The present invention relates to a method and a device for automatically monitoring lateral guidance orders of an aircraft, in particular of a transport airplane.
It applies to the monitoring of lateral guidance orders being provided for a flight control system of the aircraft and being generated by a calculation stage for lateral guidance orders of an aircraft guidance system. Such a calculation stage comprises, in general, more specifically:
Although not exclusively, the present invention more particularly applies to operations with required navigation performance with authorization required, of the RNP AR (<<Required Navigation Performance with Authorization Required>>) type. These RNP AR operations are based on a surface navigation of the RNAV (<<aRea NAVigation>>) type and on required navigation performance operations of the RNP (<<Required Navigation Performance>>) type. They have the particular feature of requiring a special authorization for being able to be implemented on an aircraft.
The RNAV type surface navigation allows an aircraft to fly from a waypoint to another waypoint, and no longer from ground stations (of radio-navigation means of the NAVAID type) to other ground stations.
As known, the RNP concept corresponds to a surface navigation, for which (on board the aircraft) monitoring and warning means are added, allowing to ensure that the aircraft remains in a corridor, referred to as RNP, around a reference trajectory and authorizing taking into consideration curved trajectories. Outside this corridor, potentially relief or other aircrafts could be present. The performance required for a RNP operation type is defined by a RNP value representing half the width (in nautical miles: NM) of the corridor around the reference trajectory, in which the aircraft should remain 95% of the time during the operation. A second corridor (around the reference trajectory) of half a width twice the RNP value is also defined. The probability that the aircraft goes out of this second corridor should be lower than 10-7 per hour of flight.
The concept of RNP AR operations is still even more stringent. The RNP AR procedures are indeed characterized by:
The air authorities have defined a target level of safety TLS of 10-7 per operation, whatever the type. In the case of RNP AR operations, as the RNP values can go down to 0.1 NM and the obstacles could be located at twice the RNP value of the reference trajectory, this objective results in a probability that the aircraft goes out of the half-width corridor D=2.RNP that should not exceed 10-7 per procedure.
The equipment embedded on board aircrafts (flight management system, inertial unit, means for updating GPS data and means for guiding the autopilot), as well as the usual architecture, do not allow to reach the target level of safety, if mitigation operational means are not provided, including for detecting and managing possible breakdowns. This is why a special authorization is required for this type of operation, so as to ensure that the operational procedures and the pilots' training allow the target level of safety to be reached. Moreover, as the crew should take in charge some breakdowns, the aircrafts are to-day not able to guarantee a RNP value of 0.1 NM in a breakdown situation, as the crew are not able to meet the performance requirements in manual piloting.
On current aircrafts, the monitoring of RNP AR operations is implemented by means of two usual functions, that is:
As set forth previously, the current aircrafts are not able to guarantee a RNP value of 0.1 NM in a breakdown situation and the crew should be trained specially for flying the RNP AR procedures. The crew should, indeed, be able to detect and process adequately breakdowns being able to compromise the ongoing operation.
The objective for future aircrafts is to be able to fly RNP AR procedures with RNP values up to 0.1 NM, and this without restriction (in a normal situation and in the case of a breakdown) in start, approach and throttling up phases. To this end, the crew should no longer be considered as the main means for detecting and processing breakdowns.
As set forth above, an aircraft is generally provided with a guidance system comprising at least one calculation stage for guidance orders, being intended to a flight control system of the aircraft. Now, for the aircraft to have the ability to fly particular procedures and including RNP AR procedures, it is necessary to be able to remove from the guidance loop an erroneous source of calculation for guidance orders, so as to counteract its possible effects on the trajectory of the aircraft.
The present invention aims at providing such a solution allowing detecting an erroneous source of calculation of lateral guidance orders. It relates to a method for automatically monitoring the lateral guidance orders of an aircraft, in particular of a transport airplane, being provided with at least one calculation stage for guidance orders, intended for a flight control system of the aircraft.
