Method and apparatus for scalp thermal treatment

Information

  • Patent Grant
  • 10512587
  • Patent Number
    10,512,587
  • Date Filed
    Monday, October 16, 2017
    6 years ago
  • Date Issued
    Tuesday, December 24, 2019
    4 years ago
Abstract
A head wrap includes a body. A first arm extends from the body. A second arm extends from the body oppositely from, and shares a common axis with, the first arm. A center section extends from the body generally perpendicular to the first arm and the second arm. A first panel and a second panel extend from the first arm. A third panel and a fourth panel extending from the second arm. A fluid bladder is defined by the body, the first arm, the second arm, the center section, the first panel, the second panel, the third panel, and the fourth panel. A compression bladder is disposed outwardly of the fluid bladder and coextensive with the fluid bladder. A first fluid port is fluidly coupled to the fluid bladder and a second fluid port is fluidly coupled to the fluid bladder.
Description
BACKGROUND

Field of the Invention


This disclosure relates generally to therapeutic head wraps and more specifically, but not by way of limitation to a therapeutic head wrap having a variety of adjustable panels to accommodate a variety of head shapes and utilizing compression to achieve better conformity and fitting against a head.


History of the Related Art


This section provides background information to facilitate a better understanding of the various aspects of the disclosure. It should be understood that the statements in this section of this document are to be read in this light, and not as admissions of prior art.


Treatments such as, for example, chemotherapy and radiation are widely used in the treatment of various types of cancer as well as other maladies. Such treatments often subject the body to one or more of harsh chemicals and radiation. In many cases, a side effect of such treatments includes the loss of bodily hair, a condition commonly known as “alopecia.” Alopecia has been known, in many cases, to have a dramatic effect on a patient's comfort and self esteem. Consequently, efforts have been undertaken to ameliorate the alopecia-inducing effects of treatments including chemotherapy and radiation.


SUMMARY

This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.


In one example, the disclosure relates to a head wrap that includes a body. A first arm extends from the body. A second arm extends from the body oppositely from, and shares a common horizontal axis with, the first arm. A center section extends from the body generally perpendicular to the first arm and the second arm. A first panel and a second panel extend from the first arm. A third panel and a fourth panel extending from the second arm. A fluid bladder is defined by the body, the first arm, the second arm, the center section, the first panel, the second panel, the third panel, and the fourth panel. A compression bladder is disposed outwardly of the fluid bladder and coextensive with the fluid bladder. A first fluid port is fluidly coupled to the fluid bladder and a second fluid port is fluidly coupled to the fluid bladder.


In another example, the disclosure relates to a method of using a head wrap includes applying a body to at least one of an occipital and a parietal region of a wearer's head. A first arm is coupled to a second arm. A first panel is coupled to a fourth panel. A second panel is coupled to a third panel. A center section is coupled to at least one of the first panel and the second panel. A compressed gas is applied to a compression bladder via a compression port. A heat-transfer fluid is circulated through a fluid bladder via a first fluid port and a second fluid port.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure is best understood from the following detailed description when read with the accompanying drawings. It is emphasized that, in accordance with standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of various features may be arbitrarily increased or reduced for clarity of discussion.



FIG. 1A is a schematic view of an illustrative therapy system;



FIG. 1B is an exterior plan view of an illustrative head wrap in an unfolded configuration;



FIG. 1C is a cross sectional view of the illustrative head wrap;



FIG. 1D is a cross sectional view of the illustrative head wrap showing a fourth layer;



FIG. 2 is an interior plan view of the illustrative head wrap in the unfolded configuration;



FIG. 3 is a front view of the illustrative head wrap in a partially-folded configuration wherein opposed arms have been coupled;



FIG. 4A is a top-front perspective view of the illustrative head wrap in a further partially-folded configuration wherein a first tab has been coupled to a second tab;



FIG. 4B is a top perspective view of the illustrative head wrap in a further partially-folded configuration wherein a third tab has been coupled to a fourth tab;



FIG. 5 is a top view of the illustrative head wrap in a fully-folded configuration wherein a center section has been folded;



FIG. 6A is a top view of the illustrative head wrap in an alternate partially-folded configuration;



FIG. 6B is a top-front perspective view of the illustrative head wrap in a further partially-folded configuration wherein the fourth panel coupled to the first panel;



FIG. 6C is a top perspective view of the illustrative head wrap in a further partially-folded configuration wherein the third panel has been coupled to the second panel;



FIG. 7A is a front view of the illustrative head wrap in a fully-folded configuration showing a cap;



FIG. 7B is a side view of the illustrative head wrap in a fully-folded configuration showing a cap;



FIG. 7C is a rear view of the illustrative head wrap in a fully-folded configuration showing a cap;



FIG. 7D is a top view of the illustrative head wrap in a fully-folded configuration showing a cap with a plurality of tabs de-coupled;



FIG. 7E is a top view of the illustrative head wrap in a fully-folded configuration showing a cap with a plurality of tabs coupled;



FIG. 8A is a perspective view of an illustrative cap securement device;



FIG. 8B is a front view showing a cap utilizing the illustrative cap securement device;



FIG. 8C is a side view showing a cap utilizing the illustrative cap securement device; and



FIG. 9 is a flow diagram illustrating a process for applying the illustrative head wrap.





DETAILED DESCRIPTION

Various embodiments of the present invention will now be described more fully with reference to the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.


Referring to FIG. 1A, there is shown a patient therapy system 2 according to the principles of the present disclosure. The patient therapy system 2 comprises a control unit 4, a head wrap 100, and a connector 10. In operation, a heat transfer fluid is deposited in the control unit 4 via an aperture 14. The heat transfer fluid is cooled or heated by the control unit 4 and pumped to the head wrap 100 by connector tube 6. The heat transfer fluid flows into the head wrap 100 through an inlet port, and exits through an outlet port to the control unit 4 via the connector 10 and connector tube 9. Similarly, a gas may be pumped by the control unit 4 to the head wrap 100 through the connector tube 7 and the connector 10 to provide compression. The connector tube 7 supplying gas is positioned between the connector tube 6 and the connector tube 9 supplying heat-transfer fluid. In this manner, the connector tube 7 supplying gas insulates the connector tube 6 from the connector tube 9. In addition, additional connector tubes may be present to allow for both heat transfer fluid and gas to be passed to the blanket for simultaneous temperature therapy and compression therapy.


The control unit 4 receives data and manipulates any one of a plurality of therapeutic characteristics of the head wrap 100 based on the data. The head wrap 100 is adapted for the administration of hot, cold, and/or compression therapies to a body portion of the patient. The connector 10 provides a fluid and/or gas connection between the control unit 4 and the head wrap 100 for the transfer of gas and heat transfer fluid. The connector 10 may also allow for transfer of electrical sensor signals and/or data signals between the head wrap 100 and the control unit 4.



FIG. 1B is an exterior plan view of an illustrative head wrap 100 in an unfolded configuration in accordance with one or more aspects of the disclosure. The head wrap 100 includes a body 102. A first arm 104 and a second arm 106 extend laterally from the body 102 in generally opposite directions. The first arm 104 and the second arm 106 share a common central horizontal axis 110. A center section 108 extends from the body 102 such that a central vertical axis 112 of the center section 108 is generally perpendicular to the central horizontal axis 110 of the first arm 104 and the second arm 106. In various embodiments, however the central vertical axis 112 of the center section 108 may be angled relative to the central horizontal axis 110 of the first arm 104 and the second arm 106. A first panel 114 and a second panel 116 extend from the first arm 104 on the same side as the center section 108. A first panel axis 118 is angled relative to the central horizontal axis 110 such that angle α is less than approximately 90 degrees. A second panel axis 120 is angled relative to the central horizontal axis 110 opposite the first panel axis 118 such that an angle β is less than approximately 90 degrees.


