The invention relates to a method, a system, a computer program and a device for determining the surface charge and/or dipole densities on heart walls in order to locate the origin(s) of cardiac arrhythmias.
For localizing the origin(s) of cardiac arrhythmias it is common practice to measure the electric potentials located on the inner surface of the heart by electrophysiological means within the patient's heart. For example, for this purpose electrode catheters can be inserted into the heart and moved around while recording cardiac potentials during normal heart rhythm or cardiac arrhythmia. If the arrhythmia has a regular activation sequence, the timing of the electric activation measured in voltages at the site of the electrode can be integrated when moving the electrode around during the arrhythmia, to create a three dimensional map of the electric activation. By doing this, information on the localization of the source of arrhythmia(s) and mechanisms, i.e., reentry circuits, can be diagnosed to initiate or guide treatment (radiofrequency ablation).
This mapping procedure is often aided by computer systems generating three dimensional maps of catheter positions by localizing the catheter with the help of magnetic fields (the so called Carto System) or transthoracic impedances (by Localisa and NavX). Because all the points of such maps are obtained by electrode positions in contact with the cardiac surface, this mapping system is called contact mapping. It has the inherent limitation that cardiac activation can only be assessed simultaneously at the points in contact with the myocardium. Hence, an instant map of the entire cardiac activation is impossible because the entire heart chamber cannot be contacted without compromising blood circulation. An instant mapping of the simultaneous electric activation of the heart chamber, however, might be of advantage in unstable arrhythmias of short duration, rendering the mapping procedures (moving the electrode around during the arrhythmia) too long. In addition, an instant map of cardiac electric activation might be of advantage during irregular arrhythmias or arrhythmias with non-constant activation sequences that render integration of activation times from contact mapping impossible. Finally, instant maps of cardiac activation are probably also faster and easier obtained, than a contact map generated by time consuming catheters movements to different areas of the heart in all sorts of cardiac arrhythmias.
The disadvantage of contact mapping can be overcome by “non-contact mapping”, which allows for mapping cardiac activation of a heart chamber simultaneously without contact to the cardiac wall. For this purpose, for instance, a multi electrode array mounted on an inflatable balloon can be inserted into the heart. The geometry of the heart chamber is obtained either (i) by reconstruction of a contact map, which is obtained from integration of movements with an electrode catheter within the heart chamber, or (ii) by importing imaging data from computed tomography or MRI (magnetic resonance imaging).
Once the geometry of the cardiac chamber is outlined in a map the information of a simultaneous recording of cardiac farfield potentials (unipoles) by the multi electrode array can be extrapolated to the desired cardiac map using advanced mathematical methods. This non-contact mapping has the advantage that it provides the entire electric activation measured by farfield unipolar potentials either in sinus rhythm or during arrhythmia without the need for moving an electrode catheter around the cardiac chamber. This allows for a beat to beat analysis of cardiac activation and, therefore, unstable, irregular or multifocal arrhythmias can be tracked and treated. However, the disadvantage of non-contact mapping is that it relies on farfield potentials, which do not allow for the same precision in localization as contact mapping (i.e. measuring local electrograms (potentials) of cardiac activation by touching the endocardium at the site of interest with a mapping electrode).
Furthermore, non-contact mapping is more prone to artifact generation and interference from potentials generated by cardiac re-polarization and adjacent heart chambers (atria/ventricles). These drawbacks can be overcome to a certain extent with several filtering techniques. One the other side, in many cases these drawbacks also render the localization of cardiac arrhythmias a time-consuming frustrating intervention.
Therefore, the advantages of non-contact mapping, i.e. the instant cardiac activation maps, have to be balanced against the disadvantages, i.e. the decreased spatial resolution due to recording of far field signals, filtering of artifacts, etc.
Finally, another method for the non-invasive localization of cardiac arrhythmias is body surface mapping. In this technique multiple electrodes are attached to the entire surface of the thorax and the information of the cardiac electrograms (surface ECG) is measured in voltages integrated to maps of cardiac activation. Complex mathematical methods are required in order to determine the electric activation in a heart model, for instance, one obtained from CT or MRI imaging giving information on cardiac size and orientation within the thoracic cavity.
The disadvantage of both mapping methods, i.e. contact and non-contact types, is the representation of the electric activity of the heart by means of potentials, that are the result of a summation of electric activities of many cardiac cells. The integration of all these local electric ion charges generated by the cardiac cells provides for the potentials that are measured by current mapping systems.
Therefore, it is an object of the present invention to provide a method, a system, a program and a device for improving precision, accuracy and spatial resolution of cardiac activation mapping, when compared to prior art systems.
It was surprisingly found that the use of surface charge and/or dipole densities and in particular their distribution in a heart chamber is a much better indicator of cardiac arrhythmias than electric potentials in the heart.
In a first aspect, the present invention relates to a method for determining a database table of surface charge densities (ρ) of at least one given heart chamber, the surface charge density information comprising a table (data values) ρ(P′, t), wherein:
comprising the following steps:
In another aspect, the present invention relates to a method for determining a database table of dipole densities ν(P′,t) of at least one given heart chamber, the dipole density information comprising a table (data values) ν(P′, t), wherein:
comprising the following steps:
Preferably, the electric potential(s) Ve can be determined by contact mapping. Equally preferred the electric potential(s) Ve can be determined by non-contact mapping.
