This application claims the benefit of Korean Application No. 2003-54207, filed Aug. 5, 2003, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to an apparatus to form an image, such as a printer, and more particularly, to a method and an apparatus to discriminate the class of a medium to form an image.
2. Description of the Related Art
In general, image forming apparatuses discriminate the classes (types) of media to uniformly form an image on the media regardless of the classes.
A conventional image forming apparatus (not shown) includes a light emitting part which emits a light beam to a medium and a plurality of light receiving parts which sense the light beam reflected from the medium. In other words, the light emitting part emits a light beam to a point of the medium, and the light receiving part senses the light beams reflected or diverged from the medium at various angles. Intensities of the light beams sensed at various angles are used to discriminate (determine) the classes of the media.
If the number of light receiving parts increases, the volume and production cost of the conventional image forming apparatus may increase. Thus, the conventional image forming apparatus includes a finite number of light receiving parts. Since the media discrimination method performed by the conventional image forming apparatus cannot sense the intensity of light at various angles, it cannot definitely discriminate the classes of the media with certainty. In addition, the structure of the conventional image forming apparatus is complicated and production costs thereof increase due to the emission of light to the point of the medium and the sensing of the light reflected from the point.
Accordingly, it is an aspect of the present invention to provide a method of discriminating classes of media to form images in which the classes (or types) of the media can be discriminated (determined) using features collected by moving one of a light emitting part and a light receiving part over the media.
Accordingly, it is another aspect of the present invention to provide an apparatus to discriminate classes of media to form images in which the classes of the media can be discriminated using features collected by moving one of a light emitting part and a light receiving part over the media.
Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
The foregoing and/or other aspects of the present invention are achieved by providing a method of determining a class of a medium to form an image using an image forming apparatus which includes a light emitting part that emits light and a light receiving part that senses the light, the method including: emitting the light to the medium; sensing the emitted light which is affected by the medium; collecting a first predetermined number of features which are represented by a relationship between a parameter of the medium and an intensity of the light sensed by the light receiving part; and determining the class of the medium using the collected features, wherein one of the light emitting part and the light receiving part moves to emit or sense the light, and the parameter varies with the movement of one of the light emitting part or the light receiving part.
The foregoing and/or other aspects of the present invention are also achieved by providing an apparatus to discriminate a class of a medium on which an image is formed, the apparatus including: a light emitting part which emits light to the medium; a light receiving part which senses light affected by the medium; a carrier which moves with the light emitting part or the light receiving part in response to a movement control signal; a feature collector which collects a first predetermined number of features of the medium; and a media class discriminator which determines the class of the medium using the collected features, wherein the features are represented by a relationship between a parameter of the medium, which varies with the movement of the carrier, and an intensity of the light sensed by the light receiving part.
These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below to explain the present invention by referring to the figures.
The method of
In operation 10, the light emitting part emits light to a medium. Here, the light emitted by the light emitting part may be formed with a predetermined shape, on the media.
After operation 10, in operation 12, the light affected by the medium is sensed. Here, according to the embodiment of the present invention, the light affected by the medium corresponds to light reflected from the medium or light passing the medium.
In the related art, a light emitting part and a light receiving part are fixed. However, in the present invention, by moving only one of the light emitting part and the light receiving part, light is emitted or sensed so as to perform operations 10 and 12. For example, the light emitting part may move to emit the light in operation 10, and the light receiving part may be fixed to sense the light in operation 12. Alternately, the light emitting part may be fixed to emit the light in operation 10, and the light receiving part may move to sense the light in operation 12. Here, the light emitting part or the light receiving part moves in at least one of horizontal and vertical directions, and the position to which the light emitting part or the light receiving part moves may be predetermined.