Still referring to FIG. 1B, a third panel 122 and a fourth panel 124 extend from the second arm 106 on the same side as the center section 108. A third panel axis 126 is angled relative to the central horizontal axis 110 such that an angle γ is less than approximately 90 degrees. A fourth panel axis 128 is angled relative to the central horizontal axis 110 opposite the third panel axis 126 such that an angle φ is less than approximately 90 degrees. The first panel axis 118 and the third panel axis 126 are arranged generally parallel to each other. Likewise, the second panel axis 120 and the fourth panel axis 128 are arranged generally parallel to each other. However, the first panel axis 118, the second panel axis 120, the third panel axis 126, and the fourth panel axis 128 could be arranged in any orientation. A first securement tab 130 extends from the third panel 122 and a second securement tab 132 extends from the fourth panel 124. In other embodiments, however, the first securement tab 130 could extend from the second panel 116 and the second securement tab 132 could extend from the first panel 114.


Still referring to FIG. 1B, a first fluid port 134 and a second fluid port 136 are disposed on the body 102 on opposite sides of the central vertical axis 112. A compression port 138 is disposed on the body 102 proximate the central vertical axis 112. The first fluid port 134 and the second fluid port 136 are fluidly coupled to a source of a heat-transfer fluid via a first tube 140 and a second tube 142, respectively. During operation, the first fluid port 134 facilitates delivery of the heat-transfer fluid to the head wrap 100 and the second fluid port 136 facilitates removal of the heat-transfer fluid from the head wrap 100. In various embodiments, however, the fluid flow is reversed such that the second fluid port 136 facilitates delivery of the heat-transfer fluid to the head wrap 100 and the first fluid port 134 facilitates removal of the heat-transfer fluid from the head wrap 100. The compression port 138 is fluidly coupled to a source of compressed gas via a third tube 144 and facilitates delivery of the compressed gas to the head wrap 100. The first tube 140, the second tube 142, and the third tube 144 are of sufficient length to allow the wearer to position the first tube 140, the second tube 142, and the third tube 144, for example, over the wearer's shoulder area and in front of the wearer. In other embodiments, the first tube 140, the second tube 142, and the third tube 144 are of sufficient length such as, for example, several feet, to connect to the control unit 4. The first tube 140 and the second tube 142 include a first coupler 143. The third tube 144 includes a second coupler 145. Use of the first coupler 143 and the second coupler 145 ensures that the first tube 140 and the second tube 142 cannot be connected to a, for example compressed gas source and, likewise, that the third tube 144 cannot be connected to, for example, a heat-transfer fluid source. The first coupler 143 and the second coupler 145 are, in a typical embodiment, keyed to the first tube 140, the second tube 142, and the third tube 144, respectively. Additionally, the first coupler 143 and the second coupler 145 are, during use, within reach of the wearer, thereby allowing the wearer to disconnect the head wrap 100 without assistance.



FIG. 1C is a cross sectional view of the illustrative head wrap 100 in accordance with one or more aspects of the disclosure. The head wrap 100 includes a first layer 153 that is formed of a flexible material such as, for example, nylon, urethane, or polyvinyl chloride (PVC). The first layer 153 is adapted to be placed in contact with the wearer's scalp. The first layer 153 includes a first-layer perimeter 155. A second layer 157 is positioned adjacent to the first layer 153 and includes a second-layer perimeter 159 that aligns with and is bonded to the first-layer perimeter 155 such that a fluid bladder 150 is defined in the head wrap 100 between the first layer 153 and the second layer 157. A plurality of second bonds 167 are formed interior of the first-layer perimeter 155 and the second-layer perimeter 159. The plurality of second bonds 167 are, for example, circular in shape and join the first layer 153 to the second layer 157 at a plurality of intermediate points interior of the first-layer perimeter 155 and the second-layer perimeter 159. During operation, the plurality of second bonds 167 create a plurality of fluid flow paths through the fluid bladder 150. Additionally, the plurality of second bonds 167 limit an amount of heat-transfer fluid within the fluid bladder 150. Limiting the amount of heat-transfer fluid within the fluid bladder 150 reduces a weight of the head wrap 100 and improves comfort of the wearer. Furthermore, reducing an amount of heat-transfer fluid in the fluid bladder 150 prevents the head wrap 100 from assuming a rounded shape and losing contact with the wearer's scalp.


Still referring to FIG. 1C, in various embodiments, a third layer 161 is positioned adjacent to the second layer 157. The third layer 161 includes a third-layer perimeter 163 that aligns with and is bonded to the first-layer perimeter 155 and the second-layer perimeter 159 so as to define a compression bladder 151 between the second layer 157 and the third layer 161. The fluid bladder 150 is positioned on a scalp-facing side of the head wrap 100 such that, in use, a wearer's scalp is in contact with, and thermally exposed to, the fluid bladder 150. The first fluid port 134 and the second fluid port 136 are fluidly coupled to the fluid bladder. The first fluid port 134 facilitates delivery of a heat-transfer fluid to the fluid bladder 150 and the second fluid port 136 facilitates removal of the heat-transfer fluid from the fluid bladder 150. A first barrier 152 is formed in the fluid bladder 150 generally parallel to the central vertical axis 112. The first barrier 152 separates the first fluid port 134 from the second fluid port 136. A compression bladder 151 is formed in the head wrap 100. The compression bladder 151 is disposed outwardly of the fluid bladder 150 and fluidly coupled to the compression port 138. When a compressed gas is introduced to the compression bladder 151, a downward force is imparted on the fluid bladder 150. Such downward force ensures intimate contact of the fluid bladder 150 with the wearer's scalp and prevents puckering of the fluid bladder 150. Such puckering can cause areas of the wearer's scalp to not be sufficiently thermally exposed to the fluid bladder 150 resulting in small areas of alopecia on the wearer's scalp.



FIG. 1D is a cross sectional view of the illustrative head wrap 100 showing a fourth layer 170 in accordance with one or more aspects of the disclosure. In various embodiments, the head wrap 100 includes a fourth layer 170 that is positioned outwardly of the third layer 161. The fourth layer 170 includes a fourth-layer perimeter 172 that is bonded to the third-layer perimeter 163 such that the compression bladder 151 is defined between the third layer 161 and the fourth layer 170. Additionally, third bonds 174 may be formed between the third layer 161 and the fourth layer 170 at select locations so as to selectively position compression across the wearer's scalp.



FIG. 2 is an interior plan view of the illustrative head wrap 100 in the unfolded configuration in accordance with one or more aspects of the disclosure. A third securement tab 146 is disposed on the first arm 104 and a fourth securement tab 148 is disposed on the center section 108. The fluid bladder 150 is formed on a scalp-facing side of the head wrap 100. The fluid bladder 150 is fluidly coupled to the first fluid port 134 and the second fluid port 136. A first barrier 152 is formed in the fluid bladder 150 generally parallel to the central vertical axis 112. The first barrier 152 separates the first fluid port 134 from the second fluid port 136. A second barrier 154 is formed in the fluid bladder 150 generally parallel to the central horizontal axis 110 and generally perpendicular to the first barrier 152. The second barrier 154 extends into, and directs flow of the heat-transfer fluid into, the first arm 104 and the second arm 106. A third barrier 156, a fourth barrier 158, a fifth barrier 160, and a sixth barrier 162 extend from the second barrier 154 into the first panel 114, the second panel 116, the third panel 122, and the fourth panel 124, respectively. In use, the third barrier 156, the fourth barrier 158, the fifth barrier 160, and the sixth barrier 162 direct the heat-transfer fluid into the first panel 114, the second panel 116, the third panel 122, respectively. During operation, the first barrier 152, the second barrier 154, the third barrier 156, the fourth barrier 158, the fifth barrier 160, and the sixth barrier 162 create a serpentine heat-transfer fluid flow path through the fluid bladder 150. The heat-transfer fluid flow path is illustrated by arrows 164; however, in other embodiments, the fluid flow could be in the direction opposite the arrows 164.



