The present invention generally relates to a system and method for estimating operational condition of a suspension system in a vehicle. More particular, the invention relates to a system and method for using a camera and a detected horizon for determining a relative condition of a vehicle suspension system in response to the detected horizon.
Autonomous vehicles are configured with numerous sensors to detect their environment and surroundings. This is important as the vehicle must navigation within this environment while avoiding all obstacles, maintaining optimal performance, and maintaining vehicle maintenance. An issue with vehicle operation is that autonomous vehicles may occasionally travel without passengers, with only cargo, or passengers in autonomous or non-autonomous vehicles, such as rental vehicles, may not have an interest in reporting maintenance issues. Thus, the vehicle may go through long periods of use without critical maintenance being performed.
In a vehicle suspension system dampers and other suspension components may degrade or fail suddenly and at different intervals and are considered a safety issue with regard to vehicle handling. However, the state of health of suspension components, including vehicle damper system components, is often not identified by the vehicle operator until the component has degraded to a point where the suspension component or other vehicle components may be damaged. It would be desirable to identify these component degradations in order to avoid these problems.
The above information disclosed in this background section is only for enhancement of understanding of the background of the invention and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
Disclosed herein are vehicle control methods and systems and related control logic for detecting and controlling vehicle systems, methods for making and methods for operating such systems, and motor vehicles equipped with onboard control systems. By way of example, and not limitation, there is presented various embodiments of a vehicle suspension system, and a method for detecting a potential failure condition and identifying a vehicle component failure in response to the detection are disclosed herein.
In accordance with an aspect of the present invention, a vehicle control system is disclosed comprising a visual sensor for detecting an image depicting a detected horizon, a memory for storing a reference horizon, a processor for comparing the detected horizon and the reference horizon, the processor further operative to generate a control signal in response to the detected horizon deviating from the reference horizon, and a vehicle controller for controlling a vehicle control system in response to the control signal.
In accordance with another aspect of the present invention, a method for controlling a vehicle comprising receiving an image data, determining a detected horizon in response to the image data, generating a control signal in response to a deviation between the detected horizon and a reference horizon, and controlling a vehicle in response to the control signal.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
The above advantage and other advantages and features of the present disclosure will be apparent from the following detailed description of the preferred embodiments when taken in connection with the accompanying drawings.
The following detailed description is merely exemplary in nature and is not intended to limit the disclosure or the application and uses thereof. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.
Embodiments of the present disclosure are described herein. It is to be understood, however, that the disclosed embodiments are merely examples and other embodiments can take various and alternative forms. The figures are not necessarily to scale; some features could be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention. As those of ordinary skill in the art will understand, various features illustrated and described with reference to any one of the figures can be combined with features illustrated in one or more other figures to produce embodiments that are not explicitly illustrated or described. The combinations of features illustrated provide representative embodiments for typical applications. Various combinations and modifications of the features consistent with the teachings of this disclosure, however, could be desired for particular applications or implementations.
Certain terminology may be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “above and below” refer to directions in the drawings to which reference is made. Terms such as “front,” “back,” “left,” “right,” “rear,” and “side” describe the orientation and/or location of portions of the components or elements within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the components or elements under discussion. Moreover, terms such as “first,” “second,” “third,” and so on may be used to describe separate components. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import.
The vehicle 10 includes a propulsion system 13, which may in various embodiments include an internal combustion engine, an electric machine such as a traction motor, and/or a fuel cell propulsion system. The vehicle 10 also includes a transmission 14 configured to transmit power from the propulsion system 13 to the plurality of vehicle wheels 15 according to selectable speed ratios. According to various embodiments, the transmission 14 may include a step-ratio automatic transmission, a continuously-variable transmission, or other appropriate transmission. The vehicle 10 additionally includes wheel brakes (not shown) configured to provide braking torque to the vehicle wheels 15. The wheel brakes may, in various embodiments, include friction brakes, a regenerative braking system such as an electric machine, and/or other appropriate braking systems. The vehicle 10 additionally includes a steering system 16. While depicted as including a steering wheel and steering column for illustrative purposes, in some embodiments, the steering system 16 may not include a steering wheel. The vehicle 10 additionally includes one or more suspension system components, such as vehicle dampers or shock absorbers 17. In some embodiments, as shown in
In various embodiments, the vehicle 10 also includes a navigation system 28 configured to provide location information in the form of GPS coordinates (longitude, latitude, and altitude/elevation) to a controller 22. In some embodiments, the navigation system 28 may be a Global Navigation Satellite System (GNSS) configured to communicate with global navigation satellites to provide autonomous geo-spatial positioning of the vehicle 10. In the illustrated embodiment, the navigation system 28 includes an antenna electrically connected to a receiver. In some embodiments, the navigation system 28 provides data to the controller 22 to assist with autonomous or semi-autonomous operation of the vehicle 10.
