The invention relates to a method for compaction of a track ballast bed by means of a tamping unit comprising two oppositely positioned tamping tools which, actuated with vibrations, are lowered into the track ballast bed in the course of a tamping operation and moved towards one another with a squeezing motion. Additionally, the invention relates to a device for performing the method.
Railway tracks with ballasted permanent way require regular correction of the track position, for which generally track tamping machines or switch tamping- or universal tamping machines are used. Such machines, mobile on the track in a cyclic or continuous manner, usually comprise a measuring system, a lifting- /lining unit and a tamping unit. By means of the lifting- /lining unit, the track is lifted into a prescribed position. In order to fix said new position, track ballast is tamped from both sides under a respective sleeper of the track and compacted by means of tamping tools situated on the tamping unit.
Depending on the condition of the track ballast (new position, start of useful life, end of useful life) or the degree of deterioration, a corresponding over-correction of the track position is appropriate so that, as a result of subsequent settlement, the track assumes the desired final position. In this, the settlement may take place through stabilization by means of a Dynamic Track Stabilizer and, in any case, by the subsequent regular stress by the train traffic.
Various structural designs are known in tamping units for tamping sleepers of a track. AT 350 097 B, for example, discloses a tamping unit wherein, for transmission of vibrations, hydraulic squeezing drives are articulatedly connected to a rotating eccentric shaft. Known from AT 339 358 B is a tamping unit having hydraulic drives which serve as squeezing drives and as vibration generators in a combined function.
AT 515 801 A4 describes a method for compacting a track ballast bed by means of a tamping unit, wherein a quality figure for a ballast bed firmness is to be identified. To that end, a squeezing force of a squeezing cylinder in dependence of a squeezing path is recorded, and via an energy consumption derived therefrom, a characteristic figure is defined. However, this characteristic figure is of little significance since a considerable energy portion lost in the system is not taken into account. Furthermore, even the total energy actually introduced into the ballast during a tamping operation would not allow a reliable assessment of a ballast bed condition.
It is the object of the invention to provide an improvement over the prior art for a method and a device of the kind mentioned at the beginning.
According to the invention, this object is achieved by way of a method for compaction of a track ballast bed by using a tamping unit including two oppositely positioned tamping tools which, actuated with vibrations, are lowered into the track ballast bed during a tamping operation and moved towards one another with a squeezing motion and a device for performing the method including a tamping unit including two oppositely positioned tamping tools which are coupled in each case via a pivot arm to a squeezing drive and a vibration drive. Dependent claims indicate advantageous embodiments of the invention.
The method is characterized in that, for at least one tamping tool, a progression of a force acting upon the tamping tool over a path covered by the tamping tool is recorded during a vibration cycle by means of sensors arranged at the tamping unit, and that from this at least one characteristic value is derived by means of which an evaluation of the tamping operation and/or of a quality of the track ballast bed is carried out. In this manner, the tamping unit is used during operative use as a measuring apparatus in order to record a force-path progression (work diagram) of the tamping tool and to derive from this a meaningful characteristic value.
Specifically, the work process of compacting serves as a measuring procedure in order to determine on-site the load-deformation behaviour of the track ballast and the changes thereof. By analysis of the measurement values in real time and the formation of at least one characteristic value, the track ballast quality and -compaction can already be assessed on-line during the compaction process. In further sequence, process parameters of the compaction and of the corrected track position can be continually adjusted accordingly. For example, a target value for an over-correction of the track position can be derived from the evaluation of the ballast bed quality.
In addition, it is advantageous if the characteristic value is prescribed as a parameter for controlling the tamping unit. The automatized adjustment of the tamping operation thus achieved allows a quick reaction to a changing condition of the ballast bed. For example, several squeezing operations can automatically take place until a prescribed degree of ballast compaction is attained.
