Method and apparatus for securing fractionation trays

Information

  • Patent Grant
  • 9072986
  • Patent Number
    9,072,986
  • Date Filed
    Tuesday, February 21, 2012
    12 years ago
  • Date Issued
    Tuesday, July 7, 2015
    9 years ago
Abstract
A chemical-process system includes a chemical-process column and a support disposed on an interior of the chemical-process column. A tray is disposed on a top surface of the support. A bolt is disposed through the tray and a clamp is disposed below the tray. The clamp has a notch formed therein for receiving a head region of the bolt. The clamp engages a bottom surface of the tray and a bottom surface of the support. The bolt is able to angularly displace with respect to at least one of the tray and the clamp.
Description
BACKGROUND

1. Field of the Invention


The present application relates generally to fractionation tray hardware and more particularly, but not by way of limitation, to hardware utilized for securing fractionation trays within a chemical-process column.


2. History of the Related Art


Chemical-process columns are utilized to separate select components from a multicomponent stream. Successful separations in the chemical-process column are dependent upon intimate contact between heavier fluids and lighter fluids. Several types of contact mechanisms enhance contact between a fluid in a vapor phase and a fluid in a liquid phase. Contact devices such as, for example, trays are characterized by relatively high pressure drop and relatively high fluid hold-up. Other types of contact apparatus include high-efficiency packing. High-efficiency packing is energy-efficient because it has low pressure drop and low fluid hold-up.


Typically, chemical-process columns utilize either trays, packing, or combinations thereof. Tray designs such as, for example, sieve trays and valve tray are effective and often applied in chemical-process columns. A sieve tray is constructed with a large number of apertures formed in a bottom surface. The apertures permit an ascending lighter fluid to interact with a heavier fluid that is flowing across the sieve tray from a downcomer. Regions of the sieve tray surface are generally referred to as “active” or “inactive”. Typically, active tray regions allow the ascending lighter fluid to pass therethrough for interaction and mass transfer with the heavier fluid. Conversely, inactive tray regions do not permit such interaction. It is generally desirable to have as much of a tray surface as possible be “active”. Thus, it is desirable to secure the tray to an interior of the chemical-process column in a manner that minimizes inactive tray regions.


Trays are typically secured within chemical-process columns by clamps that engage a support affixed to an interior of the chemical-process column. Typically, the clamps are tightened by way of bolts arranged generally perpendicular to the tray. This method, while effective, is not without problems. First, in most cases, securement of a tray to the support requires a first individual positioned above the tray and a second individual positioned below the tray. Moreover, in cases where the support is thick, the clamps may deflect. As will be described in more detail below, such deflection induces a lateral force in the bolts which, over long periods of use, may cause the clamps to disengage from the support.


SUMMARY

The present invention relates to tray hardware and more particularly, but not by way of limitation, to hardware utilized for securing trays within a chemical-process column. One aspect of the present invention relates to a chemical-process system. The chemical-process system includes a chemical-process column and a support disposed on an interior of the chemical-process column. A tray is disposed on a top surface of the support. A bolt is disposed through the tray and a clamp is disposed below the tray. The clamp has a notch formed therein for receiving a head region of the bolt. The clamp engages a bottom surface of the tray and a bottom surface of the support. The bolt is able to angularly displace with respect to at least one of the tray and the clamp.


Another aspect of the present invention relates to a method for securing a tray in a chemical-process column. The method may include placing the tray on a support formed in an interior of the chemical-process column and securing the tray to the support via a clamp system comprising a clamp and a bolt. The bolt is articulated with respect to at least one of the clamp or the tray.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and for further objects and advantages thereof, reference may now be had to the following description taken in conjunction with the accompanying drawings in which:



FIG. 1A is a perspective view of a prior-art chemical-process column with various sections cut away for illustrating a variety of internal components.