FIG. 3 is a front view of the illustrative head wrap 100 in a partially-folded configuration wherein the first arm 104 and the second arm 106 have been coupled to each other in accordance with one or more aspects of the disclosure. In use, the head wrap 100 is oriented such that an interior aspect of the body 102 is adjacent to an occipital region and a posterior neck region of a wearer. In this arrangement, the first tube 140, the second tube 142, and the third tube 144 extend down the wearer's back. The first arm 104 and the second arm 106 are wrapped around a circumference of the wearer's head. The first arm 104 overlaps the second arm 106 in the region of the wearer's forehead. The third securement tab 146 couples the first arm 104 to the second arm 106.



FIG. 4A is a top-front perspective view of the illustrative head wrap 100 in a further partially-folded configuration wherein the fourth panel 124 coupled to the first panel 114 in accordance with one or more aspects of the disclosure. In use, the first panel 114 and the fourth panel 124 are wrapped over an anterior top portion of the wearer's head. The fourth panel 124 at least partially overlaps the first panel 114. The second securement tab 132 couples the fourth panel 124 to the first panel 114.



FIG. 4B is a top perspective view of the illustrative head wrap in a further partially-folded configuration wherein the third panel 122 has been coupled to the second panel 116 in accordance with one or more aspects of the disclosure. In use, the second panel 116 and the third panel 122 are wrapped over a posterior top portion of the wearer's head. The third panel 122 at least partially overlaps the second panel 116. The first securement tab 130 couples the third panel 122 to the second panel 116. Referring to FIGS. 4A and 4B collectively, the fourth panel 124 has been described by way of example as being coupled to the first panel 114. Likewise, the third panel 122 has been described by way of example as being coupled to the second panel 116. However, one skilled in the art will recognize that, in order to accommodate shapes of various wearer's heads, the third panel 122 may be coupled, via the first securement tab 130, to the first panel 114 and the fourth panel 124 may be coupled, via the second securement tab 132, to the second panel 116. In this manner, the first panel 114, the second panel 116, the third panel 122, and the fourth panel 124 may be coupled in any appropriate pattern to securely fit the head wrap 100 to the wearer's head.



FIG. 5 is a top view of the illustrative head wrap 100 in a fully-folded configuration wherein the center section 108 has been folded in accordance with one or more aspects of the disclosure. In use, the center section 108 is folded forward over a top of the wearer's head. The center section 108 at least partially overlaps the first panel 114, the second panel 116, the third panel 122, and the fourth panel 124. The center section 108 overlaps the first arm 104 and the second arm 106 in the region of the wearer's forehead. The fourth securement tab 148 couples the center section 108 to at least one of the first arm 104 and the second arm 106. As illustrated in FIGS. 2-5, the head wrap 100 is foldable from a generally flat configuration to a folded three-dimensional configuration to facilitate conformity and fitting against the wearer's scalp.



FIGS. 6A-6C are views of the illustrative head wrap 100 in various partially-folded configurations illustrating an alternative folding scheme of the head wrap 100. FIG. 6A is a top view of the illustrative head wrap 100 in a partially-folded configuration wherein the center section 108 has been folded in accordance with one or more aspects of the disclosure. In use, the center section 108 is folded forward over a top of the wearer's head. The center section 108 overlaps the first arm 104 and the second arm 106 in the region of the wearer's forehead. The fourth securement tab 148 couples the center section 108 to at least one of the first arm 104 and the second arm 106.



FIG. 6B is a top-front perspective view of the illustrative head wrap 100 in a further partially-folded configuration wherein the fourth panel 124 coupled to the first panel 114 in accordance with one or more aspects of the disclosure. In use, the first panel 114 and the fourth panel 124 are wrapped over an frontal portion of the wearer's head and over the folded center section 108. The fourth panel 124 at least partially overlaps the first panel 114. The second securement tab 132 couples the fourth panel 124 to the first panel 114.



FIG. 6C is a top perspective view of the illustrative head wrap in a further partially-folded configuration wherein the third panel 122 has been coupled to the second panel 116 in accordance with one or more aspects of the disclosure. In use, the second panel 116 and the third panel 122 are wrapped over a parietal portion of the wearer's head and over the folded center section 108. The third panel 122 at least partially overlaps the second panel 116. The first securement tab 130 couples the third panel 122 to the second panel 116. Referring to FIGS. 6B-6C collectively, the fourth panel 124 has been described by way of example as being coupled to the first panel 114. Likewise, the third panel 122 has been described by way of example as being coupled to the second panel 116. However, one skilled in the art will recognize that, in order to accommodate various shapes of different wearer's heads, the third panel 122 may be coupled, via the first securement tab 130, to the first panel 114 and the fourth panel 124 may be coupled, via the second securement tab 132, to the second panel 116. In this manner, the first panel 114, the second panel 116, the third panel 122, and the fourth panel 124 may be coupled in any appropriate pattern to securely fit the head wrap 100 in the desired position conforming to the wearer's head. As illustrated in FIGS. 6A-6C, the head wrap 100 is foldable from a generally flat configuration to a folded three-dimensional configuration to facilitate conformity and fitting against the wearer's scalp.



FIG. 7A is a front view of the illustrative head wrap 100 in a fully-folded configuration showing a cap 702 in accordance with one or more aspects of the disclosure. FIG. 7B is a side view of the illustrative head wrap 100 in a fully-folded configuration showing a cap 702 in accordance with one or more aspects of the disclosure. FIG. 7C is a rear view of the illustrative head wrap 100 in a fully-folded configuration showing a cap 702 in accordance with one or more aspects of the disclosure. FIG. 7D is a top view of the illustrative head wrap 100 in a fully-folded configuration showing a cap 702 with a plurality of tabs de-coupled in accordance with one or more aspects of the disclosure. FIG. 7E is a top view of the illustrative head wrap 100 in a fully-folded configuration showing a cap 702 with a plurality of tabs coupled in accordance with one or more aspects of the disclosure. A cap 702 is applied over the head wrap 100 and further secures the head wrap 100 to the wearer's head. The cap 702 includes a first half 704 having a first plurality of tabs 705 and a second half 706 having a second plurality of tabs 707. The first plurality of tabs 705 are selectively coupled to the second plurality of tabs 707 along a sagittal line so as to couple the first half 704 to the second half 706. In use, the first plurality of tabs 705 may be selectively coupled or de-coupled as desirable and necessary to the second plurality of tabs 707 in order to accommodate a variety of head shapes and achieve better conformity and fitting against a head. In use, a chin portion 708 extends under the wearer's chin in order to secure the cap 702 to the wearer's head. In various embodiments, the chin portion 708 extends over a temple region of the first half 704 and the second half 706 and is coupled to a crown region of the first half 704 and the second half 706. Thus, when the chin portion 708 is applied to the wearer's head, a force is transmitted through the chin portion 708 to the crown region of the first half 704 and the second half 706. Such an arrangement provides a downward force to the cap 702 and facilitates accommodation of a variety of head shapes and achieve better conformity and fitting against a head of a wearer.