An advantageous embodiment of the invention provides that, for evaluation of a ballast condition or a compaction condition of the ballast bed, a maximal force acting on the tamping tool during the vibration cycle is derived as a first characteristic value. This first characteristic value takes into account that the track ballast can resist the tamping tool with only a limited force (reaction force). The maximal force depends, on the one hand, on which phase of the tamping operation the examined vibration cycle is in, and, on the other hand, on the ballast condition. Thus, the first characteristic value is a meaningful indicator of both the ballast condition (new ballast offers higher resistance) and also of the compaction quality (increase in the course of the compaction).
In a useful further development, for evaluation of a compaction condition of the ballast bed, a vibration amplitude occurring during the vibration cycle is derived from the recorded force-path progression as a second characteristic value. For defining the amplitude, reversing points of the dynamic movement of the tamping tools can be determined in absolute coordinates and/or relative coordiantes (dynamic oscillation path). During this, it is taken into account that, due to design, both the squeezing motion as well as the dynamic tamping tool motion are not purely path-controlled.
Additionally it is advantageous if, for evaluation of a ballast condition of the ballast bed, a start of contact between tamping tool and ballast and a loss of contact between tamping tool and ballast is determined for the vibration cycle, and that from this a third characteristic value is derived. In a squeezing phase, there is a pronounced asymmetrical stressing of the tamping tool, wherein the squeezing motion results in a direction of treatment of the ballast in the direction towards the sleeper to be tamped. In this, the position of a point of start of contact and the position of a point of loss of contact depend on the ballast condition. Therefore, a section with contact and a section without contact in the force-path-progression are good indicators for the track ballast quality.
A further advantageous evaluation of the force-path-progression provides that, as a fourth characteristic value, an inclination of the progression during a stress phase of the tamping tool is derived. As stress stiffness, this inclination of the work line in the stress branch of the work diagram gives information about the load bearing capacity of the track ballast. It increases in the course of ballast compaction and is used as proof of compaction.
Advantageously, for evaluation of the ballast condition, an inclination of the progression during a relief phase of the tamping tool is also derived as a fifth characteristic value. In this, said inclination of the work line in the relief branch of the work diagram is to be seen as relief stiffness. During relief, new ballast partly shows elastic behaviour and springs back with the tamping tool during the rearward motion of the same up to the loss of contact. Old ballast, on the contrary, hardly reacts elastically. Therefore, the relief stiffness is a good indicator for the ballast condition.
For determining a utilization degree, it is advantageous if a deformation work performed by means of the tamping tool is derived from the recorded progression as a sixth characteristic value. This deformation work corresponds to the area enclosed by the work line. It is that part of the work of the drive of the tamping unit which is transmitted into the track ballast in order to effect a compaction, a displacement, a flowing of the ballast etc. With this sixth characteristic value, it is possible in a simple manner to optimize the efficiency of the track tamping.
A futher improvement provides that, for determining an overall stiffness of the ballast bed, an overall inclination of the progression is derived as a seventh characteristic value. In a phase of penetration into the track ballast, the tamping tool acts in both directions since, as a result of the lack of a squeezing motion, it introduces dynamic forces into the ground also at its rear side. Due to the double-sided mode of action, the physical sense of the stress- and relief stiffness becomes obsolete, and the overall stiffness is represented by the inclination of the work line.
In this, it is favourable if the overall inclination is determined by linear regression of the recorded progression, for example with the method of the least error squares.
In a further development of the method according to the invention, the progression of the force acting on the tamping tool over the path covered by the tamping tool is recorded for several vibration cycles of a tamping operation, wherein a figure per characteristic value is determined for each of these vibration cycles, and wherein an evaluation procedure takes place by means of a progression of these found characteristic values or by means of several characteristic value progressions. Depending on the characteristic value used, it is possible in a simple manner to draw conclusions from the characteristic value progression about the ballast condition and/or the state of compaction.
It is additionally advantageous if several squeezing operations are performed at a track location, wherein for each characteristic value a figure for a vibration cycle or for each characteristic value a characteristic value progression for several vibration cycles is determined for each squeezing operation for evaluation of a compaction condition of the ballast bed, and wherein in the event of non-attainment of a prescribed compaction condition, a further squeezing operation is performed. In this, the characteristic values or characteristic value progressions show distinct differences between the successive squeezing operations.