FIG. 1B is a cross-sectional view of a prior-art clamp system;



FIG. 2 is a cross-sectional view of a chemical-process column having a clamp system disposed therein according to an exemplary embodiment;



FIG. 3 is an end view of a clamp system according to an exemplary embodiment;



FIG. 4 is a side view of a clamp system according to an exemplary embodiment;



FIG. 5 is a side view of a clamp system according to an exemplary embodiment;



FIG. 6 is a cross-sectional view of a chemical-process column having a clamp system disposed therein according to an exemplary embodiment;



FIG. 7 is an end view of a clamp system according to an exemplary embodiment; and



FIG. 8 is a side view of a clamp system according to an exemplary embodiment.





DETAILED DESCRIPTION

Various embodiments of the present invention will now be described more fully with reference to the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, the embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.



FIG. 1A, is a perspective view of a prior-art chemical-process column with various sections cut away for illustrating a variety of internal components. A chemical-process column 10 typically comprises a cylindrical tower 12 having at least one of a plurality of packing-bed layers 14 and a plurality of trays 48, 49 disposed therein. In many instances, the plurality of trays 48, 49 are valve trays or sieve trays.


Still referring to FIG. 1A, a plurality of manways 16 are likewise constructed for facilitating access to an internal region of the cylindrical tower 12. Also provided are a side-stream draw-off line 20, a heavier-fluid side-stream-input feed line 18, and a side-stream lighter-fluid feed line (or reboiler-return line) 32. A reflux-return line 34 is provided atop the chemical-process column 10.



FIG. 1B is a cross-sectional view of a prior-art clamp system. A tray 102 is secured within an interior space of a chemical-process column 100. A support 104 is affixed to an interior of the chemical-process column 100. The tray 102 rests on the support 104. Typically, a clamp 106 is connected to a bottom surface of the tray 102 via, for example, a bolt 108. A nut 109 is disposed above the tray 102, and receives the bolt 108. Tightening the nut 109 causes the clamp 106 to engage a bottom surface 103 of the support 104 thereby securing the tray 102 within the chemical-process column 100.


Still referring to FIG. 1B, in situations where the clamp 106 engages the support 104 prior to engaging the tray 102, further tightening of the nut 109 causes the clamp 106 to tilt with respect to the bolt 108. An angle α between the bolt 108 and the clamp 106 causes a head region 110 of the bolt 108 to not sit flush on the clamp 106. This arrangement may, over long periods of use, cause the bolt 108 to deflect in a direction as illustrated by arrow 112. Such deflection pulls the clamp 106 toward a center of the tray 102. Such deflection weakens an engagement between the clamp 106 and the support 104. In some cases, such deflection entirely disengages the clamp 106 from the support 104.


Still referring to FIG. 1B, installation of the tray 102 typically requires at least a first worker positioned above the tray 102 and at least a second worker positioned below the tray 102. The second worker must secure the head region 110 of the bolt 108 while the first worker tightens the nut 109. In situations where only a single worker is available, installation of the clamp 106 often requires the head region 110 of the bolt 108 to be welded to the clamp 106.



FIG. 2 is a cross-sectional view of a chemical-process column having a clamp system disposed therein according to an exemplary embodiment. A support 203 is secured to an interior of a chemical-process column 201. At least a portion of a bottom surface 207 of a tray 205 is disposed on at least a portion of a top surface 209 of the support 203. A clamp system 200 includes a clamp 202 and a bolt 204. A nut 212 is disposed on a top surface of the tray 205 for receiving the bolt 204. In a typical embodiment, tightening the nut 212 causes the clamp 202 to engage a bottom surface 211 of the support 203. In a typical embodiment, the clamp 202 includes a notch 206 that is sufficiently sized to allow a head region 208 of the bolt 204 to be received and secured therein. In a typical embodiment, the notch 206 captures the head region 208 of the bolt 204 and prevents rotation and deflection of the bolt 204 during tightening of the nut 212. Such an arrangement permits securement of the tray 205 within the chemical-process column 201 by a single worker positioned above the tray 205 thereby eliminating the need for multiple workers. Thus, the clamp system 200 allows lower-cost installation.