In one embodiment, the above mentioned algorithm method for transforming said Ve into surface charge density (ρ) or dipole density (ν) in step b) above employs the boundary element method (BEM).
The geometry of the probe electrode can be ellipsoidal or spherical.
In one embodiment, the measured potential(s) Ve can be transformed into surface charge densities ρ using the following equation:
wherein:
In another embodiment, the measured potential(s) Ve can be transformed into dipole densities ν using the following equation:
wherein:
According to a further aspect of the present invention, provided is a system for determining a table of surface charge densities ρ(P′, t) of a given heart chamber, comprising:
In some embodiments, the measuring and recording unit comprises electrodes configured to measure an electric potential Ve when brought into contact with at least one part of the heart chamber.
In some embodiments, the measuring and recording unit comprises electrodes configured to measure an electric potential Ve when not in contact with at least one part of the heart chamber.
The system can also comprise an imaging unit that represents the surface charge densities ρ(P′, t) as a 2-dimensional image or time-dependent sequence of images.
The system can comprise an imaging unit that represents the surface charge densities ρ(P′, t) as a 3-dimensional image or time-dependent sequence of images.
In accordance with another aspect of the invention, provided is a system that generates a table of dipole densities ν(P′, t) of a given heart chamber, comprising:
The measuring and recording unit can comprise electrodes configured to measure an electric potential Ve when brought into con-tact with at least one part of the heart chamber.
The measuring and recording unit can comprise electrodes configured to measure an electric potential Ve when not in contact with at least one part of the heart chamber.
The system can further comprise an imaging unit that represents the dipole densities ν(P′, t) as a 2-dimensional image or time-dependent sequence of images.
The system can further comprise an imaging unit that represents the dipole densities ν(P′, t) as a 3-dimensional image or time-dependent sequence of images.
The system can be configured to implement the above cited methods of the invention.
In a further aspect, the present invention is directed to a computer program comprising instructions for implementing a method of the present invention.
In a further aspect, the computer program of the invention can comprise instructions implementing a system of the invention.
The computer program of the present invention can comprise a computer readable program code executable by a processor, where the method can include starting program after booting a computer and/or a system in accordance with the invention.
A further aspect of the invention relates to a device for implementing a method according to the invention, comprising at least one an electrode for measuring the electrode potential Ve using the method of contact mapping and/or using the method of non-contact mapping, at least one processing unit for generating and transforming Ve into said surface charge density ρ(P′, t) and/or dipole density ν(P′, t) for presenting on a display.
Research has indicated that the use of the surface charge densities (i.e. their distribution) or dipole densities (i.e. their distribution) to generate distribution map(s) will lead to a more detailed and precise information on electric ionic activity of local cardiac cells than potentials. Surface charge density or dipole densities represent a precise and sharp information of the electric activity with a good spatial resolution, whereas potentials resulting from integration of charge densities provide only a diffuse picture of electric activity. The electric nature of cardiac cell membranes comprising ionic charges of proteins and soluble ions can be precisely described by surface charge and dipole densities. The surface charge densities or dipole densities cannot be directly measured in the heart, but instead must be mathematically and accurately calculated starting from measured potentials. In other words, the information of voltage maps obtained by current mapping systems can be greatly refined when calculating surface charge densities or dipole densities from these.
The surface charge density means surface charge (Coulombs) per unit area (cm2). A dipole as such is a neutral element, wherein a part comprises a positive charge and the other part comprises the same but negative charge. A dipole might represent the electric nature of cellular membranes better, because in biological environment ion charges are not macroscopically separated.
In order to generate a map of surface charge densities (surface charge density distribution) according to the present invention, the geometry of the given heart chamber must be known. The 3D geometry of the cardiac chamber is typically assessed by currently available and common mapping systems (so-called locator systems) or, alternatively, by integrating anatomical data from CT/MRI scans.
needs to be solved, wherein V is the potential and x,y,z denote the three dimensional coordinates. The boundary conditions for this equation are V(x,y,z)=VP(x,y,z) on SP, wherein VP is the potential on surface of the probe.
The solution is an integral that allows for calculating the potential V(x′y′z′) at any point x′y′z′ in the whole volume of the heart chamber that is filled with blood. For calculating said integral numerically a discretisation of the cardiac surface is necessary and the so called boundary element method (BEM) has to be used.
The boundary element method is a numerical computational method for solving linear integral equations (i.e. in surface integral form). The method is applied in many areas of engineering and science including fluid mechanics, acoustics, electromagnetics, and fracture mechanics.
The boundary element method is often more efficient than other methods, including the finite element method. Boundary element formulations typically give rise to fully populated matrices after discretisation. This means, that the storage requirements and computational time will tend to grow according to the square of the problem size. By contrast, finite element matrices are typically banded (elements are only locally connected) and the storage requirements for the system matrices typically grow quite linearly with the problem size.
With the above in mind, all potentials VP (x1′,y1′,z1′) on the surface of the probe can be measured. To calculate the potential Ve on the wall of the heart chamber, the known geometry of the surface of the heart chamber must be divided in discrete parts to use the boundary element method. The endocardial potentials Ve are then given by a linear matrix transformation T from the probe potentials VP: Ve=T VP.