An additional further development of the method provides that a characteristic value for a vibration cycle or a characteristic value progression for several vibration cycles is determined in each case for several tamping operations at different locations along a track, and that from this an evaluation of a spatial development of a compaction result and/or the quality of the ballast bed takes place. This superordinate progression of the characteristic values across several tamping operations reveals information about the homogeneity of the track, the ballast condition and the compaction result.
The device, according to the invention, for device for performing one of the afore-mentioned methods includes a tamping unit comprising two oppositely positioned tamping tools which are coupled in each case via a pivot arm to a squeezing drive and a vibration drive, wherein sensors for recording the progression of the force acting on the tamping tool over the path covered by the tamping tool are arranged at at least one pivot arm and/or the associated tamping tool, wherein measuring signals of the sensors are fed to an evaluation device, and wherein the evaluation device is designed for determining a characteristic value derived from the progression.
In this, it is advantageous if at least one force-measuring sensor is arranged in a tamping tool mount. The force-measuring sensor is thus protected from interfering influences and measures with high precision the forces acting on the tamping tool. During this, a flexing of the tamping tool is compensated in a simple manner. Additionally, acceleration sensors or position sensors are arranged for recording the path of the tamping tool.
The invention will be described below by way of example with reference to the accompanying drawings. There is shown in a schematic manner in:
Each tamping tool is coupled via a pivot arm 10 to a squeezing drive 11 and a vibration drive 12. Vibrations 13 are produced, for example, by means of a rotating eccentric shaft. An eccentric shaft housing including a rotation drive is mounted on a lowerable tool carrier 14 to which the two pivot arms 10 are also articulatedly connected. Alternatively, a vibration drive 12 can be arranged also at the respective articulated connection. In the case of such an arrangement—not shown—the tamping tools 8 move along elliptic paths.
Each pivot arm 10 acts as a two-arm lever, wherein the associated tamping tool 8 is fastened at a lower lever arm in a tamping tool mount 15. An upper lever arm is coupled to the vibration drive 12 via the squeezing drive 11 designed as a hydraulic cylinder.
When tamping the track 1, the track panel is first lifted, causing the formation of cavities 16 under the sleepers 2. The tamping unit 7 is positioned above a sleeper 2 at the location 6 to be worked on, and the tamping tools 8 are actuated with the vibrations 13 by means of the vibration drive 12. Specifically, the generated vibrations 13 cause a rapid opening and closing of the tamping tools 8, movable in a pincer-like fashion, with a small amplitude (vibration). In this, there is no contact yet with ballast 17.
The actual tamping operation 9 is divided into several phases. In a first phase, the tool carrier 14 with the tamping tools 8 is lowered into sleeper cribs situated adjacent to the sleeper 2. The respective tamping tool 8 penetrates vertically into the ballast bed 5, wherein the vibrations 13 or dynamic motions facilitate a displacing of the ballast 17.
In a second phase during the lowering, a squeezing motion 18 already starts and the respective tamping tool 8 moves towards the sleeper 2. The lowering ends at a defined penetration depth, and the squeezing motion 18 is continued. In the course of the squeezing motion 18, ballast 17 is tamped by means of the tamping tools 8 under the sleeper 2, then compacted and possibly displaced laterally. During this, the vibrations 13 (vibration with approximately 35 Hz) continue to be superimposed on the squeezing motion 18 which mainly serves for ballast transport. With this dynamic compaction of the ballast 17, a so-called ballast flow can also be induced.
Before the particular tamping tool 8 touches the the sleeper 2, a motion reversal takes place in a third phase. The tool carrier 14 including the tamping tool 8 is moved upward, and a return motion 19 (reverse squeezing motion) causes an opening of the tamping tools 8 positioned oppositely in a pincer-like fashion.