Still referring to FIG. 2, a washer 210 and the nut 212 are disposed above the tray 205. In a typical embodiment, the washer 210 is dome shaped. The washer 210 and the nut 212 receive the bolt 204. In a typical embodiment, the washer 210 allows the bolt 204 to be received at an angle β with respect to a vertical axis 214. The washer 210 thereby permits the bolt 204 and the clamp 202 to remain at an angle γ of generally 90 degrees relative to each other despite the angle β between the bolt 204 and the vertical axis 214. Such an arrangement ensures that the head region 208 of the bolt 204 remains flush against the clamp 202 thereby reducing a tendency of the bolt 204 or the clamp 202 to deflect toward the center of the tray 205.



FIG. 3 is an end view of a clamp system according to an exemplary embodiment. A clamp system 300 includes a clamp 302 and a bolt 304. The clamp 302 comprises a “V” shaped profile. In a typical embodiment, the “V” shaped profile is capable of withstanding greater force while consuming less material. In a typical embodiment, a notch 306 is disposed in the clamp 302. The notch 306 is sufficiently sized to allow a head region 308 of the bolt 304 to be received and secured therein. In a typical embodiment, the notch 306 captures and secures the head region 308 of the bolt 304 and prevents rotation and deflection of the bolt 304 during installation. In a typical embodiment, the clamp system 300 permits securement of a tray such as, for example, the tray 205 (shown in FIG. 2) within a chemical-process column by a single worker located above the tray thereby eliminating the need for multiple workers. Thus, the clamp system 300 allows lower-cost installation.



FIG. 4 is a side view of a clamp system according to an exemplary embodiment. The clamp system 400 includes a clamp 402 and a bolt 404. The clamp 402 includes a long-leg region 416 and a short-leg region 418. In a typical embodiment, the long-leg region 416 engages a bottom surface 407 of a tray 405 while the short-leg region 418 engages a bottom surface 409 of the support 403. A notch 406 is disposed on a side of the clamp 402 corresponding with the long-leg region 416; however, in various alternative embodiments, the notch 406 is located in other positions relative to the long-leg region 416. In a typical embodiment, the notch 406 is sufficiently sized to receive and secure a head region 408 of the bolt 404. The notch 406 captures the head region 408 of the bolt 404 and prevents rotation and deflection of the bolt 404 during tightening of a nut such as, for example the nut 212 (shown in FIG. 2).



FIG. 5 is a side view of a clamp system according to an exemplary embodiment. In a typical embodiment, a clamp system 500 includes a clamp 504 and a bolt 506. In a typical embodiment, the clamp 504 includes a notch 508. The notch 508 is sufficiently sized to receive and secure a head region 510 of the bolt 506. The notch 508 captures the head region 510 of the bolt 506 and prevents rotation and deflection of the bolt 506 during tightening of a nut such as, for example, the nut 212 (shown in FIG. 2). In a typical embodiment, a rounded bolt seat 502 is located within the notch 508. The rounded bolt seat 502 permits movement of the bolt 506 relative to the clamp 504 while allowing the head region 510 of the bolt 506 to remain generally flush with the clamp 504. In various embodiments, the rounded bolt seat 502 permits sufficient movement of the bolt 506 relative to the clamp 504 such that a washer such as, for example, the washer 210 (shown in FIG. 2) is not required. In a typical embodiment, the clamp system 500 permits securement of a tray such as, for example, the tray 205 (shown in FIG. 2) within a chemical-process column by a single worker positioned above the tray thereby eliminating the need for multiple workers. Thus, the clamp system 500 allows lower-cost installation.



