The invention relates generally to electronic reading devices such as electronic books and electronic newspapers and, more particularly, to a method and apparatus for displaying a sub-picture over a background picture by positioning the sub-picture to mask the effects of color drift in the background.
Recent technological advances have provided “user friendly” electronic reading devices such as e-books that open up many opportunities. For example, electrophoretic displays hold much promise. Such displays have an intrinsic memory behavior and are able to hold an image for a relatively long time without power consumption. Power is consumed only when the display needs to be refreshed or updated with new information. So, the power consumption in such displays is very low, suitable for applications for portable e-reading devices like e-books and e-newspaper. Electrophoresis refers to movement of charged particles in an applied electric field. When electrophoresis occurs in a liquid, the particles move with a velocity determined primarily by the viscous drag experienced by the particles, their charge (either permanent or induced), the dielectric properties of the liquid, and the magnitude of the applied field. An electrophoretic display is a type of bi-stable display, which is a display that substantially holds an image without consuming power after an image update.
For example, international patent application WO 99/53373, published Apr. 9, 1999, by E Ink Corporation, Cambridge, Mass., US, and entitled Full Color Reflective Display With Multichromatic Sub-Pixels, describes such a display device. WO 99/53373 discusses an electronic ink display having two substrates. One is transparent, and the other is provided with electrodes arranged in rows and columns. A display element or pixel is associated with an intersection of a row electrode and column electrode. The display element is coupled to the column electrode using a thin film transistor (TFT), the gate of which is coupled to the row electrode. This arrangement of display elements, TFT transistors, and row and column electrodes together forms an active matrix. Furthermore, the display element comprises a pixel electrode. A row driver selects a row of display elements, and a column driver supplies a data signal to the selected row of display elements via the column electrodes and the TFT transistors. The data signals correspond to graphic data to be displayed, such as text or figures.
The electronic ink is provided between the pixel electrode and a common electrode on the transparent substrate. The electronic ink comprises multiple microcapsules of about 10 to 50 microns in diameter. In one approach, each microcapsule has positively charged white particles and negatively charged black particles suspended in a liquid carrier medium or fluid. When a positive voltage is applied to the pixel electrode, the white particles move to a side of the microcapsule directed to the transparent substrate and a viewer will see a white display element. At the same time, the black particles move to the pixel electrode at the opposite side of the microcapsule where they are hidden from the viewer. By applying a negative voltage to the pixel electrode, the black particles move to the common electrode at the side of the microcapsule directed to the transparent substrate and the display element appears dark to the viewer. At the same time, the white particles move to the pixel electrode at the opposite side of the microcapsule where they are hidden from the viewer. When the voltage is removed, the display device remains in the acquired state and thus exhibits a bi-stable character. In another approach, particles are provided in a dyed liquid. For example, black particles may be provided in a white liquid, or white particles may be provided in a black liquid. Or, other colored particles may be provided in different colored liquids, e.g., white particles in green liquid.
Other fluids such as air may also be used in the medium in which the charged black and white particles move around in an electric field (e.g., Bridgestone SID2003—Symposium on Information Displays. May 18-23, 2003,—digest 20.3). Colored particles may also be used.
To form an electronic display, the electronic ink may be printed onto a sheet of plastic film that is laminated to a layer of circuitry. The circuitry forms a pattern of pixels that can then be controlled by a display driver. Since the microcapsules are suspended in a liquid carrier medium, they can be printed using existing screen-printing processes onto virtually any surface, including glass, plastic, fabric and even paper. Moreover, the use of flexible sheets allows the design of electronic reading devices that approximate the appearance of a conventional book.