After measuring and calculating one or more electric potential(s) Ve of cardiac cells in one or more position(s) P(x,y,z) of the at least one given heart chamber at a given time t. The surface charge density and the dipole density is related to potential according to the following two Poisson equations:
wherein ρ(P) is the surface charge density in position P=x,y,z, δS
There is a well known relationship between the potential Ve on the surface of the wall of the heart chamber and the surface charge (4) or dipole densities (5).
(For a review see Jackson J D. Classical Electrodynamics, 2nd edition, Wiley, N.Y. 1975.)
The boundary element method again provides a code for transforming the potential Ve in formulas 4 and 5 into the desired surface charge densities and dipole densities, which can be recorded in the database.
In another embodiment of the method of the present invention the electric potential(s) Ve is (are) determined by contact mapping. In this case the steps for calculating the electric potential Ve are not necessary, because the direct contact of the electrode to the wall of the heart chamber already provides the electric potential Ve.
In a preferred embodiment of the method of the present invention the probe electrode comprises a shape that allows for calculating precisely the electric potential Ve and, thus, simplifies the calculations for transforming Ve into the desired charge or dipole densities. This preferred geometry of the electrode is essentially ellipsoidal or spherical.
In order to employ the method for determining a database table of surface charge densities of at least one given heart chamber in the context of the present invention, it is preferred to use a system comprising at least:
It is noted that numerous devices for localising and determining electric potentials of cardiac cells in a given heart chamber by invasive and non-invasive methods are well known in the art and have been employed by medical practitioners over many years. Hence, the method, system, and devices of the present invention do not require any particular new electrodes for implementing the best mode for practicing the present invention. Instead, the invention provides a new and advantageous processing of the available data that will allow for an increase in precision, accuracy and spatial resolution of cardiac activation mapping when compared to prior art systems based on electric surface potentials in the heart only. In the near future, the present invention will allow for providing superior diagnostic means for diagnosing cardiac arrhythmias and electric status of heart cells including metabolic and functional information.
In method 300 of
In method 400 of
While the foregoing has described what are considered to be the best mode and/or other preferred embodiments, it is understood that various modifications may be made therein and that the invention or inventions may be implemented in various forms and embodiments, and that they may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim that which is literally described and all equivalents thereto, including all modifications and variations that fall within the scope of each claim.
Number | Date | Country | Kind |
---|---|---|---|
1251/06 | Aug 2006 | CH | national |
The present application is a continuation application of U.S. patent application Ser. No. 14/865,435, filed Sep. 25, 2015, which is a continuation application of U.S. patent application Ser. No. 14/547,258, filed Nov. 19, 2014, now U.S. Pat. No. 9,167,982, which is a continuation application of U.S. patent application Ser. No. 14/189,643, filed Feb. 25, 2014, now U.S. Pat. No. 8,918,158, which is a continuation application of U.S. patent application Ser. No. 13/858,715, filed on Apr. 8, 2013, now U.S. Pat. No. 8,700,119, which is a continuation application of U.S. patent application Ser. No. 12/376,270, filed on Feb. 3, 2009, now U.S. Pat. No. 8,417,313, which is a 371 national stage application of Patent Cooperation Treaty Application No. PCT/CH2007/000380 filed Aug. 3, 2007, entitled METHOD AND DEVICE FOR DETERMINING AND PRESENTING SURFACE CHARGE AND DIPOLE DENSITIES ON CARDIAC WALLS, which in turn claims priority to Swiss Patent Application 1251/06 filed Aug. 3, 2006, which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5041973 | Lebron et al. | Aug 1991 | A |