FIG. 6 is a cross-sectional view of a chemical-process column having a clamp system disposed therein according to an exemplary embodiment. In a typical embodiment, a support 603 is secured to an interior of a chemical-process column 601. At least a portion of a bottom surface 607 of a tray 605 is disposed on at least a portion of a top surface 609 of the support 603. In a typical embodiment, a clamp system 600 includes a clamp 602 and a bolt 604. The clamp engages a bottom surface 611 of the support 603. A rounded bolt seat 606 extends from an underside 613 of the clamp 602. In a typical embodiment, the rounded bolt seat 606 may be integrally formed with the clamp 602; however, in various alternative embodiments, the rounded bolt seat 606 may be formed separate from the at least one clamp 602 and attached thereto via a process such as, for example, welding or soldering. In a typical embodiment, the rounded bolt seat 606 allows movement of the bolt 604 relative to the clamp 602.


Still referring to FIG. 6, in a typical embodiment, the rounded bolt seat 606 permits the bolt 604 to be received at an angle φ relative to the clamp 602. The rounded bolt seat 606 allows the bolt 604 to remain at an angle of generally 90 degrees relative to the tray 605. Such an arrangement permits a head region 608 of the bolt 604 to remain generally flush against the rounded bolt seat 606 thereby reducing a tendency of the bolt 604 or the clamp 602 to deflect toward the center of the tray 605. In various embodiments, a washer (not explicitly shown) is included above the tray 605. In a typical embodiment, the washer is dome shaped and permits a greater range of motion of the bolt 604 beyond that which is represented by the angle φ. In various alternative embodiments, the washer 210 is not required.



FIG. 7 is an end view of a clamp system of according to an exemplary embodiment. A clamp system 700 includes a clamp 702 and a bolt 704. In a typical embodiment, the clamp 702 comprises a “U” shaped profile. In a typical embodiment, a rounded bolt seat 706 extends from a bottom surface 710 of the clamp 702. The rounded bolt seat 706 permits the bolt 704 to be received at an angle relative to the clamp 704.



FIG. 8 is a side view of a clamp system according to an exemplary embodiment. A clamp system 800 includes a clamp 802 and a bolt 804. A rounded bolt seat 806 extends from an underside 813 of the clamp 802. In a typical embodiment, the rounded bolt seat 806 may be integrally formed with the clamp 802; however, in various alternative embodiments, the rounded bolt seat 806 may be formed separate from the at least one clamp 802 and attached thereto via a process such as, for example, welding or soldering. In a typical embodiment, the rounded bolt seat 806 permits the bolt 804 to be received at an angle θ relative to a vertical axis 810. Such an arrangement permits a head region 808 of the bolt 804 to remain generally flush against the rounded bolt seat 806 thereby reducing a tendency of the bolt 804 or the clamp 802 to deflect in a direction noted by arrow 812.


Although various embodiments of the method and system of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the embodiments disclosed, but is cable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth herein.

Claims
  • 1. An apparatus comprising: a chemical-process column;a support disposed on an interior of the chemical-process column;a tray disposed on a top surface of the support;a bolt disposed through the tray;a clamp disposed below the tray, the clamp having a notch formed in a bottom surface thereof for receiving a head region of the bolt;wherein the clamp engages a bottom surface of the tray and a bottom surface of the support; andwherein, the bolt is able to angularly displace with respect to at least one of the tray and the clamp.
  • 2. The apparatus of claim 1, wherein the clamp comprises a generally U-shaped profile.
  • 3. The apparatus of claim 1, wherein the clamp comprises a generally V-shaped profile.
  • 4. The apparatus of claim 1, wherein the clamp comprises a rounded bolt seat disposed in the notch, wherein the rounded bolt seat permits angular displacement of the bolt with respect to the clamp.
  • 5. The apparatus of claim 1, further comprising a dome-shaped washer disposed on a top surface of the tray for receiving the bolt, wherein the dome-shaped washer permits angular displacement of the bolt with respect to the tray.
  • 6. The apparatus of claim 1, further comprising a rounded bolt seat disposed on an underside of the clamp, wherein the rounded bolt seat permits angular displacement of the bolt with respect to the clamp.
  • 7. The apparatus of claim 1, wherein: the bolt is secured by a nut disposed on a top surface of the tray; andthe notch prevents rotation of the bolt during tightening of the nut wherein the nut is adapted to be tightened by a single worker located on the top surface of the tray.
  • 8. The apparatus of claim 1, wherein the clamp comprises a long-leg region and a short-leg region.
  • 9. The apparatus of claim 8, wherein: the long-leg region engages the bottom surface of the tray; andthe short-leg region engages the bottom surface of the support.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to, and incorporates by reference for any purpose the entire disclosure of, U.S. Provisional Patent Application No. 61/445,898, filed Feb. 23, 2011.

