invention relates generally to sanitizing water, and, more particularly, to sanitizing water using ultraviolet light.
2. Description of the Related Art
Water is a vital commodity, necessary for human life. Communities throughout the world are actively engaged in providing water to its residents to use for drinking, bathing, cooking, or other basic needs. Communities typically access a source of raw water, purify the water and then distribute the water throughout the community via a municipal water supply.
This raw water may be obtained from a variety of sources in various communities throughout the world. For example, raw water may be obtained from wells in the form of groundwater, or surface water from upland lakes and reservoirs, rivers, canals, low land reservoirs, etc. Typically, the raw water may contain undesirable chemical and biological contaminants that need to be removed via water purification. Most water is purified for human consumption, but water purification may also be designed for a variety of other purposes, including meeting the requirements of medical, pharmacology, chemical and industrial applications. In general, prior art purification methods include a combination of: physical processes, such as filtration and sedimentation; biological processes, such as slow sand filters or activated sludge; and chemical processes, such as flocculation and chlorination. Purification is intended to reduce the presence of contaminates, such as suspended particles, parasites, bacteria, algae, viruses, fungi, etc.
The ramifications of unsanitary water are severe. Various sources report that as many as 1.1 billion people lack access to an improved drinking water supply, 88% of the 4 billion annual cases of diarrheal disease are attributed to unsafe water and inadequate sanitation and hygiene, and 1.8 million people die from diarrheal diseases each year. The World Health Organization estimates that 94% of these diarrheal cases are preventable through modifications to the environment, including access to safe water.
Moreover, terrorists and radical groups continue to threaten the safety of the general population. At least one oft-mentioned attack is the purposeful introduction of biological components to contaminate public water supplies, water sources and water treatment facilities.
Current chemical purification offers some protection from the various hazards of contaminated water, but chemical disinfectants, such as chlorine, are costly to produce and use and also produce by-products or contaminates that may be harmful to both the individuals dispensing the chemicals as well as those consuming the water. Further, the chemical disinfectants are not earth or environmentally friendly and consume resources.
The disclosed subject matter is directed to addressing the effects of one or more of the problems set forth above. The following presents a simplified summary of the disclosed subject matter in order to provide a basic understanding of some aspects of the disclosed subject matter. This summary is not an exhaustive overview of the disclosed subject matter. It is not intended to identify key or critical elements of the disclosed subject matter or to delineate the scope of the disclosed subject matter. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is discussed later.
In one embodiment of the instant invention, a method is provided for sanitizing water. The method comprises directing ultraviolet light into a conduit capable of carrying water therein; measuring an intensity of the ultraviolet light within the conduit; and controlling the intensity of the ultraviolet light introduced into the conduit based on the measured intensity of ultraviolet light within the conduit to provide sanitized water.
In another embodiment of the instant invention, a method is provided for sanitizing water. The method comprises directing ultraviolet light into a conduit capable of carrying water therein; measuring a parameter of the water within the conduit associated with sanitization of the water; and controlling the intensity of the ultraviolet light introduced into the conduit based on the measured parameter of the water.
In still another embodiment of the instant invention, an apparatus is provided for sanitizing water. The apparatus comprises: a container for housing water; an ultraviolet light; and means for transmitting the ultraviolet light into the container housing the water.
The disclosed subject matter may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which:
While the disclosed subject matter is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the disclosed subject matter to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the appended claims.
Illustrative embodiments are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions should be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this Disclosure.
The disclosed subject matter will now be described with reference to the attached figures. Various structures, systems and devices are schematically depicted in the drawings for purposes of explanation only and so as to not obscure the present invention with details that are well known to those skilled in the art. Nevertheless, the attached drawings are included to describe and explain illustrative examples of the disclosed subject matter. The words and phrases used herein should be understood and interpreted to have a meaning consistent with the understanding of those words and phrases by those skilled in the relevant art. No special definition of a term or phrase, i.e., a definition that is different from the ordinary and customary meaning as understood by those skilled in the art, is intended to be implied by consistent usage of the term or phrase herein. To the extent that a term or phrase is intended to have a special meaning, i.e., a meaning other than that understood by skilled artisans, such a special definition will be expressly set forth in the specification in a definitional manner that directly and unequivocally provides the special definition for the term or phrase.