In order to further reduce power consumption, a sub-picture may be displayed against an existing background picture by defining a partial display window rather than updating the entire display screen. For some applications, a sub-picture needs to be displayed in an already existing greyscale or color picture background. This sub-picture can be a black and white, greyscale or color picture. Although the E-ink display is bi-stable, the brightness of various grey states, for example, will drift in time towards a middle grey level. When the sub-picture with the same nominal, pre-drift grey level is updated close to the existing picture, a difference will be visible to the users, resulting in poor performance. This problem is present for both partial display updates and full image updates. When a pixel does not change color, the controller does not activate/refresh it, although we can do this by filling in data in the look-up-table (LUT). For example, an existing white background will tend to become grey over time. If a sub-picture with a white background is displayed over such a background, the change in color will be noticeable. It would therefore be desirable to mask the effect of color drift in a background image when a sub-picture is displayed over a background picture.
The present invention addresses the above and other issues.
In one aspect of the invention, a method for displaying a sub-picture over a background picture on an electronic reading device is provided. The method includes determining a visual characteristic of at least a portion of the background picture, determining a visual characteristic of at least a portion of the sub-picture, and determining a position for displaying the sub-picture so that the at least a portion of the background picture and the at least a portion of the sub-picture are separated when the visual characteristics thereof differ by less than a threshold difference. The visual characteristic may be a grey scale level or color level, for example.
In a further aspect of the invention, a method for displaying a sub-picture over a background picture on an electronic reading device includes determining a visual characteristic of at least a portion of the background picture, determining a visual characteristic of at least a portion of the sub-picture, and displaying the at least a portion of the sub-picture over the at least a portion of the background picture with a transition region therebetween in accordance with the visual characteristics thereof.
Related electronic reading devices and computer program products are also provided.
In the drawings:
In all the Figures, corresponding parts are referenced by the same reference numerals.
As an example, the electrophoretic medium 5 may contain negatively charged black particles 6 in a white fluid. When the charged particles 6 are near the first electrode 3 due to a potential difference of, e.g., +15 Volts, the appearance of the picture elements 2 is white. When the charged particles 6 are near the second electrode 4 due to a potential difference of opposite polarity, e.g., −15 Volts, the appearance of the picture elements 2 is black. When the charged particles 6 are between the electrodes 3 and 4, the picture element has an intermediate appearance such as a grey level between black and white. A drive control 100 controls the potential difference of each picture element 2 to create a desired picture, e.g. images and/or text, in a full display screen. The full display screen is made up of numerous picture elements that correspond to pixels in a display.
The control 100 may be part of a computer that executes any type of computer code devices, such as software, firmware, micro code or the like, to achieve the functionality described herein. Accordingly, a computer program product comprising such computer code devices may be provided in a manner apparent to those skilled in the art. The control 100 may have logic for periodically providing a forced reset of a display region of an electronic book, e.g., after every x pages are displayed, after every y minutes, e.g., ten minutes, when the electronic reading device is first turned on, and/or when the brightness deviation is larger than a value such as 3% reflection. For automatic resets, an acceptable frequency can be determined empirically based on the lowest frequency that results in acceptable image quality. Also, the reset can be initiated manually by the user via a function button or other interface device, e.g., when the user starts to read the electronic reading device, or when the image quality drops to an unacceptable level. The required reset frequency is reduced with the invention, e.g., by 80% or more, by introducing the option of sub-picture update.
The invention may be used with any type of electronic reading device.
Various user interface devices may be provided to allow the user to initiate page forward, page backward commands and the like. For example, the first region 442 may include on-screen buttons 424 that can be activated using a mouse or other pointing device, a touch activation, PDA pen, or other known technique, to navigate among the pages of the electronic reading device. In addition to page forward and page backward commands, a capability may be provided to scroll up or down in the same page. Hardware buttons 422 may be provided alternatively, or additionally, to allow the user to provide page forward and page backward commands. The second region 452 may also include on-screen buttons 414 and/or hardware buttons 412. Note that the frame 405 around the first and second display regions 442, 452 is not required as the display regions may be frameless. Other interfaces, such as a voice command interface, may be used as well. Note that the buttons 412, 414; 422, 424 are not required for both display regions. That is, a single set of page forward and page backward buttons may be provided. Or, a single button or other device, such as a rocker switch, may be actuated to provide both page forward and page backward commands. A function button or other interface device can also be provided to allow the user to manually initiate a reset.