US Referenced Citations (123)
Number Name Date Kind
2582826 Glitsch Jan 1952 A
2611457 Glitsch Sep 1952 A
2718901 Nutter Sep 1955 A
2752139 Huggins Jun 1956 A
2752229 Brown et al. Jun 1956 A
2787453 Hibshman et al. Apr 1957 A
2853281 Hibshman et al. Sep 1958 A
2903251 Thrift Sep 1959 A
2951691 Nutter Sep 1960 A
3039751 Versluis Jun 1962 A
3048957 Middleton Aug 1962 A
3080155 Glitsch et al. Mar 1963 A
3087711 Glitsch Apr 1963 A
3143482 McLeod et al. Aug 1964 A
3146280 Forgrieve Aug 1964 A
3233708 Glitsch Feb 1966 A
3245669 Huggins et al. Apr 1966 A
3282576 Bruckert et al. Nov 1966 A
3287004 Nutter Nov 1966 A
3338566 Kittel Aug 1967 A
3399871 Bon Sep 1968 A
3463464 Nutter et al. Aug 1969 A
3729179 Keller Apr 1973 A
3759494 Axelrod et al. Sep 1973 A
3959419 Kitterman May 1976 A
4120919 McClain Oct 1978 A
4133852 DiNicolantonio et al. Jan 1979 A
4174363 Bruckert Nov 1979 A
4201626 Asdigian May 1980 A
4207174 Christman Jun 1980 A
4247521 Forte et al. Jan 1981 A
4275021 Kirkpatrick et al. Jun 1981 A
4374786 McClain Feb 1983 A
4499035 Kirkpatrick et al. Feb 1985 A
4504426 Chuang et al. Mar 1985 A
4519960 Kitterman et al. May 1985 A
4528068 Fiocco et al. Jul 1985 A
4543218 Bardo et al. Sep 1985 A
4543219 Yamato et al. Sep 1985 A
4550000 Bentham Oct 1985 A
4597916 Chen Jul 1986 A
4603022 Yoneda et al. Jul 1986 A
4604247 Chen et al. Aug 1986 A
4710326 Seah Dec 1987 A
4729857 Lee et al. Mar 1988 A
4816191 Berven et al. Mar 1989 A
4842778 Chen et al. Jun 1989 A
4855089 Michels Aug 1989 A
4909967 Binkley et al. Mar 1990 A
4933047 Bannon Jun 1990 A
4956127 Binkley et al. Sep 1990 A
4981265 Buhlmann Jan 1991 A
5051214 Chen et al. Sep 1991 A
5098615 Resetarits Mar 1992 A
5106556 Binkley et al. Apr 1992 A
5120474 Binkley et al. Jun 1992 A
5147584 Binkley et al. Sep 1992 A
5164125 Binkley et al. Nov 1992 A
5192465 Petrich et al. Mar 1993 A
5192466 Binkley Mar 1993 A
5277848 Binkley et al. Jan 1994 A
5453222 Lee et al. Sep 1995 A
5468425 Nutter Nov 1995 A
5547617 Lee et al. Aug 1996 A
5573714 Monkelbaan et al. Nov 1996 A
5762834 Hauser et al. Jun 1998 A
5783119 Ulrich et al. Jul 1998 A
5895608 Lee et al. Apr 1999 A
5906773 Hausch et al. May 1999 A
5911922 Hauser et al. Jun 1999 A
5921109 Billingham et al. Jul 1999 A
6053484 Fan et al. Apr 2000 A
6068244 Burton et al. May 2000 A
6089550 Petschauer et al. Jul 2000 A
6113079 Urbanski et al. Sep 2000 A
6145816 Chuang et al. Nov 2000 A
6224043 Fan et al. May 2001 B1
6293526 Fischer et al. Sep 2001 B1
6422539 Burton et al. Jul 2002 B1
6502806 Richardson Jan 2003 B2