After operation 12, in operation 14, a first predetermined number, M, of features are collected. Here, the first predetermined number M is small, and the features are represented by the relationship between at least one parameter, which varies with the movement of the light emitting part or the light receiving part, and the intensity of the light sensed by the light receiving part. Here, the parameter corresponds to a movement distance or time which is represented in a 3-dimensinal space, and the movement distance may be represented as a position by orthogonal coordinates or as an angle by polar coordinates. Thus, the intensity of the sensed light can be represented as a parameter. The intensity of the sensed light may draw various shapes of envelopes according to variations in a relative distance between the light emitting part and the light receiving part and the class of the medium reflecting or transmitting the light. In other words, when the intensity of the light included in the collected features is a one coordinate axis and the parameter is the other coordinate axis, the collected features may draw various shapes of envelopes.
The collected features can be represented as in Equation 1:
wherein N−1 denotes the number of parameters, {overscore (X)}M×N denotes the features, and {overscore (x)}m (1 m M) denotes a feature which is represented as in Equation 2:
{overscore (x)}m=[xm1 Xm2 . . . xmN] (2)
wherein xm1 denotes the intensity of the sensed light, and Xmn (2 n N) denotes the parameters.
A method of determining the first predetermined number used in operation 14 according to the embodiment of the present invention will now be explained.
The method of
In operation 30, features of a plurality of test media are measured. Here, the test media refer to media which may be discriminated by the media discriminating method of the embodiment of the present invention and tested when the image forming apparatus is developed. To perform operation 30, light is emitted to discriminate all test media and the light reflected from or passing the test media is sensed to extract features of the test media. Here, the light emitting part or the light receiving part may move during emitting or sensing light.
After operation 30, in operation 32, an ROI, which includes features except features unrelated to the classes of the test media and common to all of the test medias, are determined. The features measured in operation 30 are classified into features unrelated to the classes of the test media and features related to the classes of the test media. Thus, in operation 32, the ROI, which includes features which are common to the test media among features that are related to the classes of the test media, is determined. In other words, in operation 16, a region including available features is limitedly determined as the ROI.
After operation 32, in operation 34, a virtual number of features are selected from the features included in the determined ROI using various mathematical techniques until clusters are separated in a virtual feature space, and a virtual number selected when the clusters are separated is determined as the first predetermined number. Here, the virtual feature space includes corresponding points of the virtual number of intensities of light, and the clusters refer to groups of corresponding points in the virtual feature space. For example, when an mth feature {overscore (x)}m and a m+jth (j is a random number) feature {overscore (x)}m+j as many as the virtual number, “2”, among features are selected, the vertical axis of the virtual feature space is an intensity x(m+j)1 of light included in the mth feature {overscore (x)}m and the horizontal axis of the virtual feature space is an intensity xm1 of light included in the m+jth feature {overscore (x)}m+j. Here, if the clusters are separated in the virtual feature space, the virtual feature space is determined as a final feature space and the virtual number is determined as the first predetermined number.
As described above, in operation 34, the features are determined when the first predetermined number is determined. Therefore, movement positions or times of the light emitting part or the light receiving part are predetermined as represented by the parameters xmn of the virtual number of features, the virtual number being determined as the first predetermined number.
According to the embodiment of
After operation 14, in operation 16, the class of the medium is determined using the collected features.
After operation 14, in operation 50, distances from a measurement point, which is formed by the features collected in the final feature space showing the relationship among the first predetermined number of intensities of light, to predetermined central points of the clusters in the final feature space are calculated. Here, the first predetermined number of collected features may be represented as a point, i.e., the measurement point, in the final feature space.
After operation 50, in operation 52, the shortest distance is selected from the calculated distances, a cluster with a predetermined central point used to calculate the shortest distance is identified, and a class of a medium corresponding to the identified cluster is determined as the class of the medium on which an image is to be formed.
When the first predetermined number is determined as “2”, the mth feature {overscore (x)}m and the m+jth feature {overscore (x)}m+j are selected when the first predetermined number is determined, first, second, and third clusters exist in the final feature space, and the first, second, and third clusters correspond to a plain medium, a transparent medium, and a photographic medium, respectively.