A force measuring sensor 20 is arranged in the tamping tool mount 15. Alternatively, sensors (strain gauges) may also be arranged on a shaft of a tamping tool 8 provided for the measurements. With this, a horizontal contact force 21 to the ballast 17 is recorded (
Measuring signals 25 recorded by means of the sensors 20, 22, 24 are fed to an evaluation device 26. This evaluation device 26 is designed for processing the measuring signals 25 in order to record a force, acting on the tamping tool 8 in question, over a path covered by the tamping tool. Specifically in this, the horizontal contact force 21 is determined via a vibration path 27 as a force-path progression 28 (work diagram).
In order to determine the dynamic vibration path 27, first the vibration paths of the acceleration sensors 22 are found by double integration of the acceleration signals. Via the known geometric relationships, the vibration path 27 at the free end of the tamping tool (tine plate) is determined.
By way of the force measurement at the shaft of the tamping tooL 8, cutting forces (moments, normal force, transverse force) are determined. From this, the evaluation device 26 computes the horizontal contact force 21. This contact force 21 corresponds to the reaction force of the ballast 17 to the displacement forced upon it. A flexing of the tamping tool 8 can be compensated in a simple manner with the measured force. In addition, by means of the determined tamping tool movements, a compensation of the mass inertia force of the tamping tool 8 takes place.
The result of these sensor signal evaluations is the force-path progression 28 for the individual vibration cycles 29 of a squeezing operation. In further sequence, this relation between the tamping tool movement and contact force 21 is used for evaluation of the compaction procedure and of the condition of the ballast 17 or the ballast bed 5.
Examples of force-path progressions 28 for an vibration cycle 29 are shown in
The distinguishing features usable as characteristic values are a maximal force 31, a vibration amplitude 32, a front turning point 33, a rear turning point 34, a contact starting point 35, a contact loss point 36, an inclination 37 of the work line 30 during a stress phase (stress stiffness), an inclination 38 of the work line 30 during a relief phase (relief stiffness), an overall inclination 39 of the work line, and a peformed deformation work 40 as an area enclosed by the work line 30. For determining these characteristic values 31-40, it is also possible to use the absolute squeezing paths 23 instead of the relative vibration paths 27.
The work-integrated measuring and characteristic-value determination and the evaluation of the ballast condition based thereon allow a continuous quality control and the optimization of the process parameters of the tamping operation 9. The condition of the track ballast 17 can be assessed on the basis of the two extremes, the new ballast from a quarry and the old ballast at the end of its technical useful life. Depending on ballast quality, stress, environmental influences and subgrade circumstances, the ballast condition goes through all intermediate stages, wherein a ballast reconditioning or a mixing of ballast can also take place in the course of maintenance measures. In particular, it is possible to state that new ballast 17 is clean, has sharp edges and a defined grain size distribution. Old ballast 17, on the contrary, is soiled, has rounded edges and an altered grain size distribution as a result of contamination, abrasion, grain disintegration and fines from the subgrade.
In addition, the work-integrated determination of the ballast stiffness and the assessment of the compaction condition based thereon allow a continuous quality control and the optimization of the process parameters of the tamping operation 9. The condition of the track ballast 17 can be assessed on the basis of specific ballast characteristics. Loosely poured ballast is loosely packed and has great pore volume as well as low bearing capacity. During loading stress there are relatively great deformations which are for the most part irreversible. The stiffness of such uncompacted ballast is low. Compacted ballast, on the other hand, is tightly packed and has small pore volume. As a result of the compaction, deformations are largely pre-empted, which is why only small deformations occur any more under load. These are mostly elastic, i.e. reversible. Compacted ballast has high stiffness.
The defined characteristic values 31-40 of a vibration cycle 29 characterize the tamping operation 9 in such a way that it is possible in a simple manner to make statements about the track ballast condition and the compaction process. To that end, the characteristic values 31-40 or the work diagrams are either shown in a display device or compared to a pre-defined evaluation scheme. Individual characteristic values 31-40 can be prescribed as parameters for controlling the tamping unit 7. To that end, data are transmited from the evaluation device 26 to a machine control 41.