5156151 | Imran | Oct 1992 | A |
5293868 | Nardella | Mar 1994 | A |
5482472 | Garoni et al. | Jan 1996 | A |
5499981 | Kordis | Mar 1996 | A |
5555883 | Avitall | Sep 1996 | A |
5595183 | Swanson et al. | Jan 1997 | A |
5601084 | Sheehan et al. | Feb 1997 | A |
5647367 | Lum et al. | Jul 1997 | A |
5662108 | Budd et al. | Sep 1997 | A |
5722416 | Swanson et al. | Mar 1998 | A |
5740808 | Panescu et al. | Apr 1998 | A |
5749833 | Hakki et al. | May 1998 | A |
5759158 | Swanson | Jun 1998 | A |
5795298 | Vesley et al. | Aug 1998 | A |
5795299 | Eaton et al. | Aug 1998 | A |
5820568 | Willis | Oct 1998 | A |
5830144 | Vesely | Nov 1998 | A |
5876336 | Swanson et al. | Mar 1999 | A |
5928228 | Kordis et al. | Jul 1999 | A |
5968040 | Swanson et al. | Oct 1999 | A |
6014590 | Whayne et al. | Jan 2000 | A |
6024703 | Zanelli et al. | Feb 2000 | A |
6066096 | Smith et al. | May 2000 | A |
6086532 | Panescu et al. | Jul 2000 | A |
6107699 | Swanson | Aug 2000 | A |
6187032 | Ohyu et al. | Feb 2001 | B1 |
6188928 | Noren et al. | Feb 2001 | B1 |
6216027 | Willis et al. | Apr 2001 | B1 |
6216043 | Swanson et al. | Apr 2001 | B1 |
6240307 | Beatty et al. | May 2001 | B1 |
6301496 | Reisfeld | Oct 2001 | B1 |
6400981 | Govari | Jun 2002 | B1 |
6490474 | Willis et al. | Dec 2002 | B1 |
6514249 | Maguire et al. | Feb 2003 | B1 |
6574492 | Ben-Haim et al. | Jun 2003 | B1 |
6640119 | Budd et al. | Oct 2003 | B1 |
6716166 | Govari | Apr 2004 | B2 |
6728562 | Budd et al. | Apr 2004 | B1 |
6772004 | Rudy | Aug 2004 | B2 |
6773402 | Govari et al. | Aug 2004 | B2 |
6824515 | Suorsa et al. | Nov 2004 | B2 |
6826420 | Beatty et al. | Nov 2004 | B1 |
6826421 | Beatty et al. | Nov 2004 | B1 |
6839588 | Rudy | Jan 2005 | B1 |
6895267 | Panescu et al. | May 2005 | B2 |
6939309 | Beatty et al. | Sep 2005 | B1 |
6950689 | Willis et al. | Sep 2005 | B1 |
6970733 | Willis et al. | Nov 2005 | B2 |
6978168 | Beatty et al. | Dec 2005 | B2 |
6990370 | Beatty et al. | Jan 2006 | B1 |
7187964 | Khoury | Mar 2007 | B2 |
7258674 | Hillstead et al. | Aug 2007 | B2 |
7285119 | Stewart et al. | Oct 2007 | B2 |
7289843 | Beatty et al. | Oct 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7505810 | Harlev et al. | Mar 2009 | B2 |
7573182 | Savage | Aug 2009 | B2 |
7766838 | Yagi et al. | Aug 2010 | B2 |
7841986 | He et al. | Nov 2010 | B2 |
7918793 | Altmann et al. | Apr 2011 | B2 |
7953475 | Harlev et al. | May 2011 | B2 |
8103327 | Harlev et al. | Jan 2012 | B2 |
8147486 | Honour et al. | Apr 2012 | B2 |
8150499 | Gelbart et al. | Apr 2012 | B2 |
8175680 | Panescu | May 2012 | B2 |
8208998 | Beatty et al. | Jun 2012 | B2 |
8233972 | Zhang | Jul 2012 | B2 |
8320711 | Altmann et al. | Nov 2012 | B2 |
8346339 | Kordis et al. | Jan 2013 | B2 |
8360786 | Duryea | Jan 2013 | B2 |
8364234 | Kordis et al. | Jan 2013 | B2 |
8412307 | Willis et al. | Apr 2013 | B2 |
8417313 | Scharf et al. | Apr 2013 | B2 |
8428690 | Li et al. | Apr 2013 | B2 |
8447377 | Harlev et al. | May 2013 | B2 |
8454596 | Ma et al. | Jun 2013 | B2 |
8465433 | Zwirn | Jun 2013 | B2 |
8478388 | Nguyen et al. | Jul 2013 | B2 |
8512255 | Scharf et al. | Aug 2013 | B2 |
8571647 | Harlev et al. | Oct 2013 | B2 |
8700119 | Scharf et al. | Apr 2014 | B2 |
8755861 | Harlev et al. | Jun 2014 | B2 |
8825130 | Just et al. | Sep 2014 | B2 |
8825134 | Danehorn | Sep 2014 | B2 |
8918158 | Scharf et al. | Dec 2014 | B2 |
8934988 | Persson et al. | Jan 2015 | B2 |
8948837 | Harlev et al. | Feb 2015 | B2 |
8968299 | Kauphusman et al. | Mar 2015 | B2 |
8979839 | De La Rama et al. | Mar 2015 | B2 |
8989842 | Li et al. | Mar 2015 | B2 |
9011423 | Brewster et al. | Apr 2015 | B2 |
9026196 | Curran et al. | May 2015 | B2 |
9037259 | Mathur | May 2015 | B2 |
9044245 | Condie et al. | Jun 2015 | B2 |
9167982 | Scharf et al. | Oct 2015 | B2 |
9186081 | Afonso et al. | Nov 2015 | B2 |
9186212 | Nabutovsky et al. | Nov 2015 | B2 |
9192318 | Scharf et al. | Nov 2015 | B2 |
9220432 | Bukhman | Dec 2015 | B2 |
9241687 | McGee | Jan 2016 | B2 |
9351789 | Novichenok et al. | May 2016 | B2 |
D758596 | Perryman et al. | Jun 2016 | S |
9474486 | Eliason et al. | Oct 2016 | B2 |
9480525 | Lopes et al. | Nov 2016 | B2 |
9486355 | Gustus et al. | Nov 2016 | B2 |
9492227 | Lopes et al. | Nov 2016 | B2 |
9492228 | Lopes et al. | Nov 2016 | B2 |
9504395 | Scharf et al. | Nov 2016 | B2 |