Operation 16A of
In operation 50, distances d1, d2, and d3 from the measurement point 72 to the predetermined central points 66, 68, and 70 are calculated. The shortest distance of the distances d1, d2, and d3 is also calculated in operation 52. If the shortest distance is d1, the first cluster 60 with the predetermined central point 66 used to calculate the distance d1 is identified, and the plain medium corresponding to the identified first cluster 60 is determined as the medium on which the image is to be formed.
A method of calculating boundaries and central points of the clusters included in the final feature space used in operation 16A of
The method of
In operation 80, virtual boundaries between the clusters separated in the final feature space are set.
After operation 80, in operation 82, the classes of the test media are discriminated using the final feature space in which the virtual boundaries have been set. To perform operation 82, central points of virtual clusters discriminated in the final feature space by the virtual boundaries are calculated, a virtual cluster with a central point used for calculating the shortest distance of distances from a test measurement point to central points of the virtual clusters is identified, and the class of a medium corresponding to the identified virtual cluster is determined as a class of a test medium. Here, the test measurement point is not the measurement point formed by the features collected in operation 14, but a measurement point formed by the features collected in the method of
After operation 82, in operation 84, a determination is made as to whether an error rate of failing to discriminate the classes of the test media is within an allowable error rate. For example, the developer of the image forming apparatus determines whether the classes of the test medium have been accurately discriminated between in operation 82 to determine whether the error rate is within the allowable error rate.
If in operation 84, it is determined that the error rate is not within the allowable error rate, the process returns to operation 80 to set a new virtual boundary in the final feature space.
If in 84, it is determined that the error rate is within the allowable error rate, in operation 86, the virtual boundaries are determined as final boundaries and central points of clusters on the final feature space in which the final boundaries have been determined are calculated.
After operation 14, in operation 100, a second predetermined number, K, of neighboring points, which are closest to the measurement point formed by the features collected in the final feature space showing the relationship of the first predetermined number of intensities of light are searched. Here, K is an odd number.
After operation 100, in operation 102, a class of a medium, which is indicated by labels of the second predetermined number of neighboring points, is determined as the class of the medium on which the image is to be formed. Here, a label of a pth (1 p K) neighboring point of the second predetermined number of neighboring points includes information on a class of a medium corresponding to the pth neighboring point.
The method of
In operation 120, a temporary second predetermined number is set. After operation 120, in operation 122, the temporary second predetermined number of test neighboring points, which are the closest to the test measurement point, are calculated and, the classes of the test media are discriminated using the test measurement point and the test neighboring points. Here, the test measurement point is not the measurement point formed by the features collected in operation 14, but the point formed in the final feature space by the features measured to obtain the second predetermined number when the image forming apparatus is developed. To perform operation 122, a class of a medium, which is indicated by many of the temporary second predetermined number of test neighboring points, is determined as a class of a test medium.
In operation 124, a determination is made as to whether the error rate of failing to discriminate the classes of the test media in operation 122 is within the allowable error rate. If in operation 124, it is determined that the error rate is not within the allowable error rate, the process returns to operation 120 to set the temporary second predetermined number. In this case, the second predetermined number may increase so as to be a new temporary second predetermined number.
If in operation 124, it is determined that the error rate is within the allowable error rate, in operation 126, the temporary second predetermined number is determined as a final second predetermined number.
After operation 14, in operation 140, a determination is made as to which cluster the measurement point, which is formed by the features collected in the final feature space showing the relationship of the first predetermined number of intensities of light, belongs.
After operation 140, in operation 142, a class of a medium corresponding to the determined cluster including the measurement point is determined as a class of a medium on which an image is to be formed.
When the first predetermined number is determined as “2”, the mth feature {overscore (x)}m and the m+jth feature {overscore (x)}m+j are selected when the first predetermined number is determined, first and second clusters exist in the final feature space, and the first and second clusters correspond to a plain medium and a photographic medium, respectively.
