The invention relates to a method according to the preamble of claim 1 for tempering material and to apparatus according to the preamble of claim 16 for tempering material.
According to prior art metals, such as steel, glass and other materials are tempered by air cooling. It is also known to temper a piece to be tempered by immersing the hot piece into water. In tempering based on air cooling, a strong flow of air is directed to the material to be tempered or to a surface of a product. The strong flow of air is used with the aim of reducing the temperature of the material rapidly, the structure and/or properties of the material undergoing changes that provide the material with desired characteristics. Steel tempering, for example, is understood to mean heating the steel above the temperature of austenite formation and cooling it, after a holding period required for the austenite formation and homogenization, at a rate faster that the critical cooling rate. The aim with the tempering is a specific, predetermined martensite content in the microstructure of the tempered piece. Glass tempering, in turn, aims at using rapid cooling to produce a compression tension in the surface layer of the glass and a tensile stress into the inner part of the glass.
A problem with the above prior art solution based on air cooling is that air cooling in connection with tempering requires an extremely large amount of air and an efficient blow thereof towards the surface of the material or product to be tempered. Such a large amount of air and efficient blow consume extremely high amounts of energy. Moreover, in many applications management of rapid and uniform cooling is difficult to control and carry out, particularly when thin pieces, such as thin glass, are being tempered. Hence air cooling and the control thereof for producing an even cooling requires complex hardware solutions. Water tempering, in which a hot piece is immersed into water, is impossible to control on an industrial scale when tempered products of a good quality are to be produced.
It is therefore an object of the invention to provide a method and apparatus that allow the above problems to be solved. The object of the invention is achieved by a method according to the characterizing part of claim 1, characterized in that in the method at least one liquid is atomized into droplets, the formed droplets being guided towards a surface of a hot material so that at least some of the droplets collide with the surface of the hot material and evaporate when they receive thermal energy from the surface layer of the hot material. The object of the invention is further achieved by the apparatus according to the characterising part of claim 16, the apparatus being characterized in that the apparatus comprises one or more sprayers for atomizing at least one liquid into droplets and means for guiding the formed droplets towards a surface of a hot material so that at least some of the droplets collide with the surface of the hot material and evaporate, thus removing thermal energy from the surface layer of the hot material.
The preferred embodiments of the invention are disclosed in the dependent claims.
The invention is based on the idea of cooling a material or product in tempering by using at least one liquid which is atomized into small droplets by means of one or more sprayers. The droplets are further conveyed to the surface of the hot material to be tempered so that the droplets collide with the surface of the hot material to be tempered. The droplets may be guided towards the surface of the hot material by using a gas flow, the cooling of the hot material being achieved by an aerosol that comprises the formed droplets. The droplets colliding with the hot surface of the material receive thermal energy from the hot material and evaporate quickly. In other words, liquid evaporates in separate droplets and from separate droplets so that no layer of liquid or pools consisting of a plural number of droplets are formed onto the material surface. In other words, when a droplet collides with the surface of the hot material, it evaporates in the collision or immediately thereafter. This is achieved by using sufficiently small droplets. The liquid is preferably coalesced into droplets having an average diameter smaller than or equal to 30 um. These extremely small droplets evaporate rapidly as they collide with the hot material, thus removing efficiently thermal energy from the hot material. In a preferred case the power of the collision on the surface of the hot material is sufficiently efficient for evaporating small droplets substantially in connection with the collision.
An advantage of the method and apparatus of the invention is that the use of small droplets for cooling hot material in a tempering process enables an energy efficient means for tempering a hot material. The small droplets allow a rapid and efficient heat transfer from a hot piece to be achieved. Uniform and rapid heat transfer is particularly important when large surfaces and thin products, such as thin glass, are to be tempered. Cooling produced with small droplets consumes significantly less energy than prior art air cooling and, moreover, a tempering apparatus based on the use of small droplets has a structure that is simpler to produce.
