Claims
- 1. A method of shipping substantially pure uranium hexafluoride in a conventional overpack comprising the steps of:
providing a cylinder for the transport of substantially pure uranium hexafluoride comprising
a vessel having a cylindrical sidewall and a head closing one end of the vessel, the head being permanently affixed to the sidewall a valve connected to the head of the vessel controlling the flow of matter into and out of the vessel, a sealing surface connected to the vessel and surrounding the valve, a cap over the valve, a pair of seals between the sealing surface and the cap and defining a test volume between the two seals, the cap and the sealing surface, a test port connecting the test volume and an exterior surface of the vessel, fastening means for pressing the cap against the sealing surface to seal a joint between them against the flow of matter from outside the cap to the valve and from the valve to outside the cap, determining a maximum rate of leakage from within the cap to the atmosphere outside the cap by measuring the leakage rate into the test volume with a leak testing apparatus connected to the test port, and thereafter placing the cylinder in a conventional overpack.
- 2. The method of claim 1 further including the step of placing substantially pure uranium hexafluoride in the vessel prior to performing the determining step.
- 3. The method of claim 2 wherein the step of determining a maximum rate of leakage from within the cap to the atmosphere outside the cap by measuring the leakage rate into the test volume includes the steps of determining the size of the test volume and calculating an acceptable leak rate for a volume of that size.
- 4. The method of claim 3 further including the step of measuring the atmospheric pressure, evacuating the test volume to a selected pressure, connecting a container of known volume to the test port and releasing a known volume of gas from the container into the test volume, and measuring the pressure in the combined volume of the container and the test volume.
- 5. The method of claim 3 wherein the step of determining a maximum rate of leakage from within the cap to the atmosphere outside the cap by measuring the leakage rate into the test volume includes the steps of supplying a test apparatus consisting essentially of
a vacuum pump, a pressure gauge, a container of known volume, a valve to control the flow of air from the atmosphere into the container, the vacuum pump, pressure gauge, and container being adapted to be connected to the test port at the same time, a valve controlling the flow of gas from the container into the test volume, and a valve controlling the flow of gas from the test volume to the vacuum pump.
- 6. A method of shipping substantially pure uranium hexafluoride comprising the steps of:
providing a cylinder for the transport of substantially pure uranium hexafluoride comprising
a closed steel vessel having a head end, a foot end, and a cylindrical sidewall permanently affixed to the head end and the foot end to define an interior volume for receiving substantially pure uranium hexafluoride, a valve connected to the head end of the vessel controlling the flow of matter into and out of the vessel, a sealing surface connected to the vessel and surrounding the valve, a cap over the valve, a pair of seals between the sealing surface and the cap and defining a test volume between the two seals, the cap and the sealing surface, a test port connecting the test volume with an an exterior surface of the vessel, fastening means for pressing the cap against the sealing surface to seal a joint between them against the flow of matter from outside the cap to the valve and from the valve to outside the cap, and determining a maximum rate of leakage from within the cap to the atmosphere outside the cap by measuring the combined leakage rate from the atmosphere into the test volume and from the interior volume of the vessel into the test volume.
- 7. The method of claim 6 further including the step of placing substantially pure uranium hexafluoride in the vessel prior to performing the determining step.
- 8. The method of claim 7 wherein the step of determining a maximum rate of leakage from within the cap to the atmosphere outside the cap includes the steps of determining the size of the test volume and calculating an acceptable leak rate for a volume of that size.
- 9. The method of claim 8 further including the step of measuring the atmospheric pressure, evacuating the test volume to a selected pressure, connecting a container of known volume to the test port and releasing a known volume of gas from the container into the test volume, and measuring the pressure in the combined volume of the container and the test volume.
- 10. The method of claim 8 wherein the step of determining a maximum rate of leakage from within the cap to the atmosphere outside the cap includes the steps of supplying a test apparatus comprising
a vacuum pump, a pressure gauge, a container of known volume, a valve to control the flow of air from the atmosphere into the container, the vacuum pump, pressure gauge and container being adapted to be connected to the test port at the same time, a valve controlling the flow of gas from the container into the test volume, and a valve controlling the flow of gas from the test volume to the vacuum pump.
- 11. An apparatus for shipping substantially pure uranium hexafluoride comprising
a cylinder for the transport of substantially pure uranium hexafluoride comprising
a vessel having a cylindrical sidewall and a head closing one end of the vessel, the head being permanently affixed to the sidewall, a valve connected to the head of the vessel controlling the flow of matter into and out of the vessel, a sealing surface connected to the vessel and surrounding the valve, a cap over the valve, a pair of seals between the sealing surface and the cap, the seals defining a test volume between the two seals, the cap, and the sealing surface, a test port connecting the test volume with an exterior surface one of the vessel and the cap, fasten means for pressing the cap against the sealing surface to seal the joint between them against the flow of matter from outside the cap to the valve and from the valve to outside the cap, and a leak detection device adapted to be connected to the test port.
- 12. The apparatus of claim 11 wherein the leak detection device includes
a vacuum pump, a pressure gauge, a container of known volume, a valve to control the flow of air from the atmosphere into the container, the vacuum pump, pressure gauge, and container being adapted to be connected to the test port at the same time via a manifold, a valve controlling the flow of gas from the container into the test volume, and a valve controlling the flow of gas from the test volume to the vacuum pump.
- 13. The apparatus of claim 12 wherein the volume of the container of known volume is comparable to test volume.
RELATED APPLICATIONS
[0001] This application is a continuation in part of U.S. Ser. No. 09/840,314, filed Apr. 23, 2001 and titled VESSEL FOR URANIUM HEXAFLUORIDE TRANSPORT.
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09840314 |
Apr 2001 |
US |
Child |
10358945 |
Feb 2003 |
US |