To this end, according to the invention, said method for monitoring the lateral guidance orders of an aircraft being provided with at least one calculation stage for lateral guidance orders, said calculation stage comprising:
Thus, thanks to the invention, comparisons are made between the roll control orders generated by said N pieces of equipment so as to be able to detect a diverging source as soon as an error occurs, that is as soon as a piece of equipment is failing concerning the generation of lateral guidance orders. Furthermore, as detailed herein below, this detection of a failure is reliable.
The determination and the exclusion of the source of erroneous lateral guidance orders allow, more specifically, the following objectives to be met, consisting in:
Advantageously, for each piece of equipment:
In addition, in a preferred embodiment, providing for an anticipation of the detection of a failure, for at least one inlet parameter of said large feedback loops, the following operations are additionally implemented:
In this preferred embodiment, advantageously, for each piece of equipment:
Preferably, at least one of the following inlet parameters is used:
Said nominal roll is calculated in phase lead compared to the next turn. Its monitoring allows a building failure of the trajectory to be anticipated. This information may be employed for invalidating a defective piece of equipment before it could generate an erroneous roll control order.
In a particular embodiment, the values of several of said inlet parameters are simultaneously analyzed for monitoring a piece of equipment concerning the generation of lateral guidance orders. By way of illustration, the monitoring of the above mentioned position and orientation deviations, if they are combined, allows identifying a problem of definition for the flight plane or the trajectory built therefrom. Their impact is instantaneous on the roll control order.
Furthermore, advantageously, when a defective piece of equipment is detected, the maintenance means are notified about this failure, so as to prepare more specifically the maintenance operations for replacing or repairing this piece of equipment with a failure.
In addition, advantageously it is considered that a piece of equipment is definitely failing if all the corresponding deviations are higher than the threshold being considered (monitoring threshold or auxiliary monitoring threshold) for a predetermined period of time.
The present invention also relates to a device for automatically monitoring lateral guidance orders of an aircraft, in particular of a transport airplane, being provided with at least one calculation stage for lateral guidance orders provided for a flight control system of the aircraft.
According to the invention, said device of the type comprising at least one calculation stage for lateral guidance orders, said calculation stage comprising:
In a preferred embodiment, said monitoring means comprise anticipation means for determining, if applicable, anticipatively, a piece of equipment being failing (concerning the generation of lateral guidance orders of the aircraft).
Preferably, said anticipation means are formed so as to make, for at least one inlet parameter of said large feedback loops, comparisons, for instance a position or orientation deviation or a nominal roll, comparing therebetween, two to two, the values relative to said inlet parameter, used respectively by said piece of equipment, and to determine, if applicable, from these comparisons, anticipatively, a piece of equipment being failing concerning the generation of lateral guidance orders of the aircraft.
The present invention also relates to:
The FIGS. of the appended drawing will better explain how this invention can be implemented. In these FIGS., like reference numerals relate to like components.
The device 1 according to this invention and schematically shown on
The device 1 being on-board the aircraft A comprises at least one calculation stage 3 for lateral guidance orders, being intended for a usual flight control system of the aircraft, as illustrated by a link 4 on the FIGS. The device 1 could, in particular, be used so as to help carrying out air operations with required navigation and guidance performance, and more specifically RNP AR operations.
A calculation stage 3 for lateral guidance orders comprises, usually:
Consequently, from information present in the flight plane and the data reflecting more specifically the position of the aircraft AC with respect to the desired trajectory, the transfer function of the large side loop 5 calculates a turning initiation order of the aircraft AC. This order is afterwards transmitted to the transfer function of the small loop 12 for slaving the aircraft AC.
Furthermore, in a particular embodiment, passivation means 14 to be further detailed below are arranged between the feedback loops 5 and 12, to which they are linked respectively via the links 15 and 16.