FIG. 8A is a perspective view of an embodiment of a securement device 800. FIG. 8B is a front view showing the cap 702 utilizing the cap securement device 800. FIG. 8C is a side view showing the cap 702 utilizing the cap securement device 800. The cap securement device 800 includes a torso pad 802. The cap securement device 800 is utilized in lieu of the chin portion 708 to facilitate comfort of the wearer. A stiffening element (not explicitly shown) is inserted into the torso pad 802 in an effort to prevent buckling of the torso pad 802 during use. A first strap 804 and a second strap 806 extend laterally from opposite sides of the torso pad 802. In use, the first strap 804 is adjustably coupled to the second strap 806 about an upper torso region of the wearer. The cap securement device 800 includes a pair of temporal straps 808 extending from the torso pad 802. In use, the pair of temporal straps 808 are connected to a temporal region of the cap 702. Connection of the temporal straps 808 to the cap imparts a downward force a downward force to the cap 702 and facilitates accommodation of a variety of head shapes and achieve better conformity and fitting against a head of a wearer.



FIG. 9 is a flow diagram illustrating a process 900 for applying the illustrative head wrap 100 in accordance with one or more aspects of the disclosure. At block 904, an interior aspect of the body 102 is aligned with an occipital region the wearer's head. At block 906, the first arm 104 is coupled to the second arm 106 in the region of the wearer's forehead. At block 908, the fourth panel 124 is coupled to the first panel 114 and the third panel 122 is coupled to the second panel 116. At block 910, the center section 108 is folded over a top of the wearer's head and coupled to at least one of the first arm 104 and the second arm 106 in the region of the wearer's forehead. In various embodiments, blocks 904-910 may be performed in any order. At block 912, the cap 702 is applied to the wearer's head to secure the head wrap 100. At block 916, heat-transfer fluid is circulated through the fluid bladder 150. The heat-transfer fluid is introduced to the fluid bladder 150 via the first fluid port 134 and the heat-transfer fluid is removed from the fluid bladder via the second fluid port 136; however, in other embodiments the fluid flow may be reversed. The heat-transfer fluid removes heat from the wearer's scalp thereby cooling the wearer's scalp to a temperature below nominal scalp temperature. Such cooling has been shown to be effective in preventing the onset of alopecia in patients undergoing treatments such as, for example chemotherapy and radiation therapy. In other embodiments, the heat-transfer fluid can be circulated through the head wrap 100 in order to add heat to the wearer's scalp thereby warming the wearer's scalp to a temperature above nominal scalp temperature. Such treatments can be useful in the treatment of, for example, migranes and strokes. At block 917, compressed gas is introduced to the compression bladder 151 via the compression port 138. The compressed gas inflates the compression bladder 151 and imparts a downward force on the fluid bladder 150. Such downward force ensures intimate contact of the fluid bladder 150 with the wearer's scalp and prevents puckering of the fluid bladder 150. Such puckering can cause areas of the wearer's scalp to not be sufficiently thermally exposed to the fluid bladder 150 resulting in small areas of alopecia developing on the wearer's scalp.


Conditional language used herein, such as, among others, “can,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.


The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the disclosure. Those skilled in the art should appreciate that they may readily use the disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the disclosure. The scope of the invention should be determined by the language of the claims that follow. The term “comprising” within the claims is intended to mean “including at least” such that the recited list of elements in a claim are an open group. The terms “a,” “an,” and other singular terms are intended to include the plural forms thereof unless specifically excluded.

Claims
  • 1. A head wrap for conforming to a wearer's scalp, the head wrap comprising: a first layer formed of a flexible material and adapted to be placed in contact with the wearer's scalp, the first layer comprising a first-layer perimeter;a second layer adjacent to the first layer, the second layer comprising a second-layer perimeter that is bonded to the first-layer perimeter;a plurality of second bonds joining the first layer to the second layer, the plurality of second bonds being formed interior of the first-layer perimeter and the second-layer perimeter; andwherein, in use, the first layer and the second layer define a first arm and a second arm, the first arm and the second arm defining a common axis bisecting a longitudinal portion of the first arm and the second arm, and a plurality of rounded projections extending upwardly from each of the first arm and the second arm on the same side of the common axis as a center rounded projection, the first arm, the second arm, the plurality of rounded projections and the center rounded projection being selectively foldable from a generally flat configuration to overlap into a three-dimensional configuration to conform to the wearer's head such that the center rounded projection overlaps one of the first and second arms.
  • 2. The head wrap of claim 1, comprising: a first fluid port fluidly coupled to a fluid bladder defined by the first layer and the second layer; anda second fluid port fluidly coupled to the fluid bladder.
  • 3. The head wrap of claim 2, wherein the first fluid port and the second fluid port are formed between the first layer and the second layer.
  • 4. The head wrap of claim 1, comprising: a third layer adjacent to the second layer, the third layer comprising a third-layer perimeter that aligns with and is bonded to the first layer perimeter and the second-layer perimeter;a compression bladder defined between the second layer and the third layer; andwherein, in use, the third layer is selectively foldable from a generally flat configuration into a three-dimensional configuration to conform to the wearer's head.
  • 5. The head wrap of claim 4, comprising a compression port fluidly coupled to the compression bladder.
  • 6. The head wrap of claim 5, wherein the compression port is disposed between the second layer and the third layer.
  • 7. The head wrap of claim 4, comprising a first fluid port and a second fluid port that penetrate the third layer and are sealed to the second layer.
  • 8. The head wrap of claim 4, comprising a fourth layer adjacent to the third layer, the fourth layer being bonded to the third layer to provide compression at select locations on the wearer's scalp.
  • 9. The head wrap of claim 1, wherein the plurality of second bonds define a plurality of flow paths through a fluid bladder and limit an amount of heat-transfer fluid contained in the fluid bladder.
  • 10. A head wrap for conforming to a wearer's head, the head wrap comprising: a body;a first arm extending longitudinally from the body along a common axis defined longitudinally through and bisecting a longitudinal portion of the first arm and a second arm;the second arm extending longitudinally from the body oppositely from, and sharing the common axis with, the first arm;a center rounded projection extending from the body generally perpendicular to the first arm and the second arm;a first rounded projection extending from the first arm on the same side of the common axis as the center rounded projection;a fourth rounded projection extending from the second arm on the same side of the common axis as the center rounded projection;a fluid bladder defined by the body, the first arm, the second arm, and the center rounded projection; anda first fluid port formed in the body and fluidly coupled to the fluid bladder and a second fluid port formed in the body and fluidly coupled to the fluid bladder;a second rounded projection extending from the first arm on the same side of the common axis as the center rounded projection;a third rounded projection extending from the second arm on the same side of the common axis as the center rounded projection; andthe center rounded projection overlapping one of the first and second arms, in use.
  • 11. The head wrap of claim 10, wherein: the first rounded projection extends at an angle relative to the common axis; andthe second rounded projection is angled relative to the common axis in a direction generally opposite the first rounded projection.
  • 12. The head wrap of claim 10, wherein: the third rounded projection extends at an angle relative to the common axis; andthe fourth rounded projection is angled relative to the common axis in a direction generally opposite the third rounded projection.
  • 13. The head wrap of claim 10, comprising a compression bladder disposed outwardly of the fluid bladder and coextensive with the fluid bladder.
  • 14. A method of using a head wrap to conform to a wearer's head, the method comprising: applying a body of the head wrap to an occipital region of a wearer's scalp;coupling a first arm that extends from the body to a second arm that extends from the body, the second arm extending along a common axis bisecting a longitudinal portion of the first arm and the second arm;coupling a first rounded projection that extends from the first arm to a fourth rounded projection that extends from the second arm, the first rounded projection and the fourth rounded projection extending from the first arm on the same side of the common axis as a center rounded projection;coupling a second rounded projection that extends from the first arm to a third rounded projection that extends from the second arm, the second rounded projection and the third rounded projection extending from the second arm on the same side of the common axis as the center rounded projection;coupling the center rounded projection that extends from the body to at least one of the first arm and the second arm, the center rounded projection overlapping at least one of the first arm and the second arm; andcirculating a heat-transfer fluid through a fluid bladder via a first fluid port and a second fluid port.
  • 15. The method of claim 14, comprising applying a compressed gas to a compression bladder via a compression port.
  • 16. The method of claim 14, comprising: placing a cap on the wearer's head over the head wrap;adjusting the cap via selective adjustable connection of a plurality of tabs, the plurality of tabs being aligned with a sagittal line of the wearer's scalp; andsecuring the cap.
  • 17. The method of claim 16, wherein the securing the cap comprises utilizing at least one of a cap securement device and a chin portion.
  • 18. The method of claim 14, comprising at least one of cooling and heating the scalp via application of the heat-transfer fluid.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 13/558,615, filed on Jul. 26, 2012. U.S. patent application Ser. No. 13/558,615 claims priority to U.S. Provisional Patent Application No. 61/512,305, filed on Jul. 27, 2011. U.S. patent application Ser. No. 13/558,615 and U.S. Provisional Patent Application No. 61/512,305 are each incorporated herein by reference.