Operation 16C of
For example, it is assumed that the first and second clusters 162 and 164 exist in the final feature space as shown in
In such a case, coordinates of the measurement point 170 are represented as two coordinate values. Thus, a time required to compare the measurement point 170 and the region of the second cluster 164 increases. To solve this problem, the coordinates of the measurement point 170 included in the second cluster 164 may be simplified. In other words, a coordinate axis of the final feature space of
As previously described, non-linear operation 16A or 16B of
After operation 14, in operation 190, the intensities of the sensed light are classified into at least three spectrums using the collected features. Here, the at least three spectrums may be cyan (C), magenta (M), and yellow (Y) spectrums.
After operation 190, in operation 192, a distribution ratio of the intensities of light in each of the at least three spectrums is determined. After operation 192, in operation 194, the class of the medium is discriminated according to the determined distribution ratio.
For example, after operation 190, in operation 192, relative magnitudes of the intensities of light may be determined. After operation 192, the class of the medium may be discriminated according to the determined relative magnitudes of the intensities of light. If the intensity of cyan light is greater than the intensity of magenta or yellow light, the class of the medium, i.e., the color of the medium, may be determined as cyan.
The structure and operation of an apparatus to discriminate a class of a medium on which an image is to be formed, according to the embodiment of the present invention, will now be described.
The apparatus of
The carrier 220 moves together with one of the light emitting part 222 and the light receiving part 224 in response to a movement control signal output from the movement controller 240. For example, the carrier 220 may carry the light emitting part 222 or the light receiving part 224. For example, if the carrier 220 carries the light emitting part 222, the light receiving part 224 may be prepared over or below the medium 200. If the carrier 220 carries the light receiving part 224, the light emitting part 222 may be prepared over or below the medium 200. If light affected by the medium 200 is light reflected from the medium 200, the light emitting part 222 (or the light receiving part 224), which is moving with the carrier 220, and the light receiving part 224 (or the light emitting part 222), which is not moving, may be prepared over the medium 200. However, if the light affected by the medium 200 is light passing the medium 200, the light emitting part 222 (or the light receiving part 224), which is moving with the carrier 220, may be prepared over the medium 200, while the light receiving part 224 (or the light emitting part 222), which is not moving, may be prepared below the medium 200.
In order to explain the apparatus of
To perform operation 10 of
To perform operation 12, the light receiving part 224 or 225 senses the light affected by the medium 200, i.e., light reflected from a portion 250 of the medium 200 or light passing the portion 250 of the medium 200. At least one light receiving part 224 or 225 may be prepared.
To perform operation 14, the feature collector 242 receives the light sensed by the light receiving part 224 or 225 via an input node IN1 and collects the first predetermined number of features. For this, the feature collector 242 may receive a parameter corresponding to the intensity of the sensed light shown in the collected features from the movement controller 240 via the input node IN1 or may store the parameter in advance. For example, the feature collector 242 may receive a movement distance of the carrier 220 as a parameter from the movement controller 240 and the sensed light from the light receiving part 224 to generate a feature including the movement distance and the intensity of light. The feature collector 242 may include a counter (not shown), which performs a count operation when the carrier 220 begins to start moving, to determine as a time parameter the result counted whenever receiving the sensed light from the light receiving part 224 or 225 via the input node IN1 and generate a feature including the time parameter and the intensity of light.
To perform operation 16, the media class discriminator 244 discriminates the class of the medium based on collected features input from the feature collector 242 and outputs the discriminated class of the medium via an output node OUT.
The media class discriminator 244A may be used to perform operation 16A of
To perform operation 50, the distance calculator 270 calculates distances from a measurement point, which is formed by features collected in a final feature space showing the relationship of the first predetermined number of intensities of light, to central points of clusters in the final feature space, and then outputs the calculation result to the class determiner 272. For this, the distance calculator 270 may calculate coordinates of the measurement point from the first predetermined number of features which are input from the feature collector 242 via an input node IN2, compare the calculated coordinates of the measurement point with coordinates of the central points of the clusters which have been previously stored to calculate the distances from the measurement point to the central points of the clusters.