The UV laser 16 may take on any of a variety of forms, but generally, a common wavelength for the UV laser 16, when used in a sanitizing application, is in the range of about 266 nm to about 355 nm, which those skilled in the art will appreciate includes near UV wavelengths of about 220 nm to about 400 nm, far UV wavelengths of about 190 nm to about 220 nm, and VAC UV wavelengths of about 90 nm to about 190 nm. Depending on the area of coverage and/or size of the container, conduit, pipe or tank, turbidity of the water, and flow rate, the power of the UV laser 16 may range from as little as 2 mW to hundreds or even thousands of watts of UV laser power. In one exemplary embodiment of the instant invention, a UV laser 16 operating at about 355 nm wavelength proved to be highly effective in sanitizing contaminated water to achieve an effective purity rate as high as 99.7% for killing bacteria, viruses, mold, fungi and insect larvae. In one particular embodiment, the UV laser may take the form of Model No. DP-UV-355 available from Han's Laser and may be comprised of an array of one or more lasers.
The UV laser light may be distributed within the pipe 20 using a variety of mechanical and/or optical systems. For example, a rotating or oscillating mirror may be used to reflect the laser light through a port 22 in the pipe 20 to create a pattern of light that effectively exposes the water 12 to the laser light regardless of the location of the water 12 within the pipe 20.
It is anticipated that some embodiments of the invention may utilize a plurality of UV lasers 16. Moreover, when multiple UV lasers 16 are employed, they may be selected to have substantially similar or substantially different wavelengths. In some embodiments, it may be useful to provide two or more UV lasers 16 irradiating the water 12 at substantially the same location with substantially similar wavelengths to achieve higher power levels. Alternatively, in some embodiments, it may be useful to provide two or more UV lasers 16 irradiating the water 12 at different, spaced apart locations to achieve greater coverage. Further, some embodiments of the instant invention may utilize two or more UV lasers 16 that operate at different wavelengths to expose the water 12 to a wider range of UV laser light in cases where the various contaminants are eradicated more effectively by different frequencies of UV laser light.
The computer control system 18 may take on any of a variety of forms, including but not limited to conventional desktop computers, laptop computers, servers, minicomputers, controllers, and the like. The computer control system 18 may be comprised of a microprocessor, memory, a display, and input or pointing devices, such mice, keyboards, touch sensitive pads or screens and the like.
In one embodiment of the instant invention, the computer control system 18 operates to control various parameters of the system 10 to insure an effective kill rate. For example, a laser power sensor 24 may be disposed to sense actual laser power being delivered to the water 12 in the pipe 20. The laser power sensor 24 provides feedback to the computer control system 18. The computer control system 18 may then vary a signal delivered to the laser 16 to raise or lower the power of the UV laser 16, as desired. Additionally, the flow rate of the water 12 in the pipe 20 may likewise be adjusted according to the actual laser power detected by the laser power sensor 24. For example, the computer control system 18 may reduce the flow rate of the water 12 in response to detecting reduced UV laser power, and/or control upstream processes to affect water parameters, such as turbidity. For example, the computer control system may send a signal to an upstream process that is designed to clarify the water.
Those skilled in the art will appreciate that clear water will more readily pass the UV laser light than will more turbid water. Those skilled in the art will appreciate that UV laser power may be increased throughout the pipe 20 by increasing water clarity.
It may also be useful to periodically test the water 12 to determine the effectiveness of the sanitizing process. Thus, at block 112, the results of this testing may be input into the computer control system 18 and used to further control the sanitizing process. For example, if the testing indicates an undesirable level of contamination in the sanitized water 12, then the computer control system 18 may further adjust the parameters of the system to produce a greater level of sanitization, such as by reducing the flow rate of the water 12, increasing the power of the UV laser 16 and/or increasing the clarity of the water 12.
Additionally or alternatively, it may be useful to route the water 12 through one or more additional sanitizing steps, depending upon the results of the testing. For example, inadequately sanitized water 12 may be passed through the same laser sanitizing process, or alternatively through a second similarly arranged system 10.
It is anticipated that the instant invention may find application in a variety of systems, such as municipal water systems and/or bottled water facilities. Those skilled in the art will appreciate that once the sanitization of the water 12 has been completed to a satisfactory level, and then the water 12 is directed to users of the commercial water system or packaged and shipped to customers, such as is shown in block 114.
In various alternative embodiments of the instant invention, it may be useful to provide a plurality of paths for the laser light to traverse from one or more UV lasers 16 to the water 12. In this manner, a more complete exposure of the water 12 to the laser light may be accomplished. For example, various laser light paths may be accomplished by routing the laser light through flexible fiber optic links or through other conventional optical devices, such as mirrors, splitters, and the like, to pass through multiple ports 24 distributed at various locations longitudinally along the pipe or at various locations distributed about the periphery of the pipe 20.