US Referenced Citations (498)
Number Name Date Kind
773828 Titus Nov 1904 A
2110022 Kliesrath Mar 1938 A
2504308 Donkle, Jr. Apr 1950 A
3014117 Madding Dec 1961 A
3164152 Vere Nicoll Jan 1965 A
3179106 Meredith Apr 1965 A
3345641 Jennings Oct 1967 A
3367319 Carter, Jr. Feb 1968 A
3548809 Conti Dec 1970 A
3608091 Olson et al. Sep 1971 A
3660849 Jonnes et al. May 1972 A
3736764 Chambers et al. Jun 1973 A
3738702 Jacobs Jun 1973 A
3744053 Parker et al. Jul 1973 A
3744555 Fletcher et al. Jul 1973 A
3862629 Rotta Jan 1975 A
3894213 Agarwala Jul 1975 A
4006604 Seff Feb 1977 A
4013069 Hasty Mar 1977 A
4029087 Dye et al. Jun 1977 A
4206751 Schneider Jun 1980 A
4224941 Stivala Sep 1980 A
4375217 Arkans Mar 1983 A
4402312 Villari et al. Sep 1983 A
4419988 Mummert Dec 1983 A
4459468 Bailey Jul 1984 A
4459822 Pasternack Jul 1984 A
4471787 Bentall Sep 1984 A
4503484 Moxon Mar 1985 A
4523594 Kuznetz Jun 1985 A
4547906 Nishida et al. Oct 1985 A
4590925 Dillon May 1986 A
4597384 Whitney Jul 1986 A
4608041 Nielsen Aug 1986 A
D285821 Kneisley Sep 1986 S
D288372 Adams Feb 1987 S
4660388 Greene, Jr. Apr 1987 A
4738249 Linman et al. Apr 1988 A
D295897 Thimm-Kelly May 1988 S
4741338 Miyamae May 1988 A
4795435 Steer Jan 1989 A
4821354 Little Apr 1989 A
4844072 French et al. Jul 1989 A
4884304 Elkins Dec 1989 A
4901200 Mazura Feb 1990 A
4911231 Horne et al. Mar 1990 A
4926881 Ichinomiya et al. May 1990 A
4962761 Golden Oct 1990 A
4979375 Nathans et al. Oct 1990 A
4969881 Viesturs Nov 1990 A
4989589 Pekanmaki et al. Feb 1991 A
4995698 Myers Feb 1991 A
4996970 Legare Mar 1991 A
5044364 Crowther Sep 1991 A
5051562 Bailey et al. Sep 1991 A
D320872 McCrane Oct 1991 S
5062414 Grim Nov 1991 A
5067040 Fallik Nov 1991 A
5080089 Mason et al. Jan 1992 A
5090409 Genis Feb 1992 A
5092271 Kleinsasser Mar 1992 A
5097829 Quisenberry Mar 1992 A
5106373 Augustine et al. Apr 1992 A
5112045 Mason et al. May 1992 A
5117812 McWhorter Jun 1992 A
5125238 Ragan et al. Jun 1992 A
5165127 Nicholson Nov 1992 A
5179941 Siemssen et al. Jan 1993 A
5184612 Augustine Feb 1993 A
5186698 Mason et al. Feb 1993 A
5230335 Johnson, Jr. et al. Jul 1993 A
5232020 Mason et al. Aug 1993 A
5241951 Mason et al. Sep 1993 A
5243706 Frim et al. Sep 1993 A
5261399 Klatz et al. Nov 1993 A
5263538 Amidieu et al. Nov 1993 A
5285347 Fox et al. Feb 1994 A
D345082 Wenzl Mar 1994 S
D345609 Mason et al. Mar 1994 S
D345802 Mason et al. Apr 1994 S
D345803 Mason et al. Apr 1994 S
5300101 Augustine et al. Apr 1994 A
5300102 Augustine et al. Apr 1994 A
5300103 Stempel et al. Apr 1994 A
5303716 Mason et al. Apr 1994 A
5315994 Guibert et al. May 1994 A
5316250 Mason et al. May 1994 A
D348106 Mason et al. Jun 1994 S
5323847 Koizumi et al. Jun 1994 A
5324319 Mason et al. Jun 1994 A
5324320 Augustine et al. Jun 1994 A
D348518 Mason et al. Jul 1994 S
5330519 Mason et al. Jul 1994 A
5336250 Augustine Aug 1994 A
5342411 Maxted et al. Aug 1994 A
5343579 Dickerhoff et al. Sep 1994 A
5350417 Augustine Sep 1994 A
D351472 Mason et al. Oct 1994 S
5352174 Mason et al. Oct 1994 A
5354117 Danielson et al. Oct 1994 A
D352781 Mason et al. Nov 1994 S
5360439 Dickerhoff et al. Nov 1994 A
5370178 Agonafer et al. Dec 1994 A
5371665 Quisenberry et al. Dec 1994 A
D354138 Kelly Jan 1995 S
D357747 Kelly Apr 1995 S
5402542 Viard Apr 1995 A
5405370 Irani Apr 1995 A
5405371 Augustine et al. Apr 1995 A
5407421 Goldsmith Apr 1995 A
D358216 Dye May 1995 S
5411494 Rodriguez May 1995 A
5411541 Bell et al. May 1995 A
5417720 Mason May 1995 A
5440450 Lau et al. Aug 1995 A
5449379 Hadtke Sep 1995 A
5466250 Johnson, Jr. et al. Nov 1995 A
5496262 Johnson, Jr. et al. Mar 1996 A
5496357 Jensen et al. Mar 1996 A
5505726 Meserol Apr 1996 A
5507792 Mason Apr 1996 A
5509894 Mason et al. Apr 1996 A
5514079 Dillon May 1996 A
5528485 Devilbiss et al. Jun 1996 A
5561981 Quisenberry et al. Oct 1996 A
5566062 Quisenberry et al. Oct 1996 A
D376013 Sandman et al. Nov 1996 S
5578022 Scherson et al. Nov 1996 A
5588954 Ribando et al. Dec 1996 A
5591200 Cone et al. Jan 1997 A
5603728 Pachys Feb 1997 A
5636643 Argenta et al. Jun 1997 A
D380874 Caswell Jul 1997 S
5645081 Argenta et al. Jul 1997 A
5648716 Devilbiss et al. Jul 1997 A
D383546 Amis et al. Sep 1997 S
D383547 Mason et al. Sep 1997 S
D383848 Mason et al. Sep 1997 S
5662695 Mason et al. Sep 1997 A
5669872 Fox Sep 1997 A
5672152 Mason et al. Sep 1997 A
5675473 McDunn et al. Oct 1997 A
5682748 DeVilbiss et al. Nov 1997 A
5689957 DeVilbiss et al. Nov 1997 A
5690849 DeVilbiss et al. Nov 1997 A
5711029 Visco et al. Jan 1998 A
5711155 DeVilbiss et al. Jan 1998 A
D393073 Downing et al. Mar 1998 S
5731954 Cheon Mar 1998 A
5733321 Brink Mar 1998 A
D394707 Tsubooka May 1998 S
5755755 Panyard May 1998 A
5772618 Mason et al. Jun 1998 A
5782780 Mason et al. Jul 1998 A
5795312 Dye Aug 1998 A
5807294 Cawley et al. Sep 1998 A
5827208 Mason Oct 1998 A
5831824 McDunn et al. Nov 1998 A
D403779 Davis et al. Jan 1999 S
D404490 Tripolsky Jan 1999 S
D405884 Roper Feb 1999 S
5865841 Kolen et al. Feb 1999 A
5871526 Gibbs Feb 1999 A