With further reference to
The vehicle 10 includes at least one controller 22. While depicted as a single unit for illustrative purposes, the controller 22 may additionally include one or more other controllers, collectively referred to as a “controller.” The controller 22 may include a microprocessor or central processing unit (CPU) or graphical processing unit (GPU) in communication with various types of computer readable storage devices or media. Computer readable storage devices or media may include volatile and nonvolatile storage in read-only memory (ROM), random-access memory (RAM), and keep-alive memory (KAM), for example. KAM is a persistent or non-volatile memory that may be used to store various operating variables while the CPU is powered down. Computer-readable storage devices or media may be implemented using any of a number of known memory devices such as PROMs (programmable read-only memory), EPROMs (electrically PROM), EEPROMs (electrically erasable PROM), flash memory, or any other electric, magnetic, optical, or combination memory devices capable of storing data, some of which represent executable instructions, used by the controller 22 in controlling the vehicle.
The vehicle, such as the vehicle 10 partially shown in
As shown in
Additionally or alternatively, in some embodiments, the suspension monitoring system 200 of the vehicle 10 includes an inertial measurement unit (IMU) 18. The IMU 18 is coupled to the chassis 12. The IMU 18 is an electronic device that measures and reports the dynamically changing movements of the vehicle using a combination of accelerometers and gyroscopes. The IMU 18 provides a stream of data related to the linear acceleration of the vehicle on three principal axes, together with the three sets of rotation parameters (pitch, role, and heading) to a vehicle controller, such as the controller 22, as discussed in greater detail herein. In some embodiments, a safety data module (not shown) coupled to the vehicle 10 also includes sensors capable of measuring the lateral acceleration of the vehicle 10. The safety data module is also electronically connected to the vehicle controller to transmit sensor data for further analysis and calculation, as discussed in greater detail herein.
Turning now to
In this exemplary embodiment, the system and method are operative to use the average or reference horizon as a correlation plane. Differences in the reference horizon and the visible horizon in the FOV may indicate suspension issues. Differences may be plotted to contrast the vehicle plane to look for any corner that would have a change in perspective. Alternately, using on board sensors, such as wheel position, IMU or acceleration, may help identify a change in frequencies in the chassis and suspension system.
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
The image processor 620 is operative to receive the image data and process the image to determine a detected horizon. The image processor is then operative to define a reference horizon in response to a sensor data from a sensor 635. The sensor 635 may be a GPS sensor, an accelerometer, gyroscope, magnometer, or the like. IMU, Z Accel, Wheel Position Sensors and Corner accelerometers existing in functional safety and adaptive suspension systems and may be used to determine a reference horizon by examining frequency shifts of these onboard suspension sensors. The reference horizon may be determined in response to a plurality of data from a number of sensors. The image processor is then operative to compare the reference horizon to the detected horizon in order to determine vehicle attitude changes looking for faults in corner, such as broken or damaged springs etc. The image processor 620 may further be operative to use reference data from signature road surface, or average data for horizon in regular use as a contrast measure for changes in vehicle attitude.
Alternatively, the image processor 620 may be operative to receive cloud based data from reference horizon and other vehicles to create a contrast window for proper vehicle attitude. The cloud based data and/or GPS data may be received wirelessly through an antenna 655 and a radio frequency (RF) processor 650. The data may be first processed by vehicle processor 640 and stored in a memory 630.