Alternatively, turning first to
These beams of laser light 202, 204 may be configured by the optical devices 200 to diverge or expand and flood the pipe 20 with UV laser light along the length of the pipe 20. In this manner, water 12 may be more thoroughly exposed to the sanitizing effect of the UV laser as focused coherent UV laser beams provide light energy and power at sufficient concentration and density at great depths to effectively illuminate and sanitize the water and therefore completely eliminates the need for using hazardous chemicals in large volume systems. The UV laser sanitizing systems shown in many flexible designs are easily implemented and adopted to a wide variety of existing water treatment systems or municipal plants to efficiently and effectively irradiate and eradicate ALL impurities without further need or use of chemicals treatments.
In various alternative embodiments of the instant invention, it may be useful to disturb the water 12 and any contaminates contained therein to insure that the contaminants within the water 12 are thoroughly exposed to the UV laser light. Turning now to
Turning now to
Those skilled in the art will appreciate that the curved sections 400, 402, 404, 406 may advantageously introduce turbulence into the water 12 within the linear region 408 of the pipe 20. As discussed previously, this turbulence produces a mixing effect that may further disturb the contaminants so that they are more thoroughly exposed to the UV laser light to produce a greater sanitizing effect.
An alternative embodiment of the instant invention is shown in
A power source 605 is electrically coupled to the UV light sources 606. The computer control system 18 is coupled to the power source 605, and operates to modify or control the amount of power delivered to the UV light sources 606 to provide a desired level of sanitization for the water flowing through the pipe 600. In some embodiments of the instant invention, it may be useful to provide feedback sensors 610, 611 to ensure that a desired level of sanitization is being accomplished. The feedback sensor 610 may take the form of a UV energy sensor, which provides a feedback signal to the computer control system 18 indicating the amount of energy being delivered from the UV light sources 606.
The computer control system 18 uses the feedback signal to controllably adjust the power source 605 to increase or decrease the power delivered to the UV light sources 606 to match the measured (actual) energy with the energy desired by the computer control system 18.
Additionally or alternatively, the feedback sensor 611 may take the form of a water purification sensor. The water purification sensor 611 can provide a feedback signal to the computer control system 18, which the computer control system 18 may use to adjust the energy being delivered from the UV light sources 606. In the event that the water purification sensor 611 indicates that the purity of the water falls below a preselected setpoint, then the computer control system 18 may increase the power being delivered from the power source 605 to increase the energy supplied by the UV light sources 606 and provide an additional sanitizing affect. Alternatively, if the water purification sensor 611 indicates that the purity of the water is above a preselected setpoint, then the computer control system 18 may reduce the power being delivered from the power source 605 to provide a reduced sanitizing affect.
In some embodiments of the instant invention, it may be useful to have an additional grid of UV light sources 606 positioned downstream of the purification sensor 611, so that additional sanitizing may be performed in the event that the purification sensor 611 indicates that the purity of the water is below a preselected setpoint.
Over time, the effectiveness of the UV light sources 606 may be reduced. Accordingly, it may be useful to employ two or more grids of UV light sources 606 so that the additional grids may be energized as the original grid of UV light sources 606 become less effective. In this manner, the useful life of the water sanitizing system may be extended.
In some embodiments of the instant invention, the effectiveness of the UV light sources 606 may be enhanced by placing a reflective coating or layer 623 around the transparent or translucent section of the pipe 600. In this manner, light emitted from the UV light sources 606 may be reflected back into the interior chamber of the pipe 600 to further enhance the sanitizing effect of the UV light.
Likewise, as can be seen in
One embodiment of a method that may be employed to manufacture the pipe 600 and the grid of UV light sources 606 is shown in
One process for sanitizing water using the embodiments described in
Portions of the disclosed subject matter and corresponding detailed description are presented in terms of software, or algorithms and symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the ones by which those of ordinary skill in the art effectively convey the substance of their work to others of ordinary skill in the art. An algorithm, as the term is used here, and as it is used generally, is conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of optical, electrical, or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise, or as is apparent from the discussion, terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical, electronic quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
Note also that the software implemented aspects of the disclosed subject matter are typically encoded on some form of program storage medium or implemented over some type of transmission medium. The program storage medium may be magnetic (e.g., a floppy disk or a hard drive) or optical (e.g., a compact disk read only memory, or “CD ROM”), and may be read only or random access. Similarly, the transmission medium may be twisted wire pairs, coaxial cable, optical fiber, or some other suitable transmission medium known to the art. The disclosed subject matter is not limited by these aspects of any given implementation.
The particular embodiments disclosed above are illustrative only, as the disclosed subject matter may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope of the disclosed subject matter. Accordingly, the protection sought herein is as set forth in the claims below.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/23761 | 2/10/2010 | WO | 00 | 11/3/2011 |
Number | Date | Country | |
---|---|---|---|
61151270 | Feb 2009 | US | |
61233739 | Aug 2009 | US |