5890371 Rajasubramanian et al. Apr 1999 A
5897581 Fronda Apr 1999 A
5901037 Hamilton et al. May 1999 A
5913885 Klatz et al. Jun 1999 A
5923533 Olson Jul 1999 A
5947914 Augustine Sep 1999 A
5950234 Leong et al. Sep 1999 A
5980561 Kolen et al. Nov 1999 A
5989285 DeVilbiss et al. Nov 1999 A
6007559 Arkans Dec 1999 A
6030412 Klatz et al. Feb 2000 A
6055157 Bartilson Apr 2000 A
6058010 Schmidt et al. May 2000 A
6058712 Rajasubramanian et al. May 2000 A
6080120 Sandman et al. Jun 2000 A
D428153 Davis Jul 2000 S
D430288 Mason et al. Aug 2000 S
D430289 Mason et al. Aug 2000 S
6117164 Gildersleeve et al. Sep 2000 A
6125036 Kang et al. Sep 2000 A
6129688 Arkans Oct 2000 A
6135116 Vogel et al. Oct 2000 A
6156059 Olofsson Dec 2000 A
6176869 Mason et al. Jan 2001 B1
6178562 Elkins Jan 2001 B1
6186977 Andrews et al. Feb 2001 B1
6231532 Watson et al. May 2001 B1
6235049 Nazerian May 2001 B1
6238427 Matta May 2001 B1
6260890 Mason Jul 2001 B1
6270481 Mason et al. Aug 2001 B1
6277143 Klatz et al. Aug 2001 B1
6295819 Mathiprakasam et al. Oct 2001 B1
6305180 Miller et al. Oct 2001 B1
6312453 Stefanile Nov 2001 B1
6319114 Nair et al. Nov 2001 B1
6352550 Gildersleeve et al. Mar 2002 B1
6358219 Arkans Mar 2002 B1
6368592 Colton et al. Apr 2002 B1
6436064 Kloecker Aug 2002 B1
6443978 Zharov Sep 2002 B1
6462949 Parish, IV et al. Oct 2002 B1
6463336 Mawhinney Oct 2002 B1
6468237 Lina Oct 2002 B1
6500200 Kushnir Dec 2002 B1
6508831 Kushnir Jan 2003 B1
D472322 Hoglund et al. Mar 2003 S
D473315 Miros et al. Apr 2003 S
D473656 Miros et al. Apr 2003 S
D473948 Elkins et al. Apr 2003 S
6551264 Cawley et al. Apr 2003 B1
6551347 Elkins Apr 2003 B1
D474544 Hoglund et al. May 2003 S
6562060 Momtaheni May 2003 B1
6592535 Ravikumar Jul 2003 B2
6596016 Vreman Jul 2003 B1
6648904 Altshuler et al. Nov 2003 B2
D484601 Griffiths et al. Dec 2003 S
D484602 Griffiths et al. Dec 2003 S
6660027 Gruszecki et al. Dec 2003 B2
6667883 Solis et al. Dec 2003 B1
6675072 Kerem Jan 2004 B1
D486870 Mason Feb 2004 S
6695823 Lina et al. Feb 2004 B1
6719713 Mason Apr 2004 B2
6719728 Mason et al. Apr 2004 B2
6736787 McEwen et al. May 2004 B1
D492411 Bierman Jun 2004 S
6775137 Chu et al. Aug 2004 B2
D496108 Machin et al. Sep 2004 S
6789024 Kochan, Jr. et al. Sep 2004 B1
6802823 Mason Oct 2004 B2
D499846 Cesko Dec 2004 S
6834712 Parish et al. Dec 2004 B2
6846295 Ben-Nun Jan 2005 B1
6848498 Seki et al. Feb 2005 B2
6855158 Stolpmann Feb 2005 B2
6893414 Goble et al. May 2005 B2
D506553 Tesluk Jun 2005 S
6935409 Parish, IV et al. Aug 2005 B1
6936019 Mason Aug 2005 B2
D510140 Brown Sep 2005 S
6945988 Jones Sep 2005 B1
D510626 Krahner et al. Oct 2005 S
6986783 Gunn et al. Jan 2006 B2
D515218 McGuire et al. Feb 2006 S
7004915 Boynton et al. Feb 2006 B2
D523147 Tesluk Jun 2006 S
7066949 Gammons et al. Jun 2006 B2
7081128 Hart et al. Jul 2006 B2
D533668 Brown Dec 2006 S
7198046 Argenta et al. Apr 2007 B1
7216651 Argenta et al. May 2007 B2
D551351 Silva Sep 2007 S
D551352 Frangi Sep 2007 S
7306568 Diana Dec 2007 B2
7354411 Perry et al. Apr 2008 B2
D568482 Gramza et al. May 2008 S
D569985 Ganapathy et al. May 2008 S
7427153 Jacobs et al. Sep 2008 B1
7429252 Sarangapani Sep 2008 B2
7484552 Pfahnl Feb 2009 B2
7492252 Maruyama Feb 2009 B2
7524286 Johnson Apr 2009 B2
7532953 Vogel May 2009 B2
7553306 Hunt et al. Jun 2009 B1
D595620 Kingsbury Jul 2009 S
D601707 Chouiller Oct 2009 S
7608066 Vogel Oct 2009 B2
7618382 Vogel et al. Nov 2009 B2
D608006 Avitable et al. Jan 2010 S
D612947 Turtzo et al. Mar 2010 S
D613870 Shust Apr 2010 S
7717869 Eischen, Sr. May 2010 B2
D618358 Avitable et al. Jun 2010 S
D619267 Beckwith et al. Jul 2010 S
D620122 Cotton Jul 2010 S
7799004 Tumey Sep 2010 B2
7804686 Parish et al. Sep 2010 B2
D625018 Smith et al. Oct 2010 S
D626241 Sagnip et al. Oct 2010 S
D626242 Sagnip et al. Oct 2010 S
D626243 Sagnip et al. Oct 2010 S
D626245 Sagnip et al. Oct 2010 S
7811269 Boynton et al. Oct 2010 B2
D627896 Matsuo et al. Nov 2010 S
D628300 Caden Nov 2010 S
7837673 Vogel Nov 2010 B2
D630759 Matsuo et al. Jan 2011 S
7867206 Lockwood et al. Jan 2011 B2
7871387 Tordella et al. Jan 2011 B2
D631971 Turtzo et al. Feb 2011 S
D633657 Oban Mar 2011 S
D634437 Gramza et al. Mar 2011 S
D634851 Chiang Mar 2011 S
D635266 Chiang Mar 2011 S
D635267 Chiang Mar 2011 S
7896910 Schirrmacher et al. Mar 2011 B2
7909861 Balachandran et al. Mar 2011 B2
D636497 Giaccone Apr 2011 S
D638950 Janzon May 2011 S
D640380 Tweardy et al. Jun 2011 S
D640381 Tweardy et al. Jun 2011 S
7959588 Wolpa Jun 2011 B1
8007491 Pinto et al. Aug 2011 B2
D649648 Cavalieri et al. Nov 2011 S
8052630 Kloecker et al. Nov 2011 B2
8084663 Watson, Jr. Dec 2011 B2
8088113 Scherson et al. Jan 2012 B2
8100956 Quisenberry et al. Jan 2012 B2
8109981 Gertner et al. Feb 2012 B2
D655420 Bowles Mar 2012 S
D655821 Matsuo Mar 2012 S
8128672 Quisenberry et al. Mar 2012 B2
8142486 Quisenberry et al. Mar 2012 B2
D657063 Chiang Apr 2012 S
8157792 Dolliver et al. Apr 2012 B2
D660438 Kennedy et al. May 2012 S
D660439 Chen et al. May 2012 S