In an exemplary embodiment, the image processor 620 may determine that the reference horizon and the detected horizon do not correlate and that a suspension failure may have occurred. The image processor may then determine a relative position of the detected horizon compared to the reference horizon and determined the suspension element that most likely is faulty. Alternatively, the image processor 620 may couple data related to a comparison of the detected horizon and the reference horizon and couple this data to the vehicle processor 640. The vehicle processor 640 may then be operative to determine the faulty suspension component in response to the data and generate a control signal indicative of the fault to couple to the vehicle controller 660. The vehicle controller 660 may then be operative to control the vehicle in a manner that compensates for the faulty suspension component, such as lower velocity, slower cornering, etc. In addition, the vehicle processor 640 may couple an error signal to a user interface 645 to indicate to a driver, passenger, or remote server that a faulty component exists.
Turning now to
It should be emphasized that many variations and modifications may be made to the herein-described embodiments, the elements of Which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims. Moreover, any of the steps described herein can be performed simultaneously or in an order different from the steps as ordered herein. Moreover, as should he apparent, the features and attributes of the specific embodiments disclosed herein may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
Moreover, the following terminology may have been used herein. The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to an item includes reference to one or more items. The term “ones” refers to one, two, or more, and generally applies to the selection of some or all of a quantity. The term “plurality” refers to two or more of an item. The term “about” or “approximately” means that quantities, dimensions, sizes, formulations, parameters, shapes and other characteristics need not be exact, but may be approximated and/or larger or smaller, as desired, reflecting acceptable tolerances, conversion factors, rounding off, measurement error and the like and other factors known to those of skill in the art. The term “substantially” means that the recited characteristic, parameter, or value need not be achieved exactly, but that deviations or variations, including for example, tolerances, measurement error, measurement accuracy limitations and other factors known to those of skill in the art, may occur in amounts that do not preclude the effect the characteristic was intended to provide.
Numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also interpreted to include all of the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but should also be interpreted to also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3 and 4 and sub-ranges such as “about t to about 3,” “about 2 to about 4” and “about 3 to about 5,” “1 to 3,” “2 to 4,” “3 to 5,” etc. This same principle applies to ranges reciting only one numerical value (e.g., “greater than about 1”) and should apply regardless of the breadth of the range or the characteristics being described. A plurality of items may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary. Furthermore, where the terms “and” and “or” are used in conjunction with a list of items, they are to be interpreted broadly, in that any one or more of the listed items may be used alone or in combination with other listed items. The term “alternatively” refers to selection of one of two or more alternatives, and is not intended to limit the selection to only those listed alternatives or to only one of the listed alternatives at a time, unless the context clearly indicates otherwise.
The processes, methods, or algorithms disclosed herein can be deliverable to/implemented by a processing device, controller, or computer, which can include any existing programmable electronic control unit or dedicated electronic control unit. Similarly, the processes, methods, or algorithms can be stored as data and instructions executable by a controller or computer in many forms including, but not limited to, information permanently stored on non-writable storage media such as ROM devices and information alterably stored on writeable storage media such as floppy disks, magnetic tapes, CDs, RAM devices, and other magnetic and optical media. The processes, methods, or algorithms can also be implemented in a software executable object. Alternatively, the processes, methods, or algorithms can be embodied in whole or in part using suitable hardware components, such as Application Specific Integrated Circuits (ASICs), Field-Programmable Gate Arrays (FPGAs), state machines, controllers or other hardware components or devices, or a combination of hardware, software and firmware components. Such example devices may be on-board as part of a vehicle computing system or be located off-board and conduct remote communication with devices on one or more vehicles.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms encompassed by the claims. The words used in the specification are words of description rather than limitation, and it is understood that various changes can be made without departing from the spirit and scope of the disclosure. As previously described, the features of various embodiments can be combined to form further exemplary aspects of the present disclosure that may not be explicitly described or illustrated. While various embodiments could have been described as providing advantages or being preferred over other embodiments or prior art implementations with respect to one or more desired characteristics, those of ordinary skill in the art recognize that one or more features or characteristics can be compromised to achieve desired overall system attributes, which depend on the specific application and implementation. These attributes can include, but are not limited to cost, strength, durability, life cycle cost, marketability, appearance, packaging, size, serviceability, weight, manufacturability, ease of assembly, etc. As such, embodiments described as less desirable than other embodiments or prior art implementations with respect to one or more characteristics are not outside the scope of the disclosure and can be desirable for particular applications.