The monitoring device 1 is part of a guidance system 2 of the aircraft AC. It is known that, generally, a guidance system 2 comprises, in addition to said calculation stage 3 for guidance orders, at least the following successive stages (not specifically shown):
According to the invention, and as shown on
Thus, the device 1 according to this invention makes comparisons between the roll control orders generated by the N large feedback loops 5 of said N pieces of equipment E1, E2, E3, so as to be able to detect a diverging source as soon as an error occurs, that is as soon as a piece of equipment is failing concerning the generation of lateral guidance orders. Furthermore, this detection of failure is reliable.
The architecture according to this invention for the detection and the isolation of equipment or systems with a failure thus relies on a principle of triplex architecture (or with N pieces of equipment (N≧3)) and provides using three sources (pieces of equipment E1 to E3), or more, at least at the level of the calculation stage 3 for orders of guidance for slaving the aircraft on the trajectory, allowing to automatically detect and isolate the failures at the level of this stage 3. Furthermore, this stage 3 could be made up of identical equipment (symmetric stage) or different equipment (dissymmetric stage).
In a preferred not shown embodiment, each of the above mentioned stages of the guidance system 2 has such an architecture comprising at least N pieces of equipment.
Furthermore, when the monitoring means 18 determine that a piece of equipment is failing, they inform maintenance means 22 about this failure, via the link 21, allowing more specifically to prepare the maintenance operations for the replacement of the piece of equipment with a failure.
Furthermore, in a particular embodiment, the analysis of the orders coming from each chain of calculation is implemented by the passivation means 14. These passivation means 14 aim at comparing the orders coming from each guidance string and isolating the defective values. They transmit afterwards a valid order to the feedback loop 12. This known principle allows the impact to be omitted of any simple failure of a guidance string on the trajectory of the aircraft AC. With this type of architecture, it is possible to passivate an erroneous guidance order so that the latter does not affect the trajectory of the aircraft AC. This solution of passivation does not however identify the source of the error, this being on the other hand implemented by the monitoring means 18 according to this invention.
The determination and the exclusion of a source of erroneous lateral guidance orders enable more specifically, to meet the following objectives consisting in:
In the basic embodiment of
For anticipating the occurrence of the anomaly, an additional mechanism is provided in the preferred embodiment of
In this preferred embodiment, said monitoring means 18 comprise anticipation means 23 for determining, if applicable, anticipatively, a piece of equipment being failing concerning the generation of lateral guidance orders of the aircraft AC.
In this preferred embodiment, said monitoring means 18 are linked via the links 24 to the inlets of the large feedback loops 5 of the equipment E1 to E3 for recovering the values of one or more inlet parameters, as shown on
Said anticipation means 23 comprise the integrated elements (not shown) for implementing, for each piece of equipment E1 to E3, the following operations consisting in:
Preferably, the anticipation means 23 use at least one of the following inlet parameters:
Said nominal roll is calculated in phase lead compared to the next turn. Its monitoring allows a building failure of the trajectory to be anticipated. This information may be employed for invalidating a defective equipment before it could generate an erroneous roll control order.
In a particular embodiment, said anticipation means 23 simultaneously analyze the values of several of said inlet parameters, for monitoring a piece of equipment concerning the generation of lateral guidance orders. By way of illustration, the monitoring of the above mentioned position and orientation deviations, if they are combined, allows for identifying a problem of definition of the flight plane or the trajectory built therefrom. Their impact is instantaneous on the roll control order.
In addition, the monitoring means 18 consider:
In a preferred embodiment, shown on
In a RNP-AR context, the detection of an anomaly on one of these parameters results in a defective (flight management) system 51, S2, S3 being notified to the maintenance systems 22 and to warnings (means 20) being triggered in the cockpit for notifying the crew. The architecture and the above described different monitoring functions thus allow the aircraft AC to meet the safety requirements inherent to RNP AR operations, being able to automatically detect, identify and isolate a system with a failure.
The monitoring mechanism according to this invention thus operates:
It should be alternatively noticed that:
Number | Date | Country | Kind |
---|---|---|---|
1060313 | Dec 2010 | FR | national |