D662212 Quisenberry Jun 2012 S
D662213 Quisenberry Jun 2012 S
D662214 Quisenberry Jun 2012 S
8202262 Lina et al. Jun 2012 B2
D663850 Joseph Jul 2012 S
D664260 Quisenberry Jul 2012 S
D665088 Joseph Aug 2012 S
D665470 Galbraith Aug 2012 S
D666258 Campbell Aug 2012 S
D666301 Joseph Aug 2012 S
8240885 Miller Aug 2012 B2
8248798 Parish et al. Aug 2012 B2
D679023 Quisenberry Mar 2013 S
8425580 Quisenberry et al. Apr 2013 B2
D683042 Quisenberry May 2013 S
8444581 Maxon-Maldonado et al. May 2013 B1
8449483 Eddy May 2013 B2
8485995 Maxon-Maldonado Jul 2013 B1
8529613 Radziunas et al. Sep 2013 B2
8569566 Blott et al. Oct 2013 B2
8574278 Quisenberry Nov 2013 B2
8632576 Quisenberry Jan 2014 B2
8753300 Deshpande Jun 2014 B2
8753383 Parish et al. Jun 2014 B2
8758419 Quisenberry et al. Jun 2014 B1
8772567 Eckstein et al. Jul 2014 B2
8778005 Parish et al. Jul 2014 B2
8827935 Maxon-Maldonado Sep 2014 B2
8834393 Maxon-Maldonado et al. Sep 2014 B2
8940034 Quisenberry Jan 2015 B2
9101463 Stormby Aug 2015 B2
9114055 Edelman et al. Aug 2015 B2
9119705 Parish et al. Sep 2015 B2
9132057 Wilford Sep 2015 B2
9180041 Parish et al. Nov 2015 B2
9192539 Parish et al. Nov 2015 B2
9669233 Quisenberry et al. Jun 2017 B2
20010018604 Elkins Aug 2001 A1
20010039439 Elkins et al. Nov 2001 A1
20020058976 Lee May 2002 A1
20020116041 Daoud Aug 2002 A1
20020143373 Courtnage et al. Oct 2002 A1
20030050594 Zamierowski Mar 2003 A1
20030083610 McGrath et al. May 2003 A1
20030089486 Parish et al. May 2003 A1
20030089487 Parish, IV et al. May 2003 A1
20030125649 McIntosh et al. Jul 2003 A1
20030127215 Parish, IV et al. Jul 2003 A1
20030135252 MacHold et al. Jul 2003 A1
20030139255 Lina Jul 2003 A1
20030163183 Carson Aug 2003 A1
20030171703 Grim et al. Sep 2003 A1
20030176822 Morgenlander Sep 2003 A1
20030191437 Knighton et al. Oct 2003 A1
20040008483 Cheon Jan 2004 A1
20040030281 Goble et al. Feb 2004 A1
20040046108 Spector Mar 2004 A1
20040054307 Mason et al. Mar 2004 A1
20040068309 Edelman Apr 2004 A1
20040068310 Edelman Apr 2004 A1
20040099407 Parish, IV et al. May 2004 A1
20040133135 Diana Jul 2004 A1
20040176805 Whelan et al. Sep 2004 A1
20040186535 Knowlton Sep 2004 A1
20040193218 Butler Sep 2004 A1
20040210176 Diana Oct 2004 A1
20040221604 Ota et al. Nov 2004 A1
20040260231 Goble et al. Dec 2004 A1
20050004636 Noda et al. Jan 2005 A1
20050006061 Quisenberry et al. Jan 2005 A1
20050033390 McConnell Feb 2005 A1
20050039887 Parish, IV et al. Feb 2005 A1
20050070828 Hampson et al. Mar 2005 A1
20050070835 Joshi Mar 2005 A1
20050080465 Zelickson et al. Apr 2005 A1
20050126578 Garrison et al. Jun 2005 A1
20050133214 Pfahnl Jun 2005 A1
20050143797 Parish et al. Jun 2005 A1
20050177093 Barry et al. Aug 2005 A1
20050182364 Burchman Aug 2005 A1
20050187500 Perry et al. Aug 2005 A1
20050256556 Schirrmacher et al. Nov 2005 A1
20050274120 Quisenberry et al. Dec 2005 A1
20050284615 Parish et al. Dec 2005 A1
20060034053 Parish et al. Feb 2006 A1
20060035122 Weissman et al. Feb 2006 A1
20060058714 Rhoades Mar 2006 A1
20060116620 Oyaski Jun 2006 A1
20060167531 Gertner et al. Jul 2006 A1
20060217787 Olson et al. Sep 2006 A1
20060241549 Sunnen Oct 2006 A1
20060253089 Lin Nov 2006 A1
20060276845 George et al. Dec 2006 A1
20060282028 Howard et al. Dec 2006 A1
20070032778 Heaton et al. Feb 2007 A1
20070068651 Gammons et al. Mar 2007 A1
20070112401 Balachandran et al. May 2007 A1
20070118194 Mason et al. May 2007 A1
20070129658 Hampson et al. Jun 2007 A1
20070233209 Whitehurst Oct 2007 A1
20070239232 Kurtz et al. Oct 2007 A1
20070260162 Meyer et al. Nov 2007 A1
20070282249 Quisenberry Dec 2007 A1
20080058911 Parish et al. Mar 2008 A1
20080064992 Stewart et al. Mar 2008 A1
20080071330 Quisenberry Mar 2008 A1
20080082029 Diana Apr 2008 A1
20080103397 Barak May 2008 A1
20080103422 Perry et al. May 2008 A1
20080125775 Morris May 2008 A1
20080132816 Kane et al. Jun 2008 A1
20080132976 Kane et al. Jun 2008 A1
20080249559 Brown et al. Oct 2008 A1
20080262399 Kovelman et al. Oct 2008 A1
20080319362 Joseph Dec 2008 A1
20090069731 Parish et al. Mar 2009 A1
20090076475 Ross et al. Mar 2009 A1
20090109622 Parish et al. Apr 2009 A1
20090149821 Scherson et al. Jun 2009 A1
20090237264 Bobey Sep 2009 A1
20090254159 Stormby Oct 2009 A1
20090254160 Shawver et al. Oct 2009 A1
20100010477 Augustine et al. Jan 2010 A1
20100030306 Edelman et al. Feb 2010 A1
20100081975 Avitable et al. Apr 2010 A1
20100121230 Vogel et al. May 2010 A1
20100137764 Eddy Jun 2010 A1
20100145421 Tomlinson et al. Jun 2010 A1
20100150991 Bernstein Jun 2010 A1
20100160838 Krespi Jun 2010 A1
20100179469 Hammond et al. Jul 2010 A1
20100186436 Stormby Jul 2010 A1
20100210982 Balachandran et al. Aug 2010 A1
20100249679 Perry et al. Sep 2010 A1
20100249680 Davis Sep 2010 A1
20110009785 Meyer et al. Jan 2011 A1
20110034861 Schaefer Feb 2011 A1
20110037002 Johnson et al. Feb 2011 A1
20110071447 Liu et al. Mar 2011 A1
20110082401 Iker et al. Apr 2011 A1
20110087142 Ravikumar et al. Apr 2011 A1
20110275983 Quisenberry et al. Nov 2011 A1