9526573 | Lopes et al. | Dec 2016 | B2 |
9549708 | Mercanzini et al. | Jan 2017 | B2 |
9579149 | Kelly et al. | Feb 2017 | B2 |
9585588 | Marecki et al. | Mar 2017 | B2 |
9610024 | Scharf et al. | Apr 2017 | B2 |
9675266 | Afonso et al. | Jun 2017 | B2 |
9675401 | Lopes et al. | Jun 2017 | B2 |
9713730 | Mathur et al. | Jul 2017 | B2 |
9717555 | Chan et al. | Aug 2017 | B2 |
9717559 | Ditter et al. | Aug 2017 | B2 |
9757044 | Scharf et al. | Sep 2017 | B2 |
9827039 | Dandler et al. | Nov 2017 | B2 |
9913589 | Scharf et al. | Mar 2018 | B2 |
10082395 | Koyrakh et al. | Sep 2018 | B2 |
20010007070 | Stewart et al. | Jul 2001 | A1 |
20020128565 | Rudy | Sep 2002 | A1 |
20020165441 | Coleman et al. | Nov 2002 | A1 |
20030036696 | Willis et al. | Feb 2003 | A1 |
20030065271 | Khoury | Apr 2003 | A1 |
20030078494 | Panescu et al. | Apr 2003 | A1 |
20030153907 | Suorsa et al. | Aug 2003 | A1 |
20030158477 | Panescu | Aug 2003 | A1 |
20030231789 | Willis et al. | Dec 2003 | A1 |
20030236466 | Tarjan et al. | Dec 2003 | A1 |
20040039312 | Hillstead et al. | Feb 2004 | A1 |
20040254437 | Hauck et al. | Dec 2004 | A1 |
20050059880 | Mathias et al. | Mar 2005 | A1 |
20050113665 | Mohr et al. | May 2005 | A1 |
20050148836 | Kleen et al. | Jul 2005 | A1 |
20050203375 | Willis et al. | Sep 2005 | A1 |
20060058663 | Willis et al. | Mar 2006 | A1 |
20060058676 | Yagi et al. | Mar 2006 | A1 |
20060058692 | Beatty et al. | Mar 2006 | A1 |
20060058693 | Beatty et al. | Mar 2006 | A1 |
20060084884 | Beatty et al. | Apr 2006 | A1 |
20060084970 | Beatty et al. | Apr 2006 | A1 |
20060084971 | Beatty et al. | Apr 2006 | A1 |
20060084972 | Beatty et al. | Apr 2006 | A1 |
20060116576 | McGee et al. | Jun 2006 | A1 |
20070060832 | Levin | Mar 2007 | A1 |
20070083194 | Kunis et al. | Apr 2007 | A1 |
20070106146 | Altmann et al. | May 2007 | A1 |
20070219551 | Honour et al. | Sep 2007 | A1 |
20070232949 | Saksena | Oct 2007 | A1 |
20080009758 | Voth | Jan 2008 | A1 |
20080146937 | Lee et al. | Jun 2008 | A1 |
20080287777 | Li et al. | Nov 2008 | A1 |
20090024086 | Zhang et al. | Jan 2009 | A1 |
20090076483 | Danehorn | Mar 2009 | A1 |
20090131930 | Gelbart et al. | May 2009 | A1 |
20090143651 | Kallback et al. | Jun 2009 | A1 |
20090148012 | Altmann et al. | Jun 2009 | A1 |
20090171274 | Harlev et al. | Jul 2009 | A1 |
20090264781 | Scharf | Oct 2009 | A1 |
20100076426 | de la Rama et al. | Mar 2010 | A1 |
20100094279 | Kauphusman et al. | Apr 2010 | A1 |
20100168578 | Garson, Jr. et al. | Jul 2010 | A1 |
20100286551 | Harlev et al. | Nov 2010 | A1 |
20100298690 | Scharf | Nov 2010 | A1 |
20110045130 | Edens et al. | Feb 2011 | A1 |
20110077526 | Zwirn | Mar 2011 | A1 |
20110092809 | Nguyen et al. | Apr 2011 | A1 |
20110118726 | De La Rama et al. | May 2011 | A1 |
20110125172 | Gelbart et al. | May 2011 | A1 |
20110172658 | Gelbart et al. | Jul 2011 | A1 |
20110201951 | Zhang | Aug 2011 | A1 |
20110213231 | Hall et al. | Sep 2011 | A1 |
20110270237 | Werneth et al. | Nov 2011 | A1 |
20110570237 | Werneth | Nov 2011 | |
20120078077 | Harlev et al. | Mar 2012 | A1 |
20120082969 | Schwartz et al. | Apr 2012 | A1 |
20120136231 | Markel | May 2012 | A1 |
20120143298 | Just et al. | Jun 2012 | A1 |
20120165667 | Altmann et al. | Jun 2012 | A1 |
20120172859 | Condie et al. | Jul 2012 | A1 |
20120184863 | Harlev et al. | Jul 2012 | A1 |
20120271138 | Kordis et al. | Oct 2012 | A1 |
20120271139 | Kordis et al. | Oct 2012 | A1 |
20120277574 | Panescu | Nov 2012 | A1 |
20120310064 | McGee | Dec 2012 | A1 |
20130006238 | Ditter et al. | Jan 2013 | A1 |
20130085361 | Mercanzini et al. | Apr 2013 | A1 |
20130096432 | Hauck | Apr 2013 | A1 |
20130158537 | Deladi et al. | Jun 2013 | A1 |
20130165916 | Mathur | Jun 2013 | A1 |
20130172715 | Just et al. | Jul 2013 | A1 |
20130178851 | Lopes et al. | Jul 2013 | A1 |
20130190587 | Lopes et al. | Jul 2013 | A1 |
20130197614 | Gustus et al. | Aug 2013 | A1 |
20130225983 | Willis et al. | Aug 2013 | A1 |
20130226017 | Scharf et al. | Aug 2013 | A1 |
20130245621 | Persson et al. | Sep 2013 | A1 |
20130253298 | Harlev et al. | Sep 2013 | A1 |
20130267853 | Dausch et al. | Oct 2013 | A1 |
20130274582 | Afonso et al. | Oct 2013 | A1 |
20130282084 | Mathur et al. | Oct 2013 | A1 |
20130304062 | Chan et al. | Nov 2013 | A1 |
20130304065 | Lopes et al. | Nov 2013 | A1 |