6540213 Bachmann et al. Apr 2003 B2
6568663 Xu et al. May 2003 B1
6575437 Fischer et al. Jun 2003 B2
6588736 Chuang et al. Jul 2003 B1
6592106 Eaton, Jr. Jul 2003 B1
6629687 Gage Oct 2003 B1
6722639 Ender et al. Apr 2004 B2
6736378 Colic et al. May 2004 B2
6739585 Urbanski et al. May 2004 B1
6755943 Mizutani et al. Jun 2004 B1
6799752 Wu et al. Oct 2004 B2
6962661 Northup, Jr. et al. Nov 2005 B2
7045103 McDougald et al. May 2006 B2
7052654 McDougald et al. May 2006 B2
7078002 Van Vliet et al. Jul 2006 B2
7125004 Dollie et al. Oct 2006 B2
7125005 Colic et al. Oct 2006 B2
7155801 Hammon et al. Jan 2007 B2
7235158 Matsumoto et al. Jun 2007 B2
7270315 Burton et al. Sep 2007 B2
7282118 Mitsumoto et al. Oct 2007 B2
7540476 Pilling et al. Jun 2009 B2
7556734 Lee et al. Jul 2009 B2
7712728 Kehrer May 2010 B2
7896039 Bachmann et al. Mar 2011 B2
8006716 Zhang et al. Aug 2011 B2
8720870 Pilling et al. May 2014 B2
20020041040 Fischer et al. Apr 2002 A1
20030067085 Shakur et al. Apr 2003 A1
20040037759 Van Vliet et al. Feb 2004 A1
20040151643 McDougald et al. Aug 2004 A1
20040182013 Kehrer Sep 2004 A1
20070126134 Xu et al. Jun 2007 A1
20070295591 Mosler Dec 2007 A1
20080018003 Pilling et al. Jan 2008 A1
20080245651 Werlen et al. Oct 2008 A1
20080277260 Binkley et al. Nov 2008 A1
20100288624 Kim et al. Nov 2010 A1
20110278745 Pilling et al. Nov 2011 A1
20120024977 Buttridge et al. Feb 2012 A1
20120118399 Binkley et al. May 2012 A1
20120211347 Kim et al. Aug 2012 A1
20120300577 Buttridge et al. Nov 2012 A1
Foreign Referenced Citations (1)
Number Date Country
010877 Mar 1983 EP
Non-Patent Literature Citations (7)
Entry
Glitsch, Inc., “Ballast Tray Design Manuel”, Bulletin 4900, Sixth Edition, 1993, (40 pages).
Axens IFP Group Technologies, “Equiflow Reactor Internals for Optimal Catalyst Utilization”, Axens Process Licensing, Jun. 2006, 4 pages.
GTC Technology, “GT-BenZap Technology Licensing”. Engineered to Innovate, 2009, 2 pages.
Shell, “Shell Global Solutions' Portfolio for Reactor Engineering Technology”, Shell Global Solutions, 2002, 3 pages.
Young, Lee W., “International Search Report” for the International Application PCT/IB11/02695 as mailed Apr. 17, 2012. (4 pages).
Pilling Mark, et al., Mini Valve, Hydrocarbon Engineering, Apr. 2013 [3 pages].
Kister, Henry Z., “Distillation Design”, ch. 6, pp. 265, 296, 331, 299-301, ch. 7, pp. 382-394, ch. 9, pp. 537-554, McGraw-Hill, 1992.
Related Publications (1)
Number Date Country
20120211347 A1 Aug 2012 US
Provisional Applications (1)
Number Date Country
61445898 Feb 2011 US