In other possible designs, an electronic book has a single display screen with a single display region that displays one page at a time. Or, a single display screen may be partitioned into or two or more display regions arranged, e.g., horizontally or vertically. In any case, the invention can be used with each display region to reduce image retention effects.
Furthermore, when multiple display regions are used, successive pages can be displayed in any desired order. For example, in
Additionally, note that the entire page need not be displayed on the display region. A portion of the page may be displayed and a scrolling capability provided to allow the user to scroll up, down, left or right to read other portions of the page. A magnification and reduction capability may be provided to allow the user to change the size of the text or images. This may be desirable for users with reduced vision, for example.
For example, as shown in
In accordance with the invention, the visual effect can be significantly improved by separating picture regions having unfaded and faded versions of the same or similar color. For example, as shown in
Generally, the invention provides a technique for updating black and white, greyscale or color sub-pictures in an electronic reading device, such as a bi-stable device based on the E-ink display. The sub-picture can include any text and/or graphics that is desired to be displayed over an existing background. This occurs in many practical situations. For example, an electronic dictionary or encyclopedia may provide text that describes a subject. A related image may be displayed as a sub-picture near the existing text automatically or responsive to a user input. In this case, the background picture includes the text and perhaps a blank region of the display. The challenge, therefore, is to select a location for displaying the sub-picture over the background picture. The choice of positions may be constrained by other text or images on the display.
In particular, the location of the partial window, or sub-picture, may be defined by (x, y) coordinates on the display screen. The selected location depends on the information of both the existing background picture and the new sub-picture. The selected location should eliminate the probability that the area with the same or similar (nominal) grey level or color level of the sub-picture is close to that of the existing picture. That is, the same (nominal) grey or color area between new and old pictures should be intentionally separated. The amount of separation can be determined as a fixed dimension, or based on factors such as the size of features, such as text in the background picture, and the size of the sub-picture, the display screen size and the like. For example, a relatively small sub-picture that is displayed next to relatively small text in the background may be separated a smaller distance than for a large sub-picture next to large text. Generally, the goal is avoid or minimize the perception by the viewer of fading on the display device.
For example, consider the background picture 800 with text feature 810 of
In this case, a portion of the sub-picture 900 is overlapping with the text 810. This is undesirable since a black portion of the sub-picture 900, overlaps a faded black portion of the background. Specifically, the left ear of the bear overlaps part of the bottom of the letter “e”, and the right ear overlaps part of the bottom of the letter “a”. The viewer can therefore quickly detect that the background has faded since the fading of the text 810 of the background picture 800 is accentuated by the proximity of the sub-picture 900. Accordingly, the situation of
For each respective region, the color or greyscale level of the background picture that is present may be compared to the color or greyscale level of the sub-picture (
In a further approach, the degree of overlapping of like colors is quantified so that some overlapping is allowed. The extent of overlapping and the closeness of the colors may be factored into such a decision. The size of the sub-picture 900 and the feature, e.g., text 810, in the background picture 800 that is overlapped may also be considered.
Regarding the predetermined threshold, with a four level or two-bit grey scale which includes black, dark grey, light grey and white, the colors are sufficiently far apart that the sub-picture may be precluded from being displayed when overlapping color levels are the same. In this case, the threshold is therefore a zero difference. For a 16-level or four bit grey scale, the threshold may be a given number of levels, e.g., three levels. A 256-level or eight bit grey scale may also be used. The optimum threshold may be determined experimentally based on testing of viewers.