20130310827 | Brewster et al. | Nov 2013 | A1 |
20130330701 | Rubinstein et al. | Dec 2013 | A1 |
20140024910 | Scharf | Jan 2014 | A1 |
20140095105 | Koyrakh et al. | Apr 2014 | A1 |
20140121470 | Scharf et al. | May 2014 | A1 |
20140148677 | Liempde et al. | May 2014 | A1 |
20140180150 | Scharf et al. | Jun 2014 | A1 |
20140249505 | Bukhman | Sep 2014 | A1 |
20140257069 | Eliason et al. | Sep 2014 | A1 |
20140257071 | Curran et al. | Sep 2014 | A1 |
20140275921 | Harlev et al. | Sep 2014 | A1 |
20140276733 | VanScoy et al. | Sep 2014 | A1 |
20140276746 | Nabutovsky et al. | Sep 2014 | A1 |
20140276789 | Dandler et al. | Sep 2014 | A1 |
20140358143 | Novichenok et al. | Dec 2014 | A1 |
20150038862 | Gijsbers et al. | Feb 2015 | A1 |
20150208938 | Houben et al. | Jul 2015 | A1 |
20150223757 | Werneth et al. | Aug 2015 | A1 |
20150257732 | Ryan | Sep 2015 | A1 |
20150257825 | Kelly et al. | Sep 2015 | A1 |
20150342491 | Marecki et al. | Dec 2015 | A1 |
20150366508 | Chou et al. | Dec 2015 | A1 |
20150374252 | de la Rama et al. | Dec 2015 | A1 |
20160038051 | Scharf | Feb 2016 | A1 |
20160051321 | Salahieh et al. | Feb 2016 | A1 |
20160100770 | Afonso et al. | Apr 2016 | A1 |
20160128771 | Ditter et al. | May 2016 | A1 |
20160128772 | Reinders et al. | May 2016 | A1 |
20170035486 | Lopes et al. | Feb 2017 | A1 |
20170100049 | Scharf et al. | Apr 2017 | A1 |
20170311833 | Afonso et al. | Nov 2017 | A1 |
20170319180 | Henneken et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
2829626 | Sep 2012 | CA |
201223445 | Apr 2009 | CN |
201275144 | Jul 2009 | CN |
1166714 | Jan 2002 | EP |
1760661 | Mar 2007 | EP |
1779787 | May 2007 | EP |
2051625 | Feb 2008 | EP |
2051625 | Apr 2009 | EP |
2252203 | Jul 2009 | EP |
2683293 | Jan 2014 | EP |
08501477 | Feb 1996 | JP |
10137207 | May 1998 | JP |
2000510030 | Aug 2000 | JP |
2000510250 | Aug 2000 | JP |
2001070269 | Mar 2001 | JP |
2002051998 | Feb 2002 | JP |
2002113004 | Apr 2002 | JP |
2002522106 | Jul 2002 | JP |
2003511098 | Mar 2003 | JP |
2004350702 | Dec 2004 | JP |
2005536313 | Dec 2005 | JP |
2006511296 | Apr 2006 | JP |
2008149132 | Jul 2008 | JP |
2009136679 | Jun 2009 | JP |
2011504363 | Feb 2011 | JP |
2011507656 | Mar 2011 | JP |
2014506171 | Mar 2014 | JP |
9406349 | Mar 1994 | WO |
1994006349 | Mar 1994 | WO |
9905971 | Feb 1999 | WO |
09905971 | Feb 1999 | WO |
1999005971 | Feb 1999 | WO |
0007501 | Feb 2000 | WO |
2000007501 | Feb 2000 | WO |
0245608 | Jun 2002 | WO |
2002045608 | Jun 2002 | WO |
2003026722 | Apr 2003 | WO |
2004026134 | Apr 2004 | WO |
2006060613 | Jun 2006 | WO |
2008014629 | Feb 2008 | WO |
2009065042 | May 2009 | WO |
2009090547 | Jul 2009 | WO |
2011136867 | Nov 2011 | WO |
2012092016 | Jul 2012 | WO |
2012100184 | Jul 2012 | WO |
2012100185 | Jul 2012 | WO |
2012110942 | Aug 2012 | WO |
2012122517 | Sep 2012 | WO |
2014124231 | Feb 2013 | WO |
2014036439 | Mar 2014 | WO |
2014124231 | Aug 2014 | WO |
2014130169 | Aug 2014 | WO |
2015148470 | Oct 2015 | WO |
2017192769 | Nov 2017 | WO |
Entry |
---|
Japanese Office Action dated Jun. 27, 2017 issued in corresponding Japanese Application No. 2015-530101, with English language translation. |
European Office Action dated Feb. 29, 2016 issued in corresponding European Application No. 07 785 075.8-1657. |
Extended European Search Report dated Mar. 14, 2017 issued in corresponding European Application No. EP14843283.4. |
Extended European Search Report dated Oct. 18, 2017, issued in European Application No. 15768711. |
International Search Report dated Jun. 5, 2014 issued in corresponding PCT application WO 2014/036439. |
International Search Report dated Apr. 14, 2008 in related International Application No. PCT/CH2007/000380. |
Japanese Office Action dated Jan. 31, 2017 issued in corresponding Japanese Application No. 2013-557-926, with English language summary. |
Japanese Office Action dated Sep. 26, 2017 issued in corresponding Japanese Application No. 2017-155346, with English translation. |
Office Action dated Nov. 7, 2017, issued in European Application No. 15768711. |
Office Action dated Oct. 10, 2017, issued in Application No. 2015-557091 with machine translation to English. |
Office Action dated Mar. 9, 2016 in corresponding European Patent Application No. 13176658.6. |
Office Action dated May 30, 2016 in related Australian Patent Application No. 2012225250. |