In the following exemplary description of the correlations, the force-path progressions 28 are interpretated in a simplifying manner. For better clarity, existing cross-relations are not touched upon. Rather, links of characteristic values 31-40 and assessable mechanisms with the most obvious correlations are emphasized.
The maximal force 31 is a good indicator of both the ballast condition as well as the compaction condition. The vibration amplitude 32 is defined by the turning points 33, 34 of the dynamic tamping tool motion. The rising resistance of the ballast 17 is accompanied by a slight reduction of the vibration amplitude 32, which is why this second characteristic value is a good indicator of the compaction condition.
In the force-path progression 28, the contact starting point 35 and the contact loss point 36 separate a section of force-locking contact between tamping tool 8 and ballast 17 from a section without contact. In the work diagram it can be seen that the tamping tool 8 strikes the ballast 17 in a forward motion, the contact force 21 rises to the maximum 31 and then decreases again because the tamping tool 8 has reached the front turning point 33 and starts to move backward again. In this backward motion, it loses contact with the ballast 17 pressed in the working direction and carries out the remaining backward motion with a negligible force effect. Only after the change of direction at the rear turning point 34 does the tamping tool 8 move in the working direction again in order to come into contact with the track ballast anew.
The stress stiffness of the track ballast 17 is the relationship between force and associated deformation. In the force-path progression 28, it is represented as the inclination of the work line 30 in a stress branch. The stress stiffness is an essential characteristic value for assessing the bearing capacity of the track ballast. It rises in the course of ballast compaction and is used as proof of compaction.
The relief stiffness is represented as inclination of the work line 30 in a relief phase. In
The area enclosed by the work line 30 corresponds to the deformation work 40 performed. With the relative vibration path xrel, the contact force F and a vibration cycle duration T, the deformation work W is calculated with the following formula:
The efficiency of the track tamping can be optimized with this characteristic value in that the tamping unit 7 is operated in such a manner that the deformation work 40 is at a maximum.
In an advantageous embodiment of the invention, all characteristic values 31-40 for each vibration cycle 29 are computed, and the progression is evaluated over the entire squeezing operation. In
In
Particularly in tracks 1 with old ballast (
By way of an evaluation of the characteristic values 31-40 for a track section, it can therefore be estimated when a next treatment (tamping) of this track section will be required in order to maintain a satisfactory track position. With this, an indicator for a current categorization in the life cycle of the track 1 exists. With tamping intervals becoming increasingly shorter, the track 1 approaches the end of its service life, and rehabilitation measures have to be undertaken. The present method thus delivers characteristic values 31-40 which are also suited for comprehensive planning of the track maintenance.
Number | Date | Country | Kind |
---|---|---|---|
A 223/2017 | May 2017 | AT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/061092 | 5/2/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/219570 | 12/6/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3981247 | Theurer | Sep 1976 | A |
4240352 | Theurer | Dec 1980 | A |
9957668 | Lichtberger | May 2018 | B2 |
10036128 | Salciccia | Jul 2018 | B2 |
10808362 | Seyrlehner | Oct 2020 | B2 |
20190055698 | Hofstaetter | Feb 2019 | A1 |
20190137356 | Philipp | May 2019 | A1 |
Number | Date | Country |
---|---|---|
339358 | Oct 1977 | AT |
350097 | May 1979 | AT |
515801 | Dec 2015 | AT |
515801 | Dec 2015 | AT |
201933369 | Aug 2011 | CN |
105189868 | Dec 2015 | CN |
108603345 | Sep 2018 | CN |
109196327 | Jan 2019 | CN |
2770108 | Aug 2014 | EP |
2532967 | Mar 1984 | FR |
2017129215 | Aug 2017 | WO |
2017202484 | Nov 2017 | WO |
Number | Date | Country | |
---|---|---|---|
20200181850 A1 | Jun 2020 | US |