Moreover, instead of comparing the initial color levels of the sub-picture 900 and background picture 800, and assuming that a noticeable amount of fading has occurred for the background picture, the actual color level of the background picture can be estimated and/or measured. For instance, the control 100 can estimate the current color level of the background picture 1200 based on the time that has elapsed since it was displayed, and based on known fading characteristics of the display device as determined from tests, for example. The estimated color level may account for factors other than time that may affect fading, such as the brightness setting of the display device, ambient lighting conditions, battery strength and the like. Fading can be measured, e.g., based on the reflectance of the display device. For instance, the acceptable threshold color difference may be based on a 3% change in reflectance. In one approach, the position of the sub-picture is not adjusted to avoid overlapping of like colors with the background picture, and the associated processing is not performed, when the elapsed time is so short that significant fading has not likely occurred in the background picture.
As an alternative to separating portions of the sub-picture 900 and background picture 800 having like colors, a transition region may be provided between the two pictures. For example,
The background picture region 1300 is shown as being quite light for emphasis although in practice the difference between the two regions 1300 and 1350 is typically subtler. A transition region 1310 (
The control 100 can estimate the current color level of the background region 1300 based on the time that has elapsed since the background region 1300 was displayed and based on known fading characteristics of the display device as determined from tests, for example. The estimated color level may account for factors other than time that may affect fading, such as the brightness setting of the display device, battery strength, ambient lighting conditions, and the like. Another approach to determining fading is to measure the fading, e.g., based on the reflectance of the display device. For example, the control may estimate and/or measure that the faded black color of the background picture region 1300 corresponds to a specific grey level on a grey scale, e.g., level 12 of 16, where level 16 represents pure black, and level 0 represents pure white. Then, the control 100 can access data in the memory 120 indicating that the sub-picture region 1350 is pure black with a level of 16 in the present example, and provide the transition region 1310 with a grey level of 14, for instance, half way between 12 and 16. Note that the control may not provide the transition region 1310 unless the current color of the background picture region 1300 differs from the initial color of the sub-picture region 1350 by less than a threshold difference.
The transition region 1310 may extend into the background picture 1300 a given amount, such as five pixels. The size of the transition region 1310 may vary based on factors such as the size of features in the background picture and the size of the sub-picture, the display screen size and the like. The transition region 1310 may be provided by modifying the data of the background picture region 1300 in a look-up table (LUT) stored in the memory 120. The LUT stores data that defines how each pixel will be controlled. The data of the pixels in the transition region 1310. may be modified to provide the desired intermediate color.
In another approach, shown in
Generally, implementation of the invention may require an additional memory or capacity in the existing memory to store information regarding the color states of the background picture, the sub-picture positions and the transition region characteristics. Additionally, a modest additional amount of processor time may be needed to compare the data of the new sub-picture to the existing background picture and then define the position of the new picture in (x,y) coordinates.
Note that while color level/greyscale level has been mentioned as a visual characteristic of concern in providing a desirable positioning of a sub-picture over a background picture, or in providing a transition region between a sub-picture and background picture, other criteria such as brightness and contrast may be addressed as well using the techniques described herein. Moreover, while an example has been shown for positioning a single sub-picture over a background, the techniques discussed herein are applicable as well to positioning a number of sub-pictures over a background. In this case, each sub-picture can be optimally positioned individually. If the positioning of one sub-picture depends on the positioning of another, e.g., due to space constraints or other concerns, an optimization may be performed to arrive at the best compromise for the position of each sub-picture.
While there has been shown and described what are considered to be preferred embodiments of the invention, it will, of course, be understood that various modifications and changes in form or detail could readily be made without departing from the spirit of the invention. It is therefore intended that the invention not be limited to the exact forms described and illustrated, but should be construed to cover all modifications that may fall within the scope of the appended claims. The invention may, for example, be embodied in displays other than electronic reading devices, including inter alia, bill boards or other signage, in particular signage in which part of sign is “flashed” or changed rapidly while the rest of the sign remains unchanged
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB04/51552 | 8/24/2004 | WO | 3/20/2007 |
Number | Date | Country | |
---|---|---|---|
60498026 | Aug 2003 | US |