Della Bella et al. “Non-contact mapping to guide catheter ablation of untolerated ventrical tachycardia” European Heart Journal, May 2002, 23(9)742-752. |
Examination report dated Jul. 6, 2017 issued in Australian Patent Application No. 2014214756. |
Examination Report dated Jun. 27, 2017 issued in Australian Application No. 2013308531. |
Examiner's Report dated Dec. 22, 2015 in related Canadian Application No. 2656898. |
Extended European Search Report dated Jul. 8, 2016 in related European Application No. 14748567.6. |
Gupta et al. “Point of view cardiac mapping; utility or futility? Non-contact endocardial mapping” Indian Pacing and Electrophysiology Journal2:2Q-32 (2002). |
Office Action dated Mar. 9, 2016 in corresponding European Patent Application No. 09702094.5. |
Patent Examination Report No. 3 dated Sep. 21, 2016 in related Australian Application No. 2012225250. |
Van Oosterom A: “Solidifying the solid angle.” 2002 Journal of Electrocardiology 2002 vol. 35 Suppl pp. 181-192 ISSN: 0022-0736. |
William G. Stevenson et al: “Recording Techniques for Clinical Electrophysiology” Journal of Cardiovascular Electrophysiology. vol. 16 No. 91, Sep. 2005, pp. 1017-1022. |
Wolfgang Nolting: Elektrodynamik—Grundkurs Theoretische Physik 3 Springer Spektrum pp. D 89-D 91. |
Examiner's Report dated Nov. 27, 2017 in Canadian Application No. 2,829,626. |
Canadian Office Action dated Nov. 27, 2017 issued in corresponding Canadian Application No. 2829626. |
Japanese Notice of Allowance dated Feb. 27, 2018 issued in corresponding Japanese Application No. 2015-530101, with English language translation. |
Canadian Office Action dated Jan. 22, 2018 issued in corresponding Canadian Application No. 2932956. |
Jackson JD, “Classical Electrodynamics”, 3rd edition, Dec. 1998, pp. 31-34. |
Australian Office Action dated Feb. 26, 2018 issued in Australian Application No. 2017201560. |
ISRWO dated Aug. 11, 2016 issued in corresponding International Application No. PCT/US2016/032017. |
ISRWO dated Aug. 8, 2016 issued in corresponding European Application No. PCT/US2016/031823. |
ISRWO dated Aug. 18, 2016 issued in corresponding International Application No. PCT/US16/32420. |
ISRWO dated Dec. 12, 2017 issued in corresponding International Application No. PCT/US2017/056064. |
ISRWO dated Sep. 25, 2017, issued in Application No. PCT/US17/30922. |
ISRWO dated Aug. 4, 2017, issued in Application No. PCT/US17/30915. |
Office Action dated Mar. 17, 2018 issued in corresponding Australian Application No. 2013308531. |
Decision dated Jan. 18, 2018 issued for European Patent Application No. 13176658.6. |
Decision dated Jan. 16, 2018 issued for European Patent Application No. 09702094.5. |
Office Action dated Jan. 31, 2018 issued for European Patent Application No. 13763151.1. |
Office Action dated Apr. 27, 2016 in corresponding Canadian Application No. 2,747,859. |
Christoph Scharft et al. Declaration under 37 C.F.R. 1.132, Nov. 15, 2012. |
European Office Action dated Apr. 28, 2014, issued in corresponding European Application No. 09 702 094.5-1660. |
International Search Report and Written Opinion dated Jun. 26, 2015 issued in International Application No. PCT/US2015/022187. |
International Search Report dated Mar. 10, 2015 issued in corresponding International Application No. PCT/US14/54942. |
International Search Report dated Sep. 10, 2014 issued in corresponding International Application No. PCT/US14/54942. |
Invitation to Pay Additional Fees dated Jan. 8, 2014 in corresponding International Application No. PCT/US2013/057579. |
ISRWO dated May 20, 2014 in International application No. PCT/US14/15261. |
Office Action dated Oct. 4, 2013 in corresponding Canadian Patent Application No. 2,659,898. |
PCT ISRWO dated Jun. 5, 2014, issued in corresponding PCT Application No. PCT/US2013/057579. |
Examiner's Report dated Dec. 22, 2015 in related Canadian Application No. 2,659,898. |
Extended European Search Report for related Application No. 13176658 dated Sep. 29, 2014. |
Gupta et al. “Point of view cardiac mapping: utility or futility? Non-contact endocardial mapping” Indian Pacing and Electrophysiology Journal 2:20-32 (2002). |
He et al. “An equivalent body surface charge model representing three-dimensional bioelectrical activity” IEEE Transactions on Biomedical Engineering, 42.7 (1995) pp. 637-646. |