In the following the invention will be disclosed in greater detail in connection with preferred embodiments, with reference to the enclosed drawings, in which:
Reference is made to
The sprayer 22 may be in a chamber 14, which substantially separates the inner space of chamber 14 from the ambient atmosphere. Inert gas, for example, may be supplied into the chamber 14 from a gas conduit, which is preferably the gas conduit 20 used for atomizing the liquid. Alternatively, gas may be supplied into the chamber 14 from separate gas nozzles. The chamber 14 may also be provided with suction means for removing evaporated droplets 7 from the chamber 14. In other words, the apparatus 50 comprises means for guiding droplets 7 formed with the sprayer 22 towards the surface of the hot material 26. These means for guiding the formed droplets 7 towards the surface of the hot material may comprise one or more gas flows 20 atomizing at least one liquid, or one or more separate gas nozzles (not shown). The heating of the material to be tempered may take place in process step 24, for example, which is arranged upstream of the sprayer 22 and may consist of heating, working or a similar process step. In a preferred embodiment the tempering apparatus 50 of the invention is connected to a manufacturing or processing line of a material or product, such as a flat glass manufacturing line, the manufacturing line of some other glass product, the manufacturing line of steel or to the manufacturing or processing line of some other product or material. In the manufacturing line of flat glass the tempering apparatus 50 may be placed after the tin bath in the float line, for example, the temperature of the glass strip rising from the bath being 650° C. at the most. The temperature of the hot material arriving at the tempering may be from 850 to 450° C., for example. However, the temperature depends on the material to be tempered and the desired tempering properties.
In the disclosed invention hot material is tempered using small droplets 7 to produce the necessary rapid cooling, the droplets being guided to collide with the surface of the hot material 26 so that the droplets 7 collide with the surface of the hot material 26, as shown in
The following shows by means of
According to what is stated above, the sprayer 22 of
A liquid 3 to be sprayed and spraying gas 8 are fed into the sprayer 2. The spraying gas 8 and liquid 3 are preferably fed into the sprayer 2 at different velocities, whereby the difference in velocity between the spraying gas 8 and liquid 3 at the output of the sprayer 2 cause the liquid 3 to spray, atomize, into a droplet spray 4 that consists of small droplets. The droplet sprays 4 collide with each other, whereby an aerosol consisting of very small droplets 7 is unexpectedly formed. The droplet spray 4 may in itself already form an aerosol. As droplet sprays directed essentially directly at each other collide, an aerosol is produced that does not essentially move, when the momentums of the droplet sprays 4 are essentially equal. The device may further be arranged to contain means for supplying at least two different liquids to at least two sprayers. In other words, the device may be formed in such a manner that the same or different liquids may be supplied to two or more sprayers 2. In other words, the same or different liquids may be supplied to the sprayers 2 of each sprayer pair, if desired. In addition, the same liquid as or different liquids than in the other sprayer pairs can be used in at least two sprayer pairs. In such a case, each sprayer pair may produce a different spray or a similar spray as the sprayer pair beside it. Further, the sprayers 2 of the device may be adapted to produce droplet sprays 4 in which the droplets are substantially different or similar in their average droplet size. For instance, the geometry of the sprayers 2 or the velocity of the fluid 3 and spraying gas or the difference in velocity between them may all affect the size of the droplets. This makes it possible to produce an aerosol that is homogeneous or heterogeneous in droplet size.
The sprayer 22 preferably also comprises means for directing a gas flow from at least one direction to the collision point of the droplet sprays 4. This is preferably done by furnishing the device with a gas nozzle 5 for supplying gas from at least one direction to the collision point of the droplet sprays 4. Thus, by means of the gas flow, it is possible to move or transfer the aerosol generated at the collision point of the droplet sprays 4 into a required direction toward the surface of the hot material 26. Any gas may be used in the gas nozzle 5. In other words, it may be an inert gas, such as nitrogen, or a gas that reacts to the spray or aerosol. In the embodiment of
Another embodiment of the sprayer 22 of
It is apparent to a person skilled in the art that as technology advances, the basic idea of the invention may be implemented in many different manners. The invention and its embodiments are, thus, not limited to the examples described above, but may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
20095695 | Jun 2009 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI10/50499 | 6/15/2010 | WO | 00 | 11/16/2011 |