To perform operation 52, the class determiner 272 identifies a cluster with a predetermined central point which is closest to the measurement point, based on the calculated distances input from the distance calculator 270, determines a class of a medium corresponding to the identified cluster as a medium on which an image is to be formed, and outputs the determined class of the medium via the output node OUT. For this, the class determiner 272 stores classes of media respectively corresponding to the clusters in advance, senses the class of the medium corresponding to the cluster with the predetermined central point which is closest to the measurement point, and determines the class of the medium on which the image is to be formed.
To perform operation 100, the neighboring point searcher 290 searches a second predetermined number of neighboring points which are closest to the measurement point formed by the features collected in the final feature space showing the relationship of the first predetermined number of intensities of light. For this, the neighboring point searcher 290 may calculate coordinates of the measurement point from the first predetermined number of features which are input from the feature collector 242 via the input node IN2, and compare the calculated coordinates of the measurement point with pre-stored coordinates of points in the final feature space to search the second predetermined number of neighboring points.
To perform operation 102, the class determiner 292 determines the class of the medium, which is indicated by as many labels as the second predetermined number of neighboring points searched by the neighboring point searcher 290, as the class of the medium on which the image is to be formed and outputs the determined class of the medium via the output node OUT.
For example, the neighboring point searcher 290 may output the labels of the second predetermined number of searched neighboring points to the class determiner 292. In this case, the class determiner 292 may analyze information stored in the labels input from the neighboring point searcher 290, i.e., information to indicate the classes of media respectively corresponding to the neighboring points, and determine the class of the medium, which is indicated by the labels, as the class of the medium on which the image is to be formed.
To perform operation 140, the cluster determiner 310 determines which of the clusters separated in the final feature space includes the measurement point, which is formed by the features collected in the final feature space showing the relationship of the first predetermined number of intensities of light, and outputs the determination result to the class determiner 312. For this, the cluster determiner 310 may calculate coordinates of the measurement point from the first predetermined number of features which are input from the feature collector 242 via the input node IN2, and compare the calculated coordinates of the measurement point with a pre-stored region of respective clusters to determine which of the clusters includes the measurement point.
To perform operation 142, the class determiner 312 determines a class of a medium corresponding to the cluster determined by the cluster determiner 310 as the class of the medium on which the image is to be formed and outputs the determination result via the output node OUT. For this, the class determiner 312 may pre-store the classes of the media respectively corresponding to the clusters and output the class of the medium corresponding to the determined cluster, which is input from the class determiner 310, via the output node OUT
To perform operation 190, the intensity calculator 330 classifies the sensed intensity of light into at least three spectrums using the collected features input from the feature collector 242 via the input node IN2 and outputs the intensities of light according to the spectrum to the distribution ratio determiner 332.
To perform operation 192, the distribution ratio determiner 332 determines a distribution ratio of the intensities of light according to the spectrum which are input from the intensity calculator 330 and outputs the determined distribution ratio to the class determiner 334.
To perform operation 194, the class determiner 334 discriminates the class of the medium according to the determined distribution ratio and outputs the discrimination result via the output node OUT.
The class discriminator 244D may include at least three light receiving parts which sense the respective spectrums, or may include one light receiving part which sequentially senses at least three spectrums.
Accordingly, the image forming apparatus may identify the class of the medium output from the media class discriminator 244 of
As described above, in a method and an apparatus to discriminate a class of medium to form an image, according to the embodiments of the present invention, the features of light reflected from or passing the medium are collected by moving a light receiving part or a light emitting part. Thus, a plurality of light receiving parts are not necessary, which results in a reduction in the volume and production cost of the image forming apparatus. In other words, abundant features can be collected using only a single light emitting part and a single light receiving part at a low cost. As a result, the class of the medium can be exactly determined so that the image forming apparatus can always form a uniform image regardless of the class of the medium.
Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2003-54207 | Aug 2003 | KR | national |