International Search Report and Written Opinion in related Application No. PCT/US2012/028593 dated Mar. 5, 2013. |
International Search Report in related Application No. PCT/IB2009/000071 dated Oct. 7, 2009. |
Partial European Search Report dated Apr. 29, 2014 in corresponding European Application No. 13176658. |
Pullan et al. “The inverse problem of electrocardiology” Northeastern University Electrical and Computer Engineering, Feb. 23, 2007. |
William G. Stevenson et al: “Recording Techniques for Clinical Electrophysiology”, Journal of Cardiovascular Electrophysiology., vol. 16, No. 9, Sep. 1, 2005, pp. 1017-1022. |
Wolfgang Nolting: Elektrodynamik—Grundkurs Theoretische Physik 3, Springer Spektrum, p. 89-91. |
European Office Action dated Mar. 21, 2017 issued in corresponding European Application No. 07785075.8. |
Jackson, JD, “Surface Distributions of Charges and Dipoles and Discontinuities in the Electric Field and Potential”, Classical Electrodynamics, 3rd edition, Dec. 1998, pp. 31-34. |
Chinese Office Action dated Apr. 17, 2017 issued in corresponding Chinese Application No. 201480018328.4. |
Canadian Office Action dated Apr. 26, 2017 issued in corresponding Canadian Application No. 2932956. |
Canadian Office Action dated Mar. 30, 2017 issued in corresponding Canadian Application No. 2747859. |
Leif et al., “Geometric modeling based on polygonal meshes”. Eurographics 2000 Tutorial, Aug. 21, 2000. |
Australian Office Action dated Jul. 6, 2017, issued in Australian Application No. 2014/214756. |
Australian Office Action dated Jun. 27, 2017 issued in Australian Application No. 2013308531. |
Japanese Notice of Allowance dated Jul. 11, 2017 issued in Japanese Application No. 2013-557926. |
Japanese Office Action dated Dec. 11, 2018 issued in corresponding Japanese Application No. 2018-024907, with machine translation to English. |
Canadian Office Action dated Nov. 7, 2018 issued in corresponding Canadian Application No. 2932956. |
European Office Action dated Jan. 28, 2019 issued in corresponding European Application No. 14748567.6. |
Australian Office Action dated Jan. 26, 2019 issued in corresponding Australian Application No. 2018211348. |
Japanese Notice of Allowance dated Sep. 18, 2018 issued in corresponding Japanese Application No. 2015-557091, with English language translation. |
Australian Examination Report dated Jun. 28, 2018, issued in corresponding Australian Patent Application No. 2014318872. |
European Office Action dated Feb. 6, 2019 issued in corresponding European Application No. 14843283.4. |
Extended European Search Report dated Oct. 4, 2018 issued in corresponding European Application No. 16793503.0. |
Australian Examination Report dated Feb. 8, 2019 issued in corresponding Australian Application No. 2018250516. |
Extended European Search Report dated Dec. 5, 2018 issued in corresponding European Application No. 16793622.8. |
Canadian Office Action dated Oct. 29, 2018 issued in corresponding Canadian Application No. 2829626. |
Patent Examination Report No. 2 dated Jun. 14, 2018 in related Australian Application No. 2014214756. |
European Office Action dated Apr. 23, 2018 issued in corresponding European Application No. 07785075.8. |
Japanese Office Action dated Aug. 28, 2018 issued in corresponding Japanese Application No. 2016-542062, with machine translation into English. |
Japanese Office Action dated Feb. 19, 2019 issued in corresponding Japanese Application No. 2016-558799, with machine translation to English. |
Japanese Notice of Allowance dated Mar. 5, 2019 issued in corresponding Japanese Application No. 2018061040, with English translation. |
International Search Report and Written Opinion dated Apr. 8, 2019, issued in corresponding International Application No. PCT/US19/14498. |
Japanese Notice of Allowance dated Jun. 11, 2019 issued in corresponding Japanese Application No. 2018-024907, with English translation. |
Number | Date | Country | |
---|---|---|---|
20170258347 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14865435 | Sep 2015 | US |
Child | 15435763 | US | |
Parent | 14547258 | Nov 2014 | US |
Child | 14865435 | US | |
Parent | 14189643 | Feb 2014 | US |
Child | 14547258 | US | |
Parent | 13858715 | Apr 2013 | US |
Child | 14189643 | US | |
Parent | 12376270 | US | |
Child | 13858715 | US |