This application is a United States National Phase application of International Application PCT/EP2008/006644 and claims the benefit of priority under 35 U.S.C. ยง119 of German Patent DE 10 2007 038 489.2 filed Aug. 14, 2007, the entire contents of which are incorporated herein by reference.
The present invention relates to a method for bearing rotatable devices, particularly a medical scanner, comprised of at least one inner ring and at least one outer ring, and to a bearing particularly for implementing said method.
Noise emission represents a significant design criterion, particularly for medical scanners. An important noise source on operating a scanner is the anti-friction bearing which continually generates structure-borne noise by a permanent rotation (rolling contact) of the rolling bodies and transfers it to the connected structures which emit it as air-borne noise.
To reduce noise emissions, anti-friction bearings are known in which for example the rotor wires are embedded into a non-metallic vulcanized intermediate layer (see DE 10 2005 000 754 B3) or in which the rotor rings are disposed in liner rings made of elastomer (see DE 103 31 150 B4) or in which an attenuating material not essentially increasing the built size is disposed at least between a rotor wire and a bearing ring in an enhanced rotor wire bed of the bearing ring (see EP 71 026 A1).
With the afore-mentioned bearings, structure-borne noise from the rolling contact is attenuated by additional joints and plastic elements. With high peripheral speeds, however, those measures described herein above are frequently insufficient to keep the noise level of the bearing at an adequately low level.
Now, therefore, it is the object of the present invention to provide a method for bearing and a bearing for such devices in which noise emission can be further reduced.
To avoid excitation of structure-borne noise by the rolling contact, a large-size anti-friction bearing is proposed in which the stator ring is separated from the rotor ring by the magnetic field of several electromagnets so that there is no metallic contact between both bearing rings on operation. The electromagnets are arranged both in axial and radial direction of the bearing axis in order to take-up the bearing forces and moments to be supported. The distribution of the electromagnets over the bearing circumference can be even or adapted to the load. The bearing furthermore contains optical or inductive distance sensors which measure and/or monitor the gap distance between the outer ring and inner ring, preferably optically, inductively or in a different kind A computer-aided control of the magnets is so performed that the gap distance is kept constant. With an inventive bearing, an arrest bearing is furthermore provided which carries the rotating ring in case of a failure in the electric power supply of the electromagnets. This arrest bearing can be configured as a sliding bearing or as an anti-friction bearing.
By way of an appropriate arrangement and controlled activation of the electromagnets, a torque driving the corresponding rotor can be applied onto the bearing. The electromagnets can also be utilized to vary the stiffness of the bearing and to avoid vibrations. By increasing the electric power and thus by increasing the force in the electromagnets, the stiffness can be increased in a well-aimed manner. It is hereby possible to vary the natural frequency of the bearing and thus to avoid resonant frequencies. Moreover, it has become evident that the failure probability of the magnet bearing can be reduced by a redundant arrangement of the distance sensors and electromagnets to such an extent that one may even dispense with the arrest bearings.
Finally, the electromagnets and distance sensors according to the present invention can be utilized on first commissioning to balance the bearing. For balancing, an off center weight with a known mass, known axis distance and known peripheral position is mounted once or several times at the rotor. In or with an additional balancing facility, the reaction, e.g. the burden or shifting of the rotor, is subsequently measured.
In accordance with actually known methods, it is possible to determine from these results the place and the additional mass that must be fastened to the rotor to operate the rotor without off-center weight. With the inventive bearing, a circulating force corresponding to the known mass with a known axis distance and place can now be applied on the rotor by the aid of the electromagnets. The reaction of the rotor with a constant speed can then be measured by the distance sensors. These measuring results are then utilized in operation with a distinct circulating force to choose the additional mass and its place of mounting.
For the special case that an imbalance occurs during running operation, this imbalance can be compensated for even during running operation initiated by the measurement by the aid of the control with a circulating magnet force.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
In the drawings:
Referring to the drawings in particular, according to
In
In
In
In an enhanced representation,
While specific embodiments of the invention have been described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 038 489 | Aug 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/006644 | 8/13/2008 | WO | 00 | 12/14/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/021721 | 2/19/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4483570 | Inoue | Nov 1984 | A |
4683111 | Helm et al. | Jul 1987 | A |
6268674 | Takahashi | Jul 2001 | B1 |
6927517 | Brunet et al. | Aug 2005 | B2 |
20020036435 | Ooyama et al. | Mar 2002 | A1 |
20030107282 | Ooyama et al. | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
21 63 199 | Jul 1973 | DE |
42 27 013 | Feb 1994 | DE |
10224100 | Apr 2003 | DE |
10331150 | Feb 2005 | DE |
WO 2005019654 | Mar 2005 | DE |
102005000754 | Oct 2006 | DE |
0071026 | Feb 1983 | EP |
1 223 357 | Jul 2002 | EP |
2 348 680 | Oct 2000 | GB |
5-122896 | May 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20100181854 A1 | Jul 2010 | US |