20110282269 Quisenberry et al. Nov 2011 A1
20120041526 Stormby Feb 2012 A1
20120130457 Gammons May 2012 A1
20120259266 Quisenberry Oct 2012 A1
20120288848 Latham Nov 2012 A1
20120289885 Cottrell et al. Nov 2012 A1
20130030331 Quisenberry et al. Jan 2013 A1
20130103123 Khan et al. Apr 2013 A1
20130116612 Stephan May 2013 A1
20130191437 Itoh Jul 2013 A1
20130216627 Galbraith et al. Aug 2013 A1
20130245508 Maxon-Maldonado Sep 2013 A1
20130245519 Edelman et al. Sep 2013 A1
20130253383 Maxon-Maldonado Sep 2013 A1
20130261512 Maxon-Maldonado et al. Oct 2013 A1
20130281947 Quisenberry Oct 2013 A1
20130331767 Quisenberry Dec 2013 A1
20140012169 Wilford et al. Jan 2014 A1
20140046410 Wyatt Feb 2014 A1
20140052054 Quisenberry Feb 2014 A1
20140236271 Fronda et al. Aug 2014 A1
20140257175 Quisenberry Sep 2014 A1
20140316330 Fudem et al. Oct 2014 A1
20140323949 Quisenberry Oct 2014 A1
20150133849 Quisenberry et al. May 2015 A1
20150290364 Wall et al. Oct 2015 A1
20150328042 Parish et al. Nov 2015 A1
20160030236 Parish et al. Feb 2016 A1
20160067104 Sarangapani et al. Mar 2016 A1
20160082238 Wells et al. Mar 2016 A1
20160317348 Banker Nov 2016 A1
20160367396 Triggiano Dec 2016 A1
20170095395 Wennen Apr 2017 A1
20170119940 Quisenberry May 2017 A1
Foreign Referenced Citations (25)
Number Date Country
670 541 Jun 1989 CH
35 22 127 Jan 1987 DE
0076074 Apr 1983 EP
0 489 326 Jun 1992 EP
0864309 Sep 1998 EP
2373444 Sep 2002 GB
2009504246 Feb 2009 JP
689674 Oct 1979 SU
WO-8204184 Dec 1982 WO
WO-1989009583 Oct 1989 WO
WO-9309727 May 1993 WO
WO-9312708 Jul 1993 WO
WO-1996005873 Feb 1996 WO
WO-9807397 Feb 1998 WO
WO-1998016176 Apr 1998 WO
WO-0040186 Jul 2000 WO
WO-0114012 Mar 2001 WO
WO-0154635 Aug 2001 WO
WO-03047479 Jun 2003 WO
WO-2004105676 Dec 2004 WO
WO-2005046760 May 2005 WO
WO-2007019038 Feb 2007 WO
WO-2008099017 Aug 2008 WO
WO-2010124234 Oct 2010 WO
WO-2012067918 May 2012 WO
Non-Patent Literature Citations (34)
Entry
U.S. Appl. No. 12/730,060, Parish et al.
U.S. Appl. No. 12/708,422, Balachandran et al.
U.S. Appl. No. 12/871,188, Parish et al.
U.S. Appl. No. 13/107,264, Quisenberry.
U.S. Appl. No. 12/364,434, Quisenberry.
U.S. Appl. No. 13/190,564, Quisenberry et al.
U.S. Appl. No. 29/397,856, Quisenberry.
U.S. Appl. No. 29/400,194, Quisenberry.
U.S. Appl. No. 29/400,202, Quisenberry.
U.S. Appl. No. 29/400,212, Quisenberry.
U.S. Appl. No. 29/402,115, Quisenberry.
U.S. Appl. No. 13/796,139, Quisenberry.
U.S. Appl. No. 13/962,994, Quisenberry.
U.S. Appl. No. 14/062,428, Quisenberry.
U.S. Appl. No. 14/197,324, Quisenberry.
U.S. Appl. No. 15/227,417, filed Aug. 3, 2016, Overton et al.
U.S. Appl. No. 15/370,689, Quisenberry.
Artikis, T., PCT International Preliminary Report on Patentability as dated Jul. 29, 2005, (10 pgs.).
Tom Lee, T.Y. et al; “Compact Liquid Cooling System for Small, Moveable Electronic Equipment”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Oct. 15, 1992, vol. 15, No. 5, pp. 786-793.
Copenheaver, Blaine R., “International Search Report” for PCT/US2007/022148 as dated Apr. 2, 2008, 2 pages.
Young, Lee W., “International Search Report” for PCT/US07/08807 as dated Mar. 3, 2008, (3 pages).
Mahmoud Karimi Azar Daryany, et al., “Photoinactivation of Escherichia coli and Saccharomyces cerevisiae Suspended in Phosphate-Buffered Saline-A Using 266- and 355-nm Pulsed Ultraviolet Light”, Curr Microbiol, vol. 56, 2008, pp. 423-428.
J. Li, et al., “Enhanced germicidal effects of pulsed UV-LED irradiation on biofilms”, Journal of Applied Microbiology, 2010, pp. 1-8.
Cyro/Temp Therapy Systems; Product News Catalogue; Jobst Institute, Inc., 6 pages (Copyright 1982).
Quisenberry, Tony, “U.S. Appl. No. 13/359,210”, filed Jan. 26, 2012.
Quisenberry, Tony, “U.S. Appl. No. 29/424,860”, filed Jun. 15, 2012.
Quisenberry, Tony, “U.S. Appl. No. 13/456,410”, filed Apr. 26, 2012.
Copenheaver, Blaine R., “International Search Report” for PCT/US2012/035096 as dated Aug. 7, 2012, 3 pages.
Quisenberry, Tony, “U.S. Appl. No. 13/558,615”, filed Jul. 26, 2012.
Copenheaver, Blaine R., “International Search Report” prepared for PCT/US2013/030475 as dated May 23, 2013, 3 pages.
Young, Lee W., International Search Report of PCT Application No. PCT/US2014/64805, dated Mar. 13, 2015 (3 pages).
Hair Science Systems LLC, “Hair Science Systems—01 mobile unit—”, Hair Saver Chemo Cold Cap, www.hairsciencesystems.com, 2 pages.
“U.S. FDA de novo clearance for the DigniCap® scalp cooling system that reduces hair loss related to chemotherapy for women with breast cancer”, www.sysmex-europe.com/company/news-and -events/press-releases, accessed on Jun. 17, 2016, 3 pages.
“DigniLife—Prevention of Chermotherapy-Induced Alopecia”, www.sysmex.co.uk/products/oncology/scalp-cooling-system-dignilife, accessed on Jun. 17, 2016, 3 pages.
Related Publications (1)
Number Date Country
20180055721 A1 Mar 2018 US
Provisional Applications (1)
Number Date Country
61512305 Jul 2011 US
Continuation in Parts (1)
Number Date Country
Parent 13558615 Jul 2012 